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The relative moment - relative rotation curves, according to Eurocode 3, 
of frame knees' K SI' and' K S2' of the frame (Pig. 7) are shown in Fig. 9. 
'K SI' is the non-stiffened version, which is really semi-rigid. 'K S2', con­
taining horizontal stiffeners at flange levels, has a moment-rotation curve 
just beneath the limit curve in EC3 for sway frames. 
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Fig. 9. :-Ioment-rotation curves b:; re :3 

The horizontally and diagonally stiffened' K S3' is a rigid and full strength 
joint in EC3. 

The column base was st.ructurally solved as pinned. Neither cal­
culations nor measurements have been made to check the reality of this 
supposition. 

Separated tests have been carried out on knee models (Fig. 10). 
During the experimental work (IV.'\:\YI Jr. (1993, 1994)) special em­

phasis was due to the measurement of relative rotation of joints. The ab­
solute rotation of sections A and B in the figure was measured by means of 
optical methods. From the difference of the absolute rotations at A and B, 
the relative rotation of joint has been calculated. This way the moment­
rotation curves for the joints can be constructed. 

Similar measurements have been carried out during the tests on the 
frames themselves. In those cases the load-rotation diagrams may be 
determined. 

From the numerical point of view there are differences among the 
iv! - if; curve properties, if those by EC3, by separated knee models and by 
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For illustration the are supposed In the 

SDII-RIGID3 
RIGID Ssec. 

Bear:n (spring 3): 
as the calculated moment capacity of the section is = 6.9 kl\m, 
plastic hinge properties are approximated as 

o 3000 k:\'m JJmax = :\1p / = 6.9 k:\'rn o(Jlmax) = 0.00·10 

Frame knees (spring 2 and spring 
Ssec. 0 = 850 k:\' m ,H ma" = = 2 .:3 k:\' m o( :\1 max = 0.00·50 
Ssec. 0 = 1050 k:\' m .H max 4.6 k:\' m = 0.007-5 

/3 Ssec.o=12.50k:\'m.\1max = =6.9k:\'m o(Jlmax =0.0100 



In the present study the Iv1 - 0 curve above cjJ(1'vfmax ) 1S constant, 
beneath this value the curve is approximated as: 

Iv! = Ssec . cjJ = o·(l-a· (5) 

(6) 

1 

If the mentioned remain valid above cjJ( ), instead of unlim-
ited behaviour rhe influence of descending moment-rotation char-

CL value for n. the ratio 

and 

illuSTrate influence of different for the second-
order load of the frame" the maximal vertical loads are 

to the first order collapse load, calculated on fixed frame, having 
rr:.aterial. This first 0rder collapse load 

from combined il1ecnanism is 

4·6,9 
L 1 

= 27.6 kN . 

12 clearl"\/ sho'vvs that column base strength increase has the most 
remarkable illfluence if both groups of connections (beam-to-column alld 
column bases) are similar. that is all of them are 
fixed ones. 

hinged or 

_,3,_s the program prints complete structural response curves for char­
acteristic internal forces and moments, for absolute and relative displace­

for the change of spring rigidities; the internal redistributions and 
their influence can be analysed. To illustrate these outputs, Fig. J 3 shows 
the load - joint rigidity curves for hinged column base and different frame 
knee connections. 

8. Plastic 

As the extended use of the stability functions is too complex for design­
ers' everyday practice, it is worth seeing, "'.That kind of uncomplicated tech­
niques are available in the plastic field, which could be coupled a simple 
elastic check to give an upper bound estimate for the behaviour. 
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Fig. 12. Influence of parameters for load capacity 

Plastic analysis of structures can be carried out using different, less 
or more simplified material models (Fig. 14). Numerous approximate en­
gineering methods are introduced in the literature. The simplest one is the 
rigid-ideally plastic supposition, vvhich neglects the effect of both elastic 
and strain-hardening states of steel. Because of their opposite effects the 
rigid-plastic material model produces a relatively good agreement with the 
plastic load carrying capacity, if a certain plastic deformation is achieved. 

A relatively exact approximation is the rigid-plastic-hardening model; 
which can be simplified to the rigid-hardening one. 

In case of increasing loading plastification is progressively developing 
in parts of member sections and along the member length. To take this 
phenomenon into account is a relatively difficult process and concentration 
of plastification into designated sections, into the plastic hinges, is a general 
way of treatment. 

Activity of HOR:--iE (HOR:\E, :VI. R. .\10RRIS, L. .J. (1981)) in using 
different material models is well-known. The Mechanism Curve Method 
can be applied to take the effect of finite deformations and strain hardening 
of steel into consideration. 

