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Abstract

Urban settings are dynamic, constantly changing, and presenting a wide range of surface materials with high diversity in both spatial 

and spectral variation. As a result, mapping urban growth, evaluating infrastructure, managing water resources, and monitoring 

natural land cover become more complex tasks. Urban applications have made considerable progress thanks to the abundance of 

VHR orbital data and the recent development of artificial intelligence strategies especially neural networks. Convolutional neural 

networks have the potential to significantly enhance the analysis of urban land cover by addressing the limitations of traditional 

techniques. U-Net is a popular neural network for land cover analysis in remote sensing images. The current research presents a 

CNN model employing U-Net for image semantic segmentation in urban study area using both spectral and spatial context of VHR 

satellite data. The proposed model is trained, validated, and tested for VHR satellite image classification into five urban classes: 

water, vegetation, bare soil, road, and building. The CNN semantic segmentation results are compared to maximum likelihood image 

classification outcomes for validation and stability evaluation. A confusion matrix is applied to the classified scenes to determine the 

overall accuracy, producer's and user's accuracy, and Kappa coefficient using 400 random points with their corresponding ground 

truth. The U-Net image semantic segmentation technique achieved an overall accuracy of 87.50% and Kappa coefficient of 0.8395 

which outperforms the maximum likelihood classification method with an overall accuracy of 83.25% and Kappa coefficient of 0.7812.
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1 Introduction
Remote sensing techniques have a wide range of applica-
tions for sustainable urban development by offering up-to-
date information to cover different facets of planning 
and metropolitan management [1]. Recent Earth obser-
vation satellites provide a wide range of valuable spatial 
and quantitative information, large geographic coverage, 
and real-time monitoring, which successfully address the 
challenges related to urban environments [2]. Monitoring 
urban changes at both spatial and temporal scales is nec-
essary to improve our understanding of how urban devel-
opment impacts natural resources and environmental 
systems. Using satellite imageries, for urban land cover 
analysis, has several benefits such as the reduced time 
and effort requirements, the inexpensive data collec-
tion, and the up-to-date land cover views. Very High-
Resolution (VHR) satellite imagery is an effective source 

for tracking the expansion of cities, detecting changes in 
Land Use and Land Cover (LULC), and analyzing urban 
growth [3]. VHR image interpretation faces several chal-
lenges in built-up regions due to the complexity of urban 
landscapes, the diversity of urban land covers, the dispar-
ities in the sizes and shapes of urban objects, the shad-
ows of trees and buildings, and the spectral similarities 
between different classes [4]. These limitations complicate 
the accurate land cover classification and the identification 
of specific components in the metropolitan environments 
using traditional classification methods. Fortunately, the 
latest advance in Artificial Intelligence (AI) and remote 
sensing strategies have offer practical solutions for these 
concerns. Integration of remote sensing and AI approaches 
provide affordable tools for gathering and analyzing large 
amounts of data in comparison to resource-intensive 
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traditional methods like human based surveying and field 
observation [5]. AI techniques offer several advantages for 
effectively managing satellite images in the context of big 
data analytics such as speed, precision, scalability, auto-
mation, and enhanced visual insights [6]. AI enhances 
image processing accuracy and efficiency, providing valu-
able information for urban development, infrastructure 
management, and environmental surveillance. AI models 
automate the feature extraction process to identify urban 
items like buildings, roads, and other land cover features 
using different image forms and patterns [7]. AI tools 
interpret VHR satellite images employing cutting-edge 
CNNs to identify relevant urban characteristics and over-
come urban environment challenges [8]. CNNs apply 
semantic segmentation for complex urban scenes based 
on the contextual information in VHR satellite images [9]. 
Numerous studies have demonstrated the versatility and 
effectiveness of deep learning models such as U-Net, 
GoogLeNet, AlexNet, and ResNet50, for urban image 
interpretation [4, 10–12]. Consequently, CNN-based 
image segmentation methods facilitate a variety of urban 
applications, including building classification, smart city 
initiatives, road dataset creation and update, transporta-
tion management, and land cover features analysis provid-
ing rich information for decision-makers [10, 13].

