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Abstract

To achieve rapid and precise prediction of slope stability, we propose an intelligent assessment method utilizing machine learning 

techniques. This approach aims to enhance the precision of slope stability evaluations, facilitating more effective and timely decision-

making in geotechnical engineering. By analyzing 188 slope cases from domestic and international sources, we have identified six key 

feature variables to evaluate the Factor of Safety (FOS) for slope stability assessment. The dataset was established for evaluating slope 

stability, and to ensure robustness, it was divided into training and testing set using a 5-fold cross-validation approach. Four slope 

stability prediction models- GBM, SVM, XGB, and RF- were developed using machine learning algorithms. The accuracy of the models in 

predicting FOS for slopes was assessed using metrics such as MAE, MSE, RMSE, and R2. The best-performing machine learning model, 

along with the finite element model developed using GeoStudio, was applied to engineering examples to compare their feasibility 

and efficiency. The research findings demonstrates that the GBM model has a minimal error between the predicted and actual slope 

FOS, highlighting its high accuracy. The model shows a strong correlation between predicted and actual FOS, indicating its superior 

performance relative to other models. GBM model and the finite element model align well with the actual field conditions. However, the 

GBM model stands out due to its higher accuracy and faster computational efficiency. Therefore, the GBM model offers a high degree 

of fit between the predicted FOS and the actual values, making it well-suited for evaluating slope stability.
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1 Introduction
Natural disasters occur frequently worldwide, and China 
is no exception. Due to its vast and geologically complex 
geology, China is particularly susceptible to such calamities. 
In 2022 alone, there were a staggering total of 5659 recorded 
geological disasters in the country, with 3919 instances of 
slope instability disasters. Consequently, several research-
ers [1, 2] have taken up studies on these cases of instabil-
ity. The consequences of slope instability accidents can 
be devastating, causing significant harm to lives, proper-
ties and critical infrastructure. Notable examples include 
the Cher Tara Open Coal incident, the Chana Landslide [3], 
the Aniangzhai Landslide [4], the slope in Fa'er Town [5], 
the Baiyun Slide Complex [6] as well as various slopes in 
Fengjie County. Given this context, the evaluation of slope 
stability emerges as an immensely crucial research endeavor.

In recent decades, FOS is a parameter used to evaluate 
slope stability. Usually, the factors affecting slope safety 
are taken as the evaluation factors of slope safety factor. 
In recent decades, FOS has been widely used as a param-
eter to evaluate slope stability. Geometric parameters 
such as H and β, as well as strength parameters including 
internal ϕ and c, play crucial roles in slope stability [7, 8]. 
Scholars have extensively researched and analyzed slope 
stability [9–12]. Various methods for determining the FOS 
include theoretical analysis, simulation tests, and numerical 
simulations [13]. The traditional limit equilibrium method, 
a type of theoretical analysis, assumes a predetermined crit-
ical slip surface and calculates resistance based on equilib-
rium equations [14]. However, in the implementation pro-
cess of the traditional limit equilibrium method, the input 
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file is often manually modified according to different reduc-
tion coefficients, and the trial calculation is carried out con-
tinuously, making the process complex [15]. Numerical 
simulation methods such as finite difference and finite ele-
ment are excellent techniques for addressing complex slope 
problems accurately and effectively. Nevertheless, these 
methods require modeling and analysis for each specific 
slope case, resulting in lengthy computational times [16]. 
Additionally, precise evaluation of boundary issues and 
replication of field environments pose challenges [17]. 
However, when facing diverse shapes, geological scenar-
ios, and engineering conditions, the aforementioned meth-
ods have limitations in terms of calculation speed and accu-
racy. Therefore, there is a need for a method or technology 
that can overcome slow computation speeds and low accu-
racy while enabling quick determination of higher accuracy 
FOS and easy development [18]. Machine learning meth-
ods, renowned for their flexibility, efficiency, and accuracy, 
have been employed to automate slope assessment [19–21].