Plastic collapse loads are idealised failure loads of elastic-plastic struc­
tures and they correspond to infinitely small structural deformations and 
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to infinitely small plastic hinge rotations. Choosing an adequate pattern of 
plastic hinges (a so-called yield mechanism) the virtual work equation can 
be written as: 

\p L Qi1L i = L MpjG j , (10) 
j 

where'\ is the load parameter, Qi are the external loads, 1Li are the displace­
ments of external loads, Mp are the moment capacities of plastic hinge sec­
tions, 0 j are hinge rotations. 
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Fig. 14. },1aterial models for structural steel 
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FIoIn this equation the value of can be determined~ v;hich corresponds 
to (practically) zero deformations 15 - line A. - . If VIe want to 
know the influence of finite deformations, we have to foHow the variation of 
the load parameter at increasing finite values of the rotation o. The A 0 
curve is, of course, non-linear and its exact determination is quite difficult. 

HOR:\E (HOR:\L ?vI. H. ::VI0RR!S, 1. .J. (1981)) has shovvn that a 
simple treatment can give a value for the load parameter, which is correct 
for the first power of 0. The virtual work equation for the incremental 
deformations may be v,rritten as: 

(11) 
k j 
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The new second term on the left hand side (where Nk are the normal forces, 
Lk are the lengths) is the additional external work of finite deformations. 
Supposing, that 

the above expression can be transformed to: 

I 
\ I Q·u·-L 
/\ \ 2 I. I 

, i k 

8 ) (13 ) 

This expression gives the relationship A - C in Fig. 15. 
Because of the influence of strain hardening the plastic moment capac-

of a section is increased froDl to + 7n. l~ the rigid-hardening 
model and the principle of 'equivalent cantilever' this m increase can be 
written as: 

b· E· 8 
m= f . h . J<;,- • CJ Ji 

where El [{ is the slope of the strain hardening line, j is the shape factor 
of the symmetrical I-section, b is the section depth and h is the length of 
the equivalent cantilever. 

As this new term increases the internal work. it could be induded on 
the right hand side and the governing equation becomes: 

! TV \ 
A ( . Qi1Li + J.~~p Llcrp~)\ = . (Mpj + mj)8j 

\ 1 k I' ) 

(15) 

If this result is compared with the original equation, which was not affected 
either by finite deformations or by strain hardening, the relation of the two 
new terms determine the final shape of the A - u curve. If strain hardening 
is dominant compared to the influence of deformations, line A - D is the 
result, while in the opposite case it is line A-E. 

If the 'stability ratio' is defined as: 

R _ L j m j 8 j 

- Ap Lk NkLkrp~ , 
(16) 

the above statement can be transformed to the following: 
- if R > 1, then the tendency of the A - u curve is increasing, while 
- in case of R < 1 the deformations will reduce the load parameter. 

In the first case the plastic hinge can be called as a plastic-hardening 
one, while in the second as a plastic-softening one. 

The above discussed idea can be used to take other special effects into 
consideration, as well. 
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9. Special Phenomena in Frames 

In plastic design of steel structures special care should be taken for the 
instability problems, among others, for plate buckling. To carry out this, 
an approximate engineering method is proposed by IvA:\YI (IV.'\:\YL ::VI. 
(1992)). 

If the plate slendernesses are chosen in that they prevent development 
of plate buckling before achieving the plastic load carrying capacity (before 
forming of the yield mechanism), plate buckling is taken into account in 
the so-called indirect way. 

If direct analysis of plate buckling in the plastic range is carried out, 
a similar curve is the result, as line A - C in Fig. 15. Of course, a different 
(generally greater) load parameter is belonging to plate buckling in the 
undeformed state, than to the plastic mechanism. 

"Without dealing \vith details of the determination of this curve, \ve 
should refer to the fact that instability of plates (local) or elements does 
not mean the instability of the complete construction. For this that simple 
frame can be used, which is shown in J.,L~ig. 16. If the rigid body, which 
is supported by two columns of different load carrying character, is let to 
move only vertically, the overall load-deformation diagram is simply the 
sum of the individual ones. 

In the range) where column 1 is unstable and column 2 is stable, the 
structure can be stable, while the sum of rigidities is positive. 

Plate buckling is a phenomenon, which produces a softening 
behaviour, but its influence can be counterbalanced by some other 
e.g. by strain hardening. As these effects in certain sense are similar, their 
lnfl uence can be analysed also in a similar way. 

e 

stable unstable 

Fig. 16. C nstable state of elements and of the structure 
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The category of strain hardening plastic hinge can be extended to handle 
the plate buckling phenomenon, as well. The essence of the Approximate 
Engineering Method is that these two effects are separated and the inter­
active plastic hinge is compiled from these components. 