2 Methodology
The current research addresses using an adjustable model 
to deal with multi-spectral images with VHR spatial res-
olution to extract detailed urban features. The proposed 
model is distinct from previous works and surpasses the 
traditional models based on the versatility to fit different 
types of input data, different spectral and spatial resolution, 
and various urban land covers. The presented work aims to 
explore the convolutional neural networks, like U-Net, to 
perform semantic segmentation of VHR satellite images 
for urban areas. To achieve the research objective, a U-Net 
model is developed, trained, validated, and applied to a 
VHR satellite image for the semantic segmentation of an 
urban study area using the following methodology (Fig. 1): 

• Determining the required study area and selecting 
the appropriate satellite image.

• Implementing the preprocessing techniques to pro-
vide the raw satellite image in a more relevant format 
for the classification process.

• Applying a CNN model using U-Net by selecting 
label data, training the network, and segmenting the 
input image into the target classes.

• Employing the Maximum Likelihood (ML) pix-
el-based classifier, as a standard approach, to verify 
the obtained results and assess the presented model 
stability.

• Assessing the performance of the proposed CNN 
and ML models for image classification using a con-
fusion matrix based on ground truth points.

3 Experimental works
3.1 Study area
Egypt is a prominent Middle Eastern country with vary-
ing degrees of urban areas. Qena Governorate is one of 
the ancient provinces, within Upper Egypt, with several 
land cover classes. It occupies a location between latitude 
25°42'24.45", 26°43'40.4" N and longitude 31°52'4.56", 
33°36'0.64" E encompassing over 11389 square kilome-
ters. The defined research area is represented by five land 
cover classes: water, vegetation, bare soil, buildings, and 
roads (Fig. 2 (a)).

3.2 Data used
The WorldView-2 imaging and environmental monitor-
ing satellite was launched to meet the increasing com-
mercial demand for high-resolution satellite imagery. 
A WorldView-2 image is used comprises a panchro-
matic band with 0.5m spatial resolution and 8 multi spec-
tral bands (coastal blue, blue, green, yellow, red, red 
edge, NIR1, and NIR2) with 2.00 m spatial resolution 
(Fig. 2 (b)). The WorldView-2 sensor captures higher spec-
tral and spatial resolution compared to other VHR sensors 
with relatively narrow ranges in the visible and near-in-
frared spectrum (Fig. 3) [14]. The used image datum is 
World Geodetic System (WGS84) and the map projection 
is Universal Transverse Mercator (UTM) zone 36.

3.3 Image preprocessing
Pre-processing techniques are necessary to enhance the 
satellite raw images for a more efficient image analysis 
tasks. The applied pre-processing procedures focus on two 
main processes: data fusion and shadow correction [15].

3.3.1 Data fusion
Optical satellite images feature both Panchromatic (PAN) 
and Multi-Spectral (MS) bands. The PAN band provides a 
high spatial resolution meanwhile the MS bands offer high 
spectral with low spatial resolution [16]. The data fusion 
(pan-sharpening) process is applied to integrate both high 
spatial and multi spectral resolution in one pan-sharpened 
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image for land use land cover applications. Several image 
fusion techniques, such as Principal Component Analysis 
(PCA), Intensity Hue Saturation (IHS), and Brovey 
Transform (BT), have been developed to enhance the spa-
tial resolution of the MS images by incorporating with the 
high spatial resolution of the pan image [17]. The PCA tech-
nique is the most effective method for fusing the eight bands 
of the WorldView-2 image as it maintains the same number 
of bands before and after the fusion process [18].

3.3.2 Shadow correction
Shadows deteriorate the quality of the accessible informa-
tion in the VHR satellite images, posing challenges for the 

optimal use for urban applications [19]. Despite the low 
reflectance collected in shadowed regions, valuable infor-
mation can still be extracted through shadow restoration 
techniques [20]. Shadow correction process is applied to 
enhance the satellite image effectiveness by detecting and 
compensating the shadow areas. Shadow detection focuses 
on identifying and extracting the shaded pixels from the 
VHR image without combining with dark or water pixels. 
Shadow pixels are isolated on the image histogram of the 
convenient index like Optimized Shadow Index (OSI) [21], 
Shadow Detector Index (SDI) [22], or Saturation Intensity 
Shadow Detection Index (SISDI) [19]. After applying the 
adequate index, a suitable threshold is required to isolate 

Fig. 1 Flow chart of the proposed procedures
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the shadow values on the resulting index histogram. 
The OSI is considered to detect the shadow areas in the 
given image using X-threshold, which separates shadow 
pixels from non-shadow ones, including dark water pix-
els. Shadow compensation seeks to adjust the brightness 
disparities between shadow and non-shadow areas using 
spectral information of the nearby pixels through mathe-
matical models. The Linear Correlation Correction (LCC) 
function is derived from multiple pairs of pixel values in 
both shadow and non-shadow conditions [23]. LCC pro-
vides meaningful information for the corrected pixels 
despite the poor signals in the shadowed areas.