In recent years, the rapid advancement of machine learn-
ing methods has opened up new possibilities for studying 
highway slope stability. Machine learning (ML) meth-
ods can predict the FOS of a slope by considering various 
input parameters. Moreover, ML models can be customized 
based on the provided data, enhancing prediction accuracy. 
ML methods has emerged as one of the most reliable analysis 
methods for stability prediction [22, 23]. Notably, statistical 
techniques such as regression analysis within ML models 
establish relationships between dependent and independent 
variables, significantly contributing to accurate FOS predic-
tions. Furthermore, various ML methods, including artifi-
cial neural networks and support vector machines [24] have 
demonstrated superior performance compared to regres-
sion analysis. To achieve better results, this study employs 
multiple sets of ML methods, such as Random Forest and 
Extreme Gradient Boosting (XGBoost) [25], which lever-
age ensemble learning to draw weighted conclusions from 
the decisions of numerous basic models.

Based on this background, the objective of this paper is 
to explore and evaluate the application of machine learn-
ing in predicting highway slope stability. Four ML mod-
els, namely Random Forest (RF), Support Vector 
Machine (SVM), XGBoost, and Gradient Boosting 
Machine (GBM) [26–32], will be employed to train and val-
idate using existing 188 slope cases. By utilizing extensive 
input data and intricate models, machine learning enables 
the prediction of slope stability, thus improving accuracy 
and engineering efficiency. Evaluation indicators such as 
Mean Absolute Error (MAE), Mean Squared Error (MSE), 

Root Mean Squared Error (RMSE) and R-squared (R2) 
will be utilized to assess model performance. A compar-
ison with finite element analysis will also be conducted 
to evaluate the model’s accuracy, efficiency, and practical-
ity. Highway slopes are vital transportation infrastructure, 
connecting urban and rural areas. The stability of highway 
slopes has always been a critical factor influencing road 
safety and reliability [33–36], garnering attention from 
relevant departments [37, 38]. This paper aims to verify 
the applicability of the selected model in practical engi-
neering by focusing on a loess highway slope example in 
Nanniwan Town, Yan'an City.

Through the development of this research, the paper 
aims to provide innovative ideas and methods for analyz-
ing the stability of loess highway slopes. Additionally, it 
strives to offer more accurate, efficient, and reliable tools 
and guidance for the design and evaluation of highway 
engineering projects, particularly those related to slopes.

2 Data and methods
2.1 Data set and predictor variables
Slope stability analysis is a highly intricate problem, 
involving numerous interrelated factors. These factors can 
be classified into three main categories: slope configura-
tion, geological and geotechnical properties of the rock and 
soil mass, and the influence of external loading conditions. 
Together, they provide a comprehensive assessment of the 
slope's behavior within the rock and soil mass under dif-
ferent loading scenarios. The significance of characteristic 
parameters on the slope's safety factor cannot be overstated. 
This study introduces a comprehensive set of characteristic 
parameters. Input parameters comprise slope height (H), 
slope angle (β), unit weight (γ) of materials, cohesion (c), 
internal friction angle (φ), and pore water pressure (ru). 
The slope safety factor (F), serving as the output param-
eter, is utilized to determine the stability state of the slope.

To conduct a more compelling analysis, this study col-
lected a total of 188 comprehensive slope cases. These cases 
encompassed both input parameters and output parameters, 
representing a wide range of stable and unstable slope states. 
This ensured that the dataset had excellent representativeness.