I~ 1~··l .... ~.s .............. . 
I struh"1-hurdenJ1ing component 

i 

M 

~ 
I plate bucklL'1g component 

.\'1 

e 

7. Interaction of strain 
, 

ann buckling 

For the plate buckling component it is assumed, that buckling moment 
m 17 can be achieved in the rigid state and the curve is descending 
because of deformations. The intersection point of the two (strain hard­
ening and plate buckling) curves can give generally the maximum of load 
carrying capacity. 

The relating formulae can be expressed using those ones on the pre­
VlOUS pages. This time the expression for strain hardening is: 

Qu+ 

(18) 

while for plate buckling it is: 

Qu+ (lvI' + mdG , (19) 

(20) 

These formulae are suitable to draw an upper limit curve for the load 
carrying capacity with respect to deformations. The axial forces in the 
members are assumed to be proportional to the intensity of the loading. 
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_~bstract 

is for l:ornpu~e~' ciJed 
coiumns, The is based on ;:i nnite element nl€[ hod 
colun1n elernent pui)~i5hed Rajasekaran. In the advanced et design factor is 
i:-nroduced that can be deri,:ea from [he test based curves. 

steel beanl-cohlD1D. adyacccd conlputet" {tided design. 

~ Introduction 

The up-to-date design standards allow one to apply advanced analysis and 
design of structures when the structural members are of compact cross­
sections with full lateral restraint [1]. The aim of advanced design using 
advanced analysis is to predict accurately the behaviour of in-plane struc­
tures. advanced analysis the maximum load carrying capacity as well as 
the full-range load-displacement response should be predicted taking the 
relevant material properties, residual stresses, geometrical imperfections, 
connection behaviour, erection procedures and interaction with the foun­
dations into consideration. Advanced analysis was used first to predict the 
column buckling capacity. The procedure was based on the finite difference 
method by BEER and Scm:LZE [2J. Later this method was used by others 
[3] to predict the load carrying capacity of columns by taking the proba­
bility density function of each variable from the data base of the E.C.C.S. 
tests. T.I,.R:\AI [4] applied advanced analysis to predict the capacity of par­
tially restraint columns. Later the finite element method has replaced the 
final difference method. Including the large displacements some computer 
codes have been developed for advanced analysis of in-plane frames [5, 6]. 
Influence coefficient matrix method has been used by C AI et. al. [7] for ver­
ifications of the AISC LRFD design interaction equations of beam-columns. 
They have found that the experimental results for the strength were close 
to the numerical results. BILD and TRAHAIR [8] used more accurate finite 
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element code to analyse,the in-plane strengths of steel columns and beam­
columns. However, most of the computer methods based on distributed 
plasticity suffer from the disadvantage of high computational time and as 
such are not currently practical for routine design of structures. 

In this paper a practical finite element analysis is used in an advanced 
design of out-of-plane beam-columns. The PASBC code has been devel­
oped applying the thin walled finite element which has been published by 
RAJASEKARA~ [9]. The described and proposed procedure can be inte­
grated in a computer aided design method for beam-column structures. 
The method involves the buckling curves of Eurocode 3 and Hungarian 
Standard 15024 [13]. 

2. for Advanced 

In the past decades, mostly in the seventies, the E.C.C.S. has carried out aE 
extensive experimental program on buckling of centrically loaded, 
columns as well as in-plane loaded beams. The test program has been de­
signed in such a way that the buckling curves with a certain probability of 
failure should be determined. A statistical analysis of the buckiing stresses 
of columns proved that the buckling strengths are Gaussian 
therefore the buckling curves ,vere derived as X = Xm - 2Xs where Xm Vias 
the mean value, XS was the standard deviation of the reduction factors of 
more than 1065 column and 235 beam tests. The implicit reduction func­
tion based on the Ayrton-Perry formulation has been proposed by 
and RO~D/\.L [11]. The current design standards use this function. On the 
other hand, due to the great number of tests to be involved in the above 
approach, it cannot be extended easily to all the various restraints and 
load sets. 