3.4 Image classification
Numerous image classification models are developed to 
detect and categorize different kinds of land cover classes 
for urban applications [4]. Effective classification of VHR 
satellite imagery can be achieved through a variety strat-
egies including AI-based techniques, like convolutional 
neural networks, as well as standard approaches, like 
pixel and object-based classifiers [24]. This study presents 
applying and evaluating the convolutional neural network 
and the maximum likelihood approaches for VHR image 
classification in urban areas.

(a) (b)

Fig. 2 (a) A satellite view shows the location of the study area in Qena city-Egypt, (b) WorldView-2 image (RGB view)

Fig. 3 WorldView-2 band specifications [14]
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3.4.1 Image semantic segmentation using U-Net model
Urban land cover classification achieves high accuracy 
using deep learning techniques like convolutional neural 
networks [24]. CNN models are well-suited for identify-
ing the complex patterns and fine features in VHR satel-
lite data to meet the needs of urban applications. CNN are 
appropriate and adaptable for pixel-by-pixel classification 
in complex image segmentation tasks [25]. Classification 
strategies based on CNN and VHR satellite data objec-
tive the identification and categorization of various urban 
land cover features like buildings, roads, bare soil, vege-
tation, and water. Image segmentation using CNN labels 
each pixel to efficiently divide images into convenient 
categories with more detailed information than just the 
object-based identification or pixel-based classification. 
The CNN model is trained and validated using predefined 
labeled data to segment images accurately into mean-
ingful classes [26, 27]. A transfer learning U-Net is pro-
posed to create a VHR multi-spectral image segmentation 
model. The developed model workflow (Fig. 4) considers:

1. reading and viewing the VHR image, 
2. labeling the image by selecting the appropriate sam-

ples for each class corresponding to the real world 
land cover, 

3. using the transfer learning strategy to build, train, 
validate, and test the U-Net, and 

4. applying the trained network to predict the class 
for new inputs during the testing phase or for real 
scenarios [28].

Image labeling
VHR satellite image analysis tasks, involving image 
semantic segmentation, image classification, and LULC 
mapping, perform better when more useful information is 
supplied [29]. Since deep learning relies on possessing a 
large amount of training data, the procedure for developing 

a CNN model for semantic segmentation necessitates pix-
el-by-pixel labeling of the training data sets. Using the rel-
evant labeled data, CNNs are trained, tested, or verified 
for image semantic segmentation. Images can be manually 
or automatically labeled using the appropriate algorithm. 
Accurate labeling is a crucial step of the entire seman-
tic segmentation process to enhance the modelling perfor-
mance [30]. The proposed model uses MATLAB Image 
Labeler to create the training and validation datasets [31].

Network architecture
The used U-Net architecture follows the typical structure 
of convolutional neural networks consisting of three main 
sections: an encoder, a mid-layer, and a decoder: 

• The encoder section has four blocks each with a 
3 × 3 convolutional layer with a rectified linear unit 
(ReLU) activation layer, then again, a 3 × 3 convo-
lutional layer with a ReLU layer and finally a 2 × 2 
maxpooling layer. The last encoder block has addi-
tionally a dropout layer with 50% probability value 
before the maxpooling. The encoder sizes are 64, 
128, 256 and 512 respectively.

• The mid-layer section is built of a 3 × 3 convolution 
layer with a corresponding ReLU layer, then a sec-
ond 3 × 3 convolution layer with ReLU layer, and 
finally a 50% dropout layer. The sizes are here 512 
and 1024.

