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7. Parametric Study on the Influence of
Semi-Rigid Frame Knees and Support Conditions

The relative moment ~ relative rotation curves, according to Eurocode 3,
of frame knees ‘K S1’ and ‘K S2’ of the frame (Fig. 7) are shown in Fig. 9.
‘K 51 is the non-stiffened version, which is really semi-rigid. ‘K 52’, con-
taining horizontal stiffeners at flange levels, has a moment-rotation curve
just beneath the limit curve in EC3 for sway frames.

KS1 KS2

1 1
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Fig. 9. Moment-rotation curves by EC 3

The horizontally and diagonally stiffened ‘K53’ is a rigid and full strength
joint in EC3.

The column base was structurally solved as pinned. Neither cal-
culations nor measurements have been made to check the reality of this
supposition.

Separated tests have been carried out on knee models (Fig. 10).

During the experimental work (IVANYI Jr. (1993, 1994)) special em-
phasis was due to the measurement of relative rotation of joints. The ab-
solute rotation of sections 4 and B in the figure was measured by means of
optical methods. From the difference of the absolute rotations at 4 and B,
the relative rotation of joint has been calculated. This way the moment—
rotation curves for the joints can be constructed.

Similar measurements have been carried out during the tests on the
frames themselves. In those cases the locad-rotation diagrams may be
determined.

From the numerical point of view there are differences among the
A — ¢ curve properties, if those by EC3, by separated knee models and by
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Fig.

10. Frame knee models
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In the present study the M — & curve above &(Mmax) is constant,

4

beneath this valu Lhe curve is approximated as:

M =Swc 6= Scco (L—a-3"), (5)

tural response curves for char-
tic mtemal forces and moments, for absolute and relative displace-
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ments, for the change of spring rigidities; the internal redistributions and

their influence can be analysed. To illustrate these outputs, Fig. 79 shows
the load - joint rigidity curves for hinged column base and different frame
knee connections.

8. Simple Plastic Analysis

\s the extended use of the stability functions is too complex for design-
ers’ everyday practice, it is worth seeing, what kind of uncomplicated tech-
niques are available in the plastic ﬁeld, which could be coupled a simple
elastic check to give an upper bound estimate for the behaviour.
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Fig. 12. Influence of parameters for load capacit

I

Plastic analysis of structures can be carried out using different, less
or more simplified material models (Fig. 1{). Numerous approximate en-
gineering methods are introduced in the literature. The simplest one is the
rigid—ideally plastic supposition, which neglects the effect of both elastic
and strain-hardening states of steel. Because of their opposite effects the
rigid—plastic material model produces a relatively good agreement with the
plastic load carrying capacity, if a certain plastic deformation is achieved.

A relatively exact approximation is the rigid—plastic-hardening model,
which can be simplified to the rigid-hardening one.

In case of increasing loading plastification is progressively developin
in parts of member sections and along the member length. To take thi
phenomenon into account is a relatively difficult process and concentratio
of plastification into designated sections, into the plastic hinges, is a genera
way of treatment.

Activity of HORNE (HORNE, M. R. — Morris, L. J. (1981)) in using
different material models is well-known. The Mechanism Curve Method
can be applied to take the effect of finite deformations and strain hardening
of steel into consideration.

Plastic collapse loads are idealised failure loads of elastic—plastic struc-
tures and they correspond to infinitely small structural deformations and

n 09
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to infinitely small plastic hinge rotations. Choosing an adequate pattern of
plastic hinges (a so-called yield mechanism) the virtual work equation can

be written as: .
dp oy Qiui =) My;0;, (10)
j

whereA is the load parameter, (J; are the external loads, u; are the displace-
ments of external loads, M, are the moment capacities of plastic hinge sec-
tions, ©; are hinge rotations.

q

rigid-hardening o | rigid-plastic-hardening
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rigid-plastic / /
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Fig. 14. Material models for structural steel
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curve 1s, of course, non-linear and its exact determination is quite difficul
HorNE (HORNE, M. R. — MORRIS, L. J. (1981)) has shown that a

simmple treatment can give a value for the load parameter, which is correct

for the first power of ¢. The vir‘wal work equation for the incremental

deformations may be written as:

Y Quui + Y] NiLubrdon = 3 My;d0; ()
i k J
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The new second term on the left hand side (where N are the normal forces,
L} are the lengths) is the additional external work of finite deformations.
Supposing, that

N =X/2 Ny and dui/u; = doy/or = dO;/6; | (12)
the above expression can be transformed to:
/ \“ AY
Nep - 23 Py |
&3—\ Qu; + L *)\—E.{J,’C q 1) = Z ./Vlm'@’j . (13)
. k P K
This expression gives the relationship A — ' in Fig. 15.
gth

Because of the influence of strain h rdenin
ion is i rom M, to My -+ m. Using the rigid-hardening
T

s
model and the principle of ‘equivalent cantilever’

'R—'J“ .