, 
na-'Ie gone numerical test program 

based on probability function of 'lariables \vhich cteterrnine the load carry­
ing capacity. In case of a simple column the variables are: 
residual eccentricity, of initial curvature, area, TI10dules 
of elasticity and of member~ ho\ye\ter the results have justified the 
E.C.C.S. curves, but have also highlighted the inaccuracy of the theorem ot 
elastic extrapolation used to take the differeIH end-conditions and load sets 
into consideration. In the case of beanl-columns the of variables should 
be extended to other parameters which art' related to the tlexurai-torsioE"'cl 
deflection as Vtlell as the combination of the axial and transverse loads. Be­
cause of the considerable expense of both experimental and numerical test 
programs, there is little chance of an overall investigation for <i 

based formulation of the beam-column reduction factor. 
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Normally there is not enough information about the probability func­
tions of parameters for use statistical analysis to predict the buckling 
strength of beam-columns. Moreover, the advanced analysis with semi­
probability models would be time consuming, consequently too expensive 
for the practice. Using deterministic model the prediction of the buck­
ling strength depends on the deterministic value of the model parameters, 
especially of the yield stress, the residual stress and the initial out-of­
straightness. 1 shows a deterministic beam-column model 
"vhere the model properties can be written as 

STreSE~ u;, 15 the maXlillum stress in the 
reSlQ ual stress of the structural 1 1 

memoer~ ana u} 
.8 and 0 are the model It is cleaT that each set of model 
parameters defines a different buckling strength. Therefore, these model 
parameters should be calibrated test =-esults. There are t\'lO vv'ays for 
the calibration: 

(1 Two of the mode: Darameters are fixed and the third one should be 
calibrated, 
All the model parameters are fixed and a design factor 
be introduced and calibrated: 

should 

(2) 

'where Smodel is the buckling strength gIVen by the deterministic model 
using fixed model parameters, Sb.Rd is the strength known by test 
result. 

Initial curV.1tur-: ~1odej parameters 

5 L/1 
~ :vield stress: ' roiled section: 

(yj3~, 
a =0,2 

I~ 
~ 'welded section: I L -l~ 

- residual stress a =0,35 

sJ1L. J fJ =1.2 
ur=u) 

<5 =1!1000 

Fig. 1. A deterministic model for beam-columns 

For some practical advantages, the second way is preferred in this paper. 
Assuming double symmetrical I section, the model parameters can be fixed 
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close to the mean values: according to the European convention, the model 
parameter for initial out-of-straightness can be fixed as /5 = 0.001; the 
model parameter for yield stress can be fixed as j3 = 1.2; the maximum 
compressive stress in the residual stress model can be fixed as 0: = 0.2 for 
rolled sections and 0: = 0.35 for welded sections. 

3. Analysis 

The finite element analysis uses the thin walled beam-column element pub­
lished by RAJASEEARA:\ [9]. The details of the computer code have been 
described in [12]. The solution technique uses a modified N ewton-Raphson 
iteration: 

step 1: second order linear elastic solution for the initial load set using 
direct iteration, 

2: computation of the unbalanced load vector where the balanced 
load vector is the sum of the geometric and the static load vectors 
calculated from the normal stress field of the elements, 

step 3: computation of the increment iil displacements iil the n-th iter­
ative step using direct iteration (second order solution), 

step 4: compute the total displacements in the n-th iterative step as the 
sum of the increments in displacements, 

step 5: repeat steps 2 to 4 until the ratio of norm of unbalanced load 
vector and norm of total load vector is less than the allowable 
tolerance value Ep convergence , or until the 
ratio of norm of increments in displacements and norm of to­
tal displacements is less than the allmvable tolerance value ::'0 

(secondary convergence condition . 

to the con"'iergence 
con1;"ergence condition is €p == 

~.. . 
gence condltlOn IS c:" 

proper tolerance 'v·alue for 
and con-\ter-

these tolerance values the iteration 
is normally stable and the limit load can be available without divergence. 

2 shows a typical column buckling and a beam buckling (lateral tor­
sional buckliilg) where the member reduced slenderness (about 
the minor axis viith the member is A = 1.2. The method has been 
compared \vith the result of the influence coefficient matrix method and 
with the experimental test that were published by C\I, Lie and [7]. 
Fig. J shows the specimen and the results. 
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Fig, 3, Comparison of the analysis with the coefficient matrix method and test 

No, nomination dimensions 
1 HE 300 A Eunorm (h/b<1.2) 
2 IPE 300 DIN (h/b>1.2) 
3 W-1 flange: 300-12 web: 300-8 
4 W-2 flange: 200-12 web: 400-8 

Fig, 4, Rolled and welded I sections used in the present paper 
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(a) Column design factor for Eurocode 3 

reduced slenderness 

(c) Beam design factor for '--u:~:::.::':....:: __ 

OA 0.8 L':; 1.6 2 . ..! 2.8 3.2 3.6 

F'A?;:; 