To evaluate the model's performance and determine the 
optimal approach for predicting slope safety factors, the 
dataset was divided into training and testing sets at a ratio 
of 3:1. Specifically, the testing set consisted of 47 slope 
cases, which were utilized to assess the model's effective-
ness and to identify the most suitable model for predicting 
slope safety factors.
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2.2 Data preprocessing
Data preprocessing holds paramount importance in ensur-
ing the quality and integrity of subsequent data operations 
during model training. Its significance cannot be over-
stated, as it establishes a solid foundation for optimal data 
quality throughout the analysis pipeline. In this study, the 
completedData dataset underwent standardization using 
the "scale" function in RStudio software. This crucial pre-
processing step ensures that the data across different col-
umns are placed on the same scale, facilitating streamlined 
data analysis and processing in the subsequent stages.

During the data cleaning process, several steps were 
followed. Firstly, rows containing missing slope FOS val-
ues were deleted entirely from the dataset. Secondly, for 
rows with missing pore water pressure values, the mean 
imputation method was employed. This approach utilized 
the average value of pore water pressure due to the rela-
tively small variation in these values.

In order to ensure data integrity, outliers with exces-
sively high slope safety factor values were identified and 
removed based on rational judgment regarding plausibil-
ity. Lastly, considering that each slope case within the 
dataset is an independent entity and not time-dependent, 
duplicate entries of both input and output parameters were 
eliminated. This resulted in retaining only unique data 
records that represent distinct slope characteristics.

Through the application of the aforementioned data 
preprocessing steps, the integrity and consistency of the 
data have been successfully ensured. This meticulous 
process establishes a reliable foundation for subsequent 
model training and analysis.

2.3 Data visualization analysis
To conduct data visualization analysis, the "as_tibble" 
function is utilized to convert a data frame into a tibble 
format. This format enhances the efficiency of subsequent 
data processing and analysis procedures. The "ggpairs" 
function is employed to generate a scatterplot matrix of 
the feature parameters, facilitating a rapid visual assess-
ment of the relationships between variables.

Fig. 1 illustrates the scatterplot matrix of the feature 
parameters within the cleaned dataset, represented in the 
lower-left triangle. Each cell in the matrix represents a 
scatterplot depicting the relationship between two feature 
parameters. Furthermore, the diagonal section of Fig. 1 
showcases density plots for each individual feature param-
eter, while the upper-right portion displays the correlation 
coefficients between pairs of feature parameters.

According to the upper-right portion of Fig. 1, it is evi-
dent that the correlation coefficient between FOS and β 
is −0.481, indicating a negative correlation and represent-
ing the strongest relationship among all variables. The cor-
relation coefficient between C and γ is 0.444, suggesting a 
positive correlation, albeit with a weaker association com-
pared to FOS and β. Additionally, the correlation coeffi-
cient between γ and H is 0.415, indicating a positive cor-
relation. Generally, the correlations between other pairs of 
feature parameters exhibit moderate strengths.

Based on the correlation analysis of the feature param-
eters in this dataset, the highest absolute correlation value 
is 0.481, signifying that there is no significant redundancy 
among the data. Therefore, each feature parameter plays 
an essential role in predicting FOS.

To summarize, the distribution of feature parameters 
within the dataset demonstrates no redundant information, 
and all parameters exhibit reasonable distributions. This sug-
gests that the dataset is of good quality, providing a reliable 
foundation for subsequent model training and analysis.

2.4 Machine learning methods
2.4.1 Gradient Boosting Machine
GBM is a boosting tree model based on the gradient descent 
algorithm. It leverages the collective strength of multiple 
weak learners to construct a powerful predictive model, 
commonly used for regression problems. Each weak learner 
in GBM focuses on optimizing and adjusting the prediction 
errors made by the preceding weak learners. This iterative 
process allows GBM to effectively capture the complex rela-
tionships and nonlinear features present within the data.

By continuously improving its predictive performance 
through iterations, GBM enhances the accuracy and 
robustness of the model. It combines the predictions from 
multiple weak learners, gradually refining its understand-
ing of the data and achieving superior predictive results.

2.4.2 Support Vector Machine
The SVM regression model aims to find an optimal hyper-
plane that fits the data, as illustrated in Fig. 2. This hyper-
plane is designed to maximize the margin between the 
sample points and the fitting line while ensuring that the 
error estimation remains within a specified range.