• The decoder block has the same number of decod-
ers as encoders, i.e. four decoders are taken. Each 
decoder has a 2 × 2 upsampling convolutional layer 
with a ReLU layer, a concatenation point, a 3 × 3 
convolution layer with a ReLU layer, then a second 
3 × 3 convolution layer with a ReLU layer. The block 
sizes are 1024, 512, 256 and 128 respectively. After 
the last decoder block, 64 1 × 1 final convolution lay-
ers and 5 1 × 1 softmax layers are connected.

Fig. 4 VHR image classification model using convolutional neural network
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• Finally, the model incorporates cross-connections 
where the first encoder connected to the fourth 
decoder, the second encoder to the third decoder, the 
third encoder to the second decoder and the fourth 
encoder to the first decoder blocks (Fig. 5) [32]. 
The current semantic segmentation network consid-
ers the properties of incoming 8-band multispectral 
image, as well as the number (5) and type of result-
ing classes. The weights and biases for the convolu-
tional layers were initially set using a random num-
ber generator that produces a normally distributed 
random number.

Network training
Convolutional neural network training on large amount of 
data and different forms of features consumes high mem-
ory usage and computational power. Consequently, the 
effective training of CNN model on devices with limited 
resources seems to be a significant challenge. The neural 
network model is trained using raw data, and the cross-en-
tropy loss function is calculated by contrasting the pre-
dictions with the corresponding real labels. All parameter 
and weights changes are adjusted during the training pro-
cedure layer by layer. The training process was conducted 
using the Stochastic Gradient Descent with Momentum 
(SGDM) optimizer. SGDM is one of the most popular 
optimization algorithms which helps accelerate gradients 
vectors in the correct directions facilitating faster con-
vergence during training. The learning rate and momen-
tum were set to 0.05 and 0.9 respectively. The training 
was extended by a validation step. The training deals 
to adjust the model parameters, while the validation 

provides an unbiased evaluation of the model during the 
training phase. For training and validation, two data sets 
were selected comprising 128 × 128 pixel sized patches. 
The training was performed using 16000 patches, and the 
validation was computed based on 2000 patches. The com-
plete computation was organized into minibatches with 
the size of 16. A minibatch is a subset of the training set 
to evaluate the gradient of the loss function and update 
the weights. The maximum number of epochs (full passes 
of the data) for training was specified as 150. Adding a 
regularization term for the weights to the loss function is 
one way to reduce overfitting. The regularization term is 
also called weight decay. The L2 regularization technique 
was used with a factor of 0.0001. To accelerate the train-
ing, the algorithms have run on a GPU. The segmentation 
network parameter adjustment process was monitored by 
a training and validation progress monitor chart (Fig. 6). 
It clearly shows the training accuracy and loss progress for 
the CNN model with final validation accuracy of 99.00%. 

Image classification using maximum likelihood
Maximum likelihood is one of the most effective pix-
el-based techniques to classify each pixel in the image 
according to the highest probability (likelihood) that a 
pixel belongs. The ML classifier focuses on the optical val-
ues of individual pixels in the VHR satellite images to pre-
cisely classify different land cover types in urban scenes 
based on their spectral signatures. Based on the likelihood 
for each class, each pixel is assigned to the class with the 
highest probability of membership [33]. This technique is 
advantageous for classifying VHR multi-spectral images 
with detailed information. ML method has the capacity to 

Fig. 5 The applied U-Net architecture
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handle multi-dimensional data which demonstrates con-
sistent performance in the challenging multi-label image 
classification tasks [34]. A maximum likelihood classifi-
cation model is presented to extract urban features from 
VHR satellite images. The model (Fig. 7) utilizes a mul-
tispectral VHR satellite image as input, selects effective 
and sufficient signatures for each class, and applies a max-
imum likelihood strategy to assign each pixel in the image 
to a target class based on the means and covariances of the 
collected signatures [35].

4 Results and discussions
4.1 Classification outcomes
The CNN semantic segmentation process is applied using 
the collected image labels (Fig. 8 (a)). Results are quali-
tatively evaluated by comparing the extracted features 
(Fig. 8 (b)) with real-world land cover classes in the RGB 

image (Fig. 2 (b)) to ascertain the size, location, and errors of 
the classification process. As a visual assessment, the classi-
fied image shows significant detection and separability for 
vegetation and water classes. Additionally, roads, buildings, 
and bare soil are clearly extracted; however, some misclassi-
fied pixels can be observed within each class. Furthermore, 
to perform the qualitative evaluation, the CNN outcomes 
are compared using the confusion matrix with a maximum 
likelihood classified image (Fig. 8 (c)).