(b) Column design factor for HS 15025 

OA 0.8 1.2 1.6 .:; 2A 2.8 

r-,;duced sienderness 

3.2 3.6 4 

(d) Beam design factor for HS 15024 
.:; __________ -,- HEA 300 

L 9 -:- iPE 300 
---------I-.-W-1 

0.9 --.---------------' 
1.: 1.6 :: :.4 2.8 3.2 .j.D 

;-,:::duced slendcrness r.::duce-d skndcrilcss 

5 factor for basic (>Jiurnn z:.nd b~.::arn 

4" Calibration of the Factor 

The design factor can be calibrated the test based buckling curlIes -;,.vhich 
standarcis. r-.[,he calibration has been have been in the 

car~jed out for Eurocode 3 and for Hungarian Standard 15024 assulning 
the rolled and ";~Nelded sections snovJn in . lvlild steel ITlaterial Vias 

assumed where the design strength is f = 235 N / mm ~, the initial elastic 
modulus is = 210000 N :2 = 210000 :2 for 1.5024), the 
hardening modulus is = 7000N/mm2 and::;, = lO::y. The proper design 
factors for the basic buckling problems are shown El Fig. 5. 

5. of Basic Beam-ColuIrills 

For beam-columns the design factor can be interpolated linearly between 
the basic beam and column problem. The interpolation is governed by the 
axial force ratio T.Y = Nsc/Nb.,.d. This method extends the hypothesis of 
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elastic extrapolation to beam-columns. The procedure excludes the appli­
cation of the design interaction equations. Fig. 6 shows some results of this 
method in comparison with the Eurocode 3 and the Hungarian Standard 
15024. 

6. Design of Basic Beam-Columns with Non-Basic 

A design factor has been introduced for the basic buckling problems such as 
column, beam and beam-column buckling. This factor reduces the strength 
that is given by the finite element analysis to the relevant strength specified 
by the actual standard. For any beam-column problem where the loading 
differs from the basic load set the design factor can be interpolated linearly 
by the actual normal force ratio NSd/N/;.l'd. Fig. 7 shows an example where 
the compressed member is loaded by single end-moment. The resulting 
strengths are compared with the Eurocode 3 and the Hungarian Standard 
15024 specifications in Fig. 7a and 7b for a wide flanged rolled and a welded 
section. 

of Restraint Beam-Colmnns 

The design factor depends on the reduced slenderness of the member. In 
case of non-basic beam-column where the ends are restrai!led the reduced 
slenderness should be calculated by elastic stability analysis. In an advance 
design this analysis is !lot evaluated in natural. If we use the member slen­
derness (slenderness of the basic column model), considerable difference 
may be given in the design factor. Fig. 8a{ c) shows the predicted strength 
of fixed columns when the design factor has been calculated from the mem-
ber slenderness, shovz,-s the results \vhen the elastic 
slenderness has been used. Fig. 9 shovvs the results for fixed beams. 

8. Conclusions 

(1) The procedure that is based on the thin-walled finite element pub­
lished by Rajasekaran is a sufficient tool for the finite element analy­
sis of deterministic beam-column models if the primary convergence 
condition which controls the norm of the unbalanced loads is com­
plemented with a secondary convergence condition which controls the 
norm of the increments in displacements due to the unbalanced loads. 
The secondary convergence condition stops the iteration when the 
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Fig. 7. Predicted strength for beam-column with non-basic loading 

norms of the increments in displacements becomes insignificant even 
if the primary convergence condition is not satisfied. 

(2) The design factors of the basic problems depend on the member slen­
derness. In case of columns with different sections the design factors 
are close to each other for both specifications. The only exception is 
the wide flanged REA 300 section in case of Eurocode 3. In case of 
beams the design factors show significant spreading even in the higher 
range of member slenderness. 

(3) For basic beam-columns of the intermediate and higher range of mem­
ber slenderness the predicted strengths using linearly interpolated de-
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sign factors between the basic column and beam buckiing are higher 
than those given by the design interaction equations of the standards. 
The difference in higher range (T.,· > 0.7) of axial compression is sig­
nificant. The method gives similar result for basic beam-columns with 
non-basic load sets. 

(4) The generalisation of the method for restrained (built-up) beam­
columns meets difficulties: the design factors vary significantly with 
the member slenderness, therefore it should be determined from the 
effective slenderness that can be calculated by elastic stability anal­
ysis. Using the member slenderness (which is independent of the 
end-restriction) the advanced design of restraint columns results in 
maximum 13% overestimation and ma.;;:imum 6% underestimation of 
strength in case of Eurocode and 9% (5%) in case of HS 15024. The 
advanced design of restraint beams results in maximum 28% overes­
timation and maximum 19% underestimation of strength in case of 
Eurocode and 27% (9%) in case of 15024. 
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