To handle nonlinear data distributions, the SVM 
regression model employs a kernel function that maps the 
features into a higher-dimensional space. This transfor-
mation enables the model to effectively capture complex 
relationships between variables.



508|Zhang and Wei
Period. Polytech. Civ. Eng., 69(2), pp. 505–518, 2025

The SVM regression model is renowned for its ability 
to handle intricate data distributions and deliver precise 
regression results.

2.4.3 Random Forests
Fig. 3 illustrates a RF, which is an ensemble learning algo-
rithm consisting of multiple decision trees. Each decision 

Fig. 1 Correlation matrix plot of the feature parameters

Fig. 2 Illustration of the SVM regression algorithm

Fig. 3 Illustration of the random forest algorithm for classification and 
regression tasks
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tree within the random forest operates independently from 
the others. In the regression model for slope safety factors, 
each individual regression decision tree predicts the safety 
factor for a specific slope.

To obtain the final prediction of the FOS, the predictions 
from all the decision trees are averaged. This aggregation pro-
cess ensures that the collective wisdom of the decision trees 
is utilized to generate a more accurate and robust prediction.

In the training set of slopes, the RF algorithm selects 
a subset of features at each node of the tree for branching 
and growth. This ensures that every feature undergoes the 
branching and growth procedure within the trees.

Specifically, during the growth process, a subset of m 
features (where m is less than the total number of avail-
able features) is selected. The selection of these features 
follows the principle of minimizing node impurity, where 
the most informative feature is chosen for branching. It is 
important to note that the value of m remains constant 
throughout the entire growth process of the RF.

2.4.4 Extreme Gradient Boosting
XGBoost is a powerful ensemble learning method, simi-
lar to RF, that combines multiple weak learners. It is rep-
resented as a boosting tree model, as illustrated in Fig. 4. 
However, unlike RF, in the XGBoost model, each weak 
learner is interdependent, meaning that the input samples 
of previous regression trees influence the training and 
prediction results of subsequent regression trees.

In a regression model, the final prediction value of the 
FOS is obtained by summing the scores of fitting residuals 
from all decision trees. The objective function of XGBoost 
consists of two components: the loss function and the reg-
ularization term. The loss function measures the extent 
to which the regression model accurately fits the data, 
and it is continuously trained to compensate for any gaps 

or inconsistencies within the trees. By combining multi-
ple trees, the model aims to simulate the true distribution 
of the data. On the other hand, the regularization term is 
employed to control the complexity of the model and pre-
vent overfitting.

2.4.5 The Finite Element Theory
The GeoStudio software is widely used in geotechnical 
engineering to simulate various aspects, including param-
eter uncertainty, slope risk analysis, and reliability calcula-
tions. The software employs the limit equilibrium method, 
which takes into account the Mohr-Coulomb strength cri-
terion and static equilibrium conditions.

This approach involves dividing the slope into soil 
slices and assessing its stability by analyzing the forces 
of sliding and resistance to sliding. The analysis is based 
on the principles of the Mohr-Coulomb theory, and the 
Morgenstern-Price method is utilized to establish the 
model. By selecting appropriate shear strength param-
eters, pore water pressure models, and considering the 
geometric dimensions and internal characteristics of the 
slope, accurate determination of the FOS can be achieved.

3 Model establishment and parameter tuning
3.1 Model establishment 
The FOS serves as a reliable predictor for assessing the 
stability of highway soil slopes. However, the precision of 
different machine learning regression models may vary. 
Therefore, this section focuses on researching and com-
paring the performance of various machine learning mod-
els in predicting FOS.

As illustrated in Fig. 5, GBM, RF, SVM, and XGB 
models are employed to evaluate their predictive accuracy 
for FOS. The objective is to identify the optimal model 
that yields the most accurate predictions for FOS.