=t
o
¥

where E//K is the slope of the strain hardening line, f is the shape factor
of the symmetrical I-section, b is the section depth and h is the length of
the equivalent cantilever.
As this new term increases the internal work, it could be included on
the right hand side and the governing equation becomes:
i\

.
A ( ’l‘c 4+ g_“ ’c?’ 7 ) E<['/[pj -4 mj)@j . (15}
7

If this result is compared with the original equation, which was not affected
either by finite deformations or by strain hardening, the relation of the two
new terms determine the final shape of the A —u curve. If strain hardening
is dominant compared to the influence of deformations, line A — D is the
result, while in the opposite case it is line A — E.

If the ‘stability ratio’ is defined as:

Ej m;0;
’\p Zk NkLkQé?k ,

the above statement can be transformed to the following:
— if R > 1, then the tendency of the A — u curve is increasing, while
— in case of R < 1 the deformations will reduce the load parameter.
In the first case the plastic hinge can be called as a plastic-hardening
one, while in the second as a plastic-softening one.
The above discussed idea can be used to take other special effects into
consideration, as well.

R= (16)
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In plastic design of steel structures special care should be taken for the
instability problems, among others, for plate buckling. To carry out this,
an approximate engineering method is proposed by IVANYI (IVANYI, M.
(1992)).

If the plate slendernesses are chosen in that they prevent development
of plate buckling before achieving the plastic load carrying capacity {before
forming of the yield mechanism), plate buckling is taken into account in
the so-called indirect way.

If direct analysis of plate buckling in the plastic range is carried out,
a similar curve is the result, as line 4 — C in Fig. 15. Of course, a different
(generally greater) load parameter is belonging to plate buckling in the
undeformed state, than to the plastic mechanism.

Without dealing with details of the determination of this curve, we
uld refer to the fact that instability of plates (local) or elements does

@

not mean the instability of the complete construction. For this that simple
rame can be used, which is shown in Fig. 76. If the rigid body, which
is supported by two columns of different load carrying character, i1s let to
move only vertically, the overall load-deformaticn diagram is simply the

sum of the individual ones.
In the range, where column 1 is unstable and column 2 is stable, th
tructure can be stable, while the sum of rigidities is positive.

o e

Plate buckling is umcaﬂw phenomenon, which produces a softenin
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behaviour, but its influence can be cou Dterba‘ ed by some other effect

c

o

e.g. by strain hardening. As these effects in certa iL sense are similar, thei
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influence can be analysed also in a similar way.

&
&

i

(¢

(P

stable unétable stz;ble unsiable

Fig. 16. Unstable state of elements and of the structure
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The category of strain hardening plastic hinge can be extended to handle
the plate buckling phenomenon, as well. The essence of the Approximate
Engineering Method is that these two effects are separated and the inter-
active plastic hinge is compiled from these components.

st
i
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AM

plate buckling component

e buckling
a4t - :
I ne \ M’ buckling moment
pd i o4 3 +1 e 4 £
n Fig. 17 can be ac"ue» ed in the rigid state and the curve is descending

because of deformations. The intersection point of the two (strain hard-
ening and plate buck.hng) curves can give generally the maximum of load
carry ng capacity

relating formulae can be expressed using those ones on the pre

tin
his ime the expression for strain hardening is:

M (T Qua T NL) =T (M, +m)0 (17)
L > Mp6+ 3 mb (18)

T T Qu+ . NLg? v

while for plate buckling 1
A (S Qut Y NLS®) = 3 (M +mp)e, (19)
5 M6 -+ Zm,;@

A= = 20
L SN Qutr S NIg? (20)

These formulae are suitable to draw an upper limit curve for the load
carrying capacity with respect to deformations. The axial forces in the
members are assumed to be proportional to the intensity of the loading.
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1. Introduction