4.2 Accuracy assessment
The confusion matrix displays the probability that each 
pixel in the classified image (column values) matches the 
real-world land cover class (row values) [36]. A confusion 
matrix is used to calculate the overall accuracy (Eq. (1)), 
user's accuracy, and producer's accuracy (Eqs. (2), (3)), 
and Kappa coefficient. 

Fig. 6 Training accuracy and loss progress for the CNN model

Fig. 7 VHR image classification model using maximum likelihood
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Overall Accuracy: TP TN TP TN FP FN� � �� � � � �� �  
(1)

Producer's Accuracies: TP TP FN� � �� �  (2)

User's Accuracies: TP TP FPp � �� �  (3)

Where True Positive (TP) indicates the number of class 
pixels accurately match the real-world ones, False Positive 
(FP) refers to the number of non-class pixels that are 
detected as class ones, True Negative (TN) represents the 
number of non-class pixels which are classified correctly, 
and False Negative (FN) shows how many class pixels 
that are misclassified as non-class ones [37]. The confu-
sion matrix is generated for both the CNN and ML classi-
fied images using 400 random points distributed across all 
classes with a minimum of 50 reference points per class 
(Tables 1 and 2) [38]. points were assigned to each class 
based on its relevance to the application's requirements 
and its representation within the entire scene.

The proposed convolutional neural network model 
for image semantic segmentation achieved an overall 

accuracy of 87.50% and Kappa coefficient of 0.8395 out-
performing the maximum likelihood classification find-
ings with an overall accuracy of 83.50% and Kappa coef-
ficient of 0.7812 (Fig. 9). The CNN model presents high 
stability and promising performance for producer's and 
user's accuracy of each class (Fig. 10). Notably, accurate 
classifications are observed in the water, vegetation, and 
building classes; meanwhile, due to signature and color 

Fig. 8 (a) Image labels, (b) CNN and (c) ML classification results

(c)(b)(a)

Table 1 Confusion matrix for image semantic segmentation using CNN
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User's 
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Water 66 0 0 0 0 66 97.06% 100.00%

Vegetation 1 113 5 0 0 119 86.92% 94.96%

Bare soil 1 6 38 2 0 47 76.00% 80.85%

Buildings 0 0 4 83 4 91 84.69% 91.21%

Roads 0 11 3 13 50 77 92.59% 64.94%

Total 
column 68 130 50 98 54 400 – –

Overall accuracy 87.50% Overall Kappa statistics 0.8395
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similarities, some misclassified patches are noticeable 
in the bare soil and road areas. CNNs use both spatial 
and spectral features to minimize the misclassifications 
between the road and bare soil classes which are more 
challenging for the maximum likelihood classifier due to 
their similar spectral characteristics.

5 Conclusions
The current work explores the effectiveness of convolu-
tional neural networks for VHR data analysis in urban 
areas focusing on the application of a U-Net model for 
image semantic segmentation. The proposed U-Net model 
has demonstrated encouraging results in terms of opti-
mizing the feature extraction, object detection, and LULC 
analysis for urban uses. The U-Net has a considerable 
capability to produce accurate classification outcomes 
for Earth observation applications; However, the network 

is constrained by a wide variety of network parameters. 
The achieved accuracy of the U-Net semantic segmen-
tation model surpasses the maximum likelihood result 
mainly due to integrating both spatial and spectral fea-
tures during the classification process.
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Table 2 Confusion matrix for image classification using maximum 
likelihood
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Water 64 0 0 0 0 64 94.12% 100.00%

Vegetation 2 120 15 1 2 140 92.31% 85.71%

Bare soil 0 4 29 1 0 34 58.00% 85.29%

Buildings 0 2 6 81 13 102 82.65% 79.41%

Roads 2 4 0 15 39 60 72.22% 65.00%

Total 
column 68 130 50 98 54 400 – –

Overall accuracy 83.25% Overall Kappa statistics 0.7812 Fig. 9 CNN and ML overall accuracy

Fig. 10 CNN and ML producer's and user's accuracy
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