3.2 Model evaluation
In the FOS regression algorithm, the accuracy of the 
regression model is evaluated through two aspects. Firstly, 
the magnitude of the error between the predicted FOS and 
the actual FOS is used as a measure of the model's perfor-
mance. Secondly, the fit between the predicted FOS and the 
actual FOS is assessed to evaluate the model's performance.

Several metrics, including MAE, MSE, RMSE, and R2 

are employed to gauge the accuracy and precision of the 
model in predicting FOS. 

1. MAE specifically measures the magnitude of the 
error between the predicted FOS and the actual FOS. 

Fig. 4 Conceptual diagram of XGBoost algorithm for regression 
classification
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The calculation formula for MAE is as follows:
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2. MSE reflects the deviation between the predicted 
FOS and the actual FOS. A value closer to 0 indi-
cates higher accuracy of the model. The calculation 
formula for MSE is as follows:
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3. RMSE is the square root of the MSE metric, repre-
senting the sample standard deviation of the differ-
ence between the actual slope safety factor and the 
predicted FOS.
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4. The patterns captured by the model from the data 
can be measured by R2. R2 reflects the model's good-
ness of fit, with values typically ranging from 0 to 1. 

A value closer to 1 indicates a higher degree of fit 
between the model's predictions and the true FOS.
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In Eq. (4), n represents the number of slopes, yi denotes 
the true FOS of the i-th sample, and ŷi represents the pre-
dicted FOS of the i-th sample.

3.3 Model establishment
Before proceeding with modeling, the makeRegrTask 
function is employed to prepare the model for a regression 
task. The data parameter is used to store the dataset, while 
the target parameter specifically designates the FOS as the 
response variable. Subsequently, proceed to model using 
the SVM, XGB, RF, and GBM algorithms.

The Caret package is an essential tool for various 
aspects of predictive modeling, including data partition-
ing, preprocessing, feature selection, model tuning, and 
assessment of variable importance. Within the Caret pack-
age, the createDataPartition function can be utilized to 
effectively divide the dataset into two distinct parts: one 
for model training and the other for model testing. This 
partitioning process enables the evaluation of the model's 
performance and its ability to generalize well beyond the 
training data. In the testing and training sets, the follow-
ing independent variables are defined: γ as x1, C as x2, ϕ as 
x3, β as x4, H as x5, and ru as x6. Additionally, the FOS is 
defined as the response variable y.

To address the model's sensitivity to sample selec-
tion within a specific dataset, 5-fold cross-validation is 
employed. This technique divides the dataset into multiple 
distinct subsets, as depicted in Fig. 6. The model is then 

Fig. 5 Machine learning flowchart

Fig. 6 Schematic of 5-fold cross-validation
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trained and tested using each subset individually. During 
each iteration, one subset serves as the testing set, while 
the remaining subsets are used for training.

By utilizing this approach, the variance of performance 
estimates can be reduced. The model's performance is eval-
uated on each subset, considering metrics such as R2, MSE, 
RMSE, and MAE. To obtain a more robust estimate of the 
model's generalization performance, the average of these five 
performance values is calculated. This comprehensive evalu-
ation allows for a thorough assessment of the model's perfor-
mance and its ability to generalize beyond the training data.

To optimize hyperparameters and achieve optimal 
model performance, GridSearch is employed. This tech-
nique systematically searches the predefined hyperparam-
eter space to identify the best combination.

Subsequently, 5-fold cross-validation is utilized to 
comprehensively evaluate each potential hyperparameter 
combination on the training data. This process ensures a 
thorough assessment of the model's performance across 
different hyperparameter settings.

Ultimately, the hyperparameter combination that yields 
the best performance on the validation data is selected as 
the final model. The evaluation metric used for this selec-
tion process is R2, which assesses the model's ability to 
capture the variance in the target variable.