The up-to-date design standards allow one to apply advanced analysis and
design of structures when the structural members are of compact cross-
sections with full lateral restraint [1]. The aim of advanced design usin

advanced analysis is to predict accurately the behavicur of in-plane struc-
tures. By advanced analysis the maximum load carrying capacity as well as
the full-range load-displacement response should be predicted taking the
relevant material properties, residual stresses, geometrical imperfections,
connection behaviour, erection procedures and interaction with the foun-
dations into consideration. Advanced analysis was used first to predict the
column buckling capacity. The procedure was based on the finite difference
method by BEER and SCHULZE [2]. Later this method was used by others
(3] to predict the load carrying capacity of columns by taking the proba-
bility density function of each variable from the data base of the E.C.C.S.
tests. TARNAI [4] applied advanced analysis to predict the capacity of par-
tially restraint columns. Later the finite element method has replaced the
final difference method. Including the large displacements some computer
codes have been developed for advanced analysis of in-plane frames [5, 6].
Influence coefficient matrix method has been used by Cal et. al. [7] for ver-
ifications of the AISC LRFD design interaction equations of beam-columns.
They have found that the experimental results for the strength were close
to the numerical results. BILD and TRAHAIR [8] used more accurate finite
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element code to analyse the in-plane strengths of steel columns and beam-
columns. However, most of the computer methods based on distributed
plasticity suffer from the disadvantage of high computational time and as
such are not currently practical for routine design of structures.

In this paper a practical finite element analysis is used in an advanced
design of out-of-plane beam-columns. The PASBC code has been devel-
oped applying the thin walled finite element which has been published by
RAJASEKARAN [9]. The described and proposed procedure can be inte-
grated in a computer aided design method for beam-column structures.
The method involves the buckling curves of Eurocode 3 and Hungarian
Standard 15024 [13].

2. Concept for Advanced Design

In the past decades, mostly in the seventies, the E.C.C.S. has carried out an
extensive experimental program on buckling of centrically 1oaaed hinged
columns as well as in-plane loaded beams. The test program has been de-
signed in such a way that the buchg curves with a certain robabili‘t o
failure should be determined. A statistical analysis of the ouc"i s

of columns proved that the bucknnﬁ strengths ar
therefore the buckling curves were derived as
the mean value, ¥ was the standard deviation of
more than 1065 column and 235 beam ’cests
tion based on the Ayrton-Perry fo

and RONDAL [11]. The current design s
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Normally there is not encugh information about the probability funec-
tions of parameters for use statistical analysis to predict the buckling
strength of beam-columns. Moreover, the advanced analysis with semi-
probability models would be time consuming, consequently too expensive
for the practice. Using deterministic model the prediction of the buck-
ling strength depends on the deterministic value of the model parameters,

especially of the yield stress, the residual stress and the in ta? out-of-

straightness. Fig. I shows a possible deterministic beam-column model

where the model properties

where Spoder is the buckling strength given by the deterministic model
using fixed model parameters, Sb R4 is the strength known by test
result.
Residual stress model .
rofied section | weided Initial curvature Model parameters
g - yield stress: - roiled section:
a =02
=51 )] Lo Jv—ﬁ f» - welded section:
U5 - residual stress a =035
sim ol =
J L G,= G, B =12
- | ¥ & =1/1000

Fig. 1. A deterministic model for beam-columns

For some practical advantages, the second way is preferred in this paper.
Assuming double symmetrical I section, the model parameters can be fixed
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close to the mean values: according to the European convention, the model
parameter for initial out-of-straightness can be fixed as 6 = 0.001; the
model parameter for yield stress can be fixed as 8 = 1.2; the maximum
compressive stress in the residual stress model can be fixed as o = 0.2 for
rolled sections and o = 0.35 for welded sections.

3. Analysis

The finite element analysis uses the thin walled beam-column element pub-
lished by RAJASEKARAN [9]. The details of the computer code have been
described in [12]. The solution technique uses a modified Newton—Raphson
iteration:

step 1: second order linear elastic solution for the initial load set using
direct iteration,

step 2: computation of the unbalanced load vector where the balanced
load vectoris the sumof t be geometric and the static load vectors
calculated from the normal stress field of the elements,

step 3: computation of the increment in displacements in the n-th iter-

ative step using direct 1teraucp (s cond order aoh.uop)

step 4: compute the total d1splacemems in the n-th iterative step as the
sum of thei msp?acem@.w

the ratio of norm of unbalanced load

load wvector 1s less than the allowable

convergence condition), or until the

the minor axis with the memb

e

compared with the result of the influence coefficient matrix method and
s
L 5]
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() buckling of basic column (b) buckling of basic beam:
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(FEM=PASBC code based on finite element analysis; Cai/Lin/Chen=influence coefficient matrix method:
TEST=specimen test by Cai, Liu and Chen 1991)