3.3.1 Fine-tuning of GBM regression model Parameters
The GBM regression model utilizes the trainControl 
function to automate parameter tuning. This function 
specifies the cross-validation method and parameter 
search approach employed during model training. In this 
study, 5-fold cross-validation and GridSearch are utilized 
to optimize the model's hyperparameters and maximize 
performance metrics.

After conducting multiple iterations, the hyperparame-
ter ranges for the GBM regression model have been estab-
lished and are presented in Table 1. These ranges were 
utilized in conjunction with cross-validation and other pro-
cesses to fine-tune the hyperparameters of the GBM model.

By evaluating the model's performance using each 
combination of hyperparameters, the R2 value for the 

model with the selected parameter combination on the 
dataset is illustrated in Fig. 7. This analysis enables the 
identification of the combination that yields the best per-
formance on the dataset.

Based on the optimal R2 value obtained, the mod-
el's optimal parameter combination can be determined 
as follows: n.trees = 120, interaction.depth = 3, shrink-
age = 0.13, and n.minobsinnode = 3.

3.3.2 Optimization of parameters for other regression 
models
After multiple rounds of parameter tuning, the optimal 
parameter combinations for each model have been deter-
mined, as shown in Table 2. The XGB, RF, and SVM models 
have been optimized based on different hyperparameters.

4 Result
4.1 Evaluation of machine learning model results
Table 3 presents the performance evaluation of the four 
models, including R2, MAE, MSE, and RMSE. Through 
comparative analysis, it is observed that the GBM regres-
sion model exhibits the highest R2 value, indicating the 
best fit to the data. Additionally, it demonstrates the 
smallest RMSE, MSE, and MAE values among the four 
machine learning models, signifying the smallest errors.

Based on these evaluation metrics, it can be concluded 
that the GBM regression model achieves the highest accu-
racy among the models considered.

As shown in Table 4, the GBM regression model exhib-
its absolute errors in the test samples, representing the 
disparities between the predicted values and the actual 
values. The majority of these absolute errors are less 
than 0.1, indicating minimal deviations between the pre-
dicted and true FOS.

Moreover, the relative error, calculated as the absolute 
error divided by the true value, approaches nearly zero 
in absolute value. This suggests that the GBM regression 
model achieves a high level of accuracy, with very small 
disparities between the predicted and true values.

Fig. 8 presents a scatter plot generated using the ggplot 
function in the R programming language. This plot show-
cases a two-dimensional density representation. In the 
scatter plot, each data point represents a test data point. 
The x-coordinate corresponds to the true values, while 
the y-coordinate represents the predicted values of the 
GBM regression model.

The scatter plot indicates that the predicted values 
align closely with the diagonal line. The solid blue line, 
representing the fitting line, closely follows the diagonal 

Table 1 Adjusted hyperparameter ranges for GBM regression model 
configuration

Parameter Parameter Ranges

n.trees c (120, 140, 150,160)

interaction.depth c (1, 2, 3, 4)

shrinkage c (0.1, 0.11, 0.12, 0.13, 0.14)

n.minobsinnode c (2, 3, 4, 5, 6, 7)
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line. This suggests that the predicted values have minimal 
errors compared to the true values.

The scatter points fall within the region between the 
two dashed lines, indicating that the errors between the 

predicted and true values are within an acceptable range. 
Furthermore, when the scatter points are closer to the diag-
onal line, it signifies smaller errors and higher accuracy in 
the predictions. Overall, based on this analysis, the GBM 
regression model demonstrates a high degree of fit.

Fig. 9 displays scatter plots mapping the absolute error dis-
tribution across four distinct regression models. The z-axis 

Fig. 7 R2 for different parameter combinations of GBM model with adjusted hyperparameter ranges

Table 2 Optimal parameter combinations for four machine learning 
models after parameter tuning

Models Best parameter combination

GBM n.trees = 120, interaction.depth = 3, shrinkage = 0.13 and 
n.minobsinnode = 3

RF mtry =4

XGB nrounds = 40, lambda = 0.001, alpha = 0.2 and eta = 1e-04

SVM sigma = 0.09 and C = 30

Table 3 Comparative analysis of evaluation results for each model

Model →
indicator ↓ GBM XGB RF SVM

MAE 0.069154 0.111443 0.102410 0.127840

MSE 0.007334 0.021562 0.013593 0.025044

RMSE 0.085641 0.146842 0.116588 0.1582547

R-squared 0.989369 0.967642 0.981570 0.9643483

Table 4 A comparison of the FOS and the predicted values for selected 
samples in the test set by the GBM regression model

The predicted value 
of GBM regression 

model
True value Absolute 

errors
Relative 
errors

1 2.021 1.945 0.076 0.0390746

2 1.294 1.360 −0.066 −0.0485294

3 1.000 0.933 0.067 0.0718114

4 0.813 0.785 0.028 0.0356688

5 0.580 0.496 0.084 0.1693548

6 0.800 0.722 0.078 0.1080332

7 1.662 1.771 −0.109 −0.0615471

8 1.569 1.634 −0.065 −0.0397797
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quantifies error magnitude, while the x-axis and y-axis cor-
respond to true and predicted model values, respectively. 
Represented in blue, the spheres demarcate errors associated 
with the GBM regression model, with pink spheres denot-
ing errors for the RF regression model, green for the XGB 
regression model, and yellow for the SVM regression model.

A spatial analysis of the sphere distribution reveals that 
the pink and yellow spheres are dispersed over a wider 
range, signifying larger discrepancies in the predicted 
outcomes of their respective models. In contrast, the blue 
spheres, representing the GBM model, exhibit a more con-
centrated formation. The latter are chiefly arrayed near 
the plane of zero error, underscoring a minimal deviation 
between the predicted and true values.

The comparative assessment hence suggests that the 
GBM regression model outperforms the others in preci-
sion, as indicated by its reduced absolute error. This model 

demonstrates higher accuracy in producing predictions 
that closely align with the true values, a critical metric 
in the fidelity of regression models within the domain of 
civil engineering.

Fig. 10 displays a scatter plot with three different data 
series representing the RF, XGB, and SVM regression 
models. The x-axis represents the true values, while the 
y-axis represents the corresponding predicted values. Each 

Fig. 8 True values and predicted values of the GBM regression model

Fig. 9 Scatter plot of the absolute error distribution in the 
regression model

(a)

(b)

(c)

Fig. 10 Scatter plot of the true values and predicted values for the (a) 
RF, (b) XGB and (c) SVM regression models
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data point in the plot represents an individual observation 
or data point from the dataset. The scatter plot allows us to 
visualize the relationship between the true values and the 
predicted values for each regression model.

The Residual Cumulative Distribution Plot is a com-
monly employed tool in regression models for evaluat-
ing the statistical fit's quality. It offers valuable insights 
into the distribution of residuals, unveiling potential pat-
terns or trends within their distribution. This plot pres-
ents the cumulative distribution of residuals, enabling us 
to analyze their distribution and proportions effectively. 
Therefore, it serves as a useful means of assessing the 
overall goodness-of-fit of the regression model.

In Fig. 11, the residual cumulative distribution lines of 
the RF, GBM, XGB, and SVM regression models are rep-
resented by the colors red, blue, green, and orange, respec-
tively. The GBM regression model's residual line is posi-
tioned below the other lines, indicating that a majority of its 
residuals are relatively small. The XGB and RF regression 
models show similar patterns in their residual lines. Hence, 
there is no significant difference in performance between 
the XGB and RF regression models, as their cumulative dis-
tribution lines are close to each other but positioned above 
the GBM line. On the contrary, the SVM regression model 
exhibits higher residuals for most of its samples compared to 
the other models. Therefore, the SVM regression model per-
forms less favorably than the other models. Consequently