Fig. 3. Comparison of the analysis with the coefficient matrix method and test
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nomination dimensions

HE 300 A FEunorm (h/b<1.2)

IPE 300 DIN (h/b>1.2)

W-1 flange: 300-12 web: 300-8
W-2 flange: 200-12 web: 400-8

Fig. 4. Rolled and welded I sections used in the present paper
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(a) Column design factor for Eurocode 3 (b) Column design factor for HS 15025
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(c) Beam design factor for Eurocode 3 (d) Beam design factor for HS 15024
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] ——Eurocede; & MSz 15024
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reduce

Fig. 5. Design factor for basic column and beam buckling

factors for the basic buckling problems are shown in Fig. 5

5. Design of Basic Beam-Columns

For beam-columns the design factor can be interpolated linearly between
the basic beam and column problem. The interpolation is governed by the
axial force ratio 7y = Ns:/Ny 4. This method extends the hypothesis of
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elastic extrapolation to beam-columns. The procedure excludes the appli-
cation of the design interaction equations. Fig. 6 shows some results of this
method in comparison with the Eurocode 3 and the Hungarian Standard
15024.

8. Design of Basic Beam-Columns with Non-Basic Loading

A design factor has been introduced for the basic buckling problems such as
column, beam and beam-column buckling. This factor reduces the strength
that is given by the finite element analysis to the relevant strength specified
by the actual standard. For any beam-column problem where the loading
differs from the basic load set the design factor can be interpolated linearly
by the actual normal force ratio Ngyg /Ny 0. Fig. 7 shows an example where
the compressed member is loaded by single end-moment. The resulting
strengths are compared with the Eurocode 3 and the Hungarian Standar
15024 specifications in Fig. 7a and 7b for a wide flanged rolled and a welded
ection.

{:}a

Design of Restraint Beam-Columns

The design factor depends on the reduced slenderness of the member. In
case of no n—basic beam-column where the ends are restrained the reduced
slenderness should be calculated by elastic stability analysi
design this analysis is not evaluated in natural. If

derness (slenderness of the basic column model), considerable difference
may be given in the design factor. Fig. 8a(c) shows the predicted strength
of fixed columns when the design fa, ctor has been ¢
ber slenderness, Fig. é’a{a) shows
slenderness has been used. Fig. ¢

is. In an advance
we use the member slen-

(@]
o

lated from the mem-

th

2
shoy the results {

(1) The procedure that is based on the thin-walled finite element pub-
lished by Rajasekaran is a sufficient tool for the finite element analy-
sis of deterministic beam-column models if the primary convergence
condition which controls the norm of the unbalanced loads is com-
plemented with a secondary convergence condition which controls the
norm of the increments in displacements due to the unbalanced loads.
The secondary convergence condition stops the iteration when the
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Fig. 7. Predicted strength for beam-column with non-basic loading

norms of the increments in displacements becomes insignificant even
if the primary convergence condition is not satisfied.

The design factors of the basic problems depend on the member slen-
derness. In case of columns with different sections the design factors
are close to each other for both specifications. The only exception is
the wide flanged HEA 300 section in case of Eurocode 3. In case of
beams the design factors show significant spreading even in the higher
range of member slenderness.

For basic beam-columns of the intermediate and higher range of mem-
ber slenderness the predicted strengths using linearly interpolated de-
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sign factors between the basic column and beam buckling are higher
than those given by the design interaction equations of the standards.
The difference in higher range (rn > 0.7) of axial compression is sig-

nificant. The method gives similar result for basic beam-columns with
non-basic load sets.

The generalisation of the method for restrained (built-up) beam
columns meets difficulties: the design factors vary significa 13/ wztb

the member slenderness, therefore it should be determined f om the
effective slenderness that can be calculated by elastic stability anal
ysis. Using the member slenderness (which is independent of the
end-restriction) the advanced design of restraint columns results in
maximum 13% overestimation and maximum 6% underestimation of
strength in case of Eurocode and 9% (5%) in case of HS 15024. The
advanced design of restraint beams results in maximum 8/0 overes-

1'natloﬁ and maximum 19% underestimation of strength in case of
urocode and 27% (8%) in case of HS 15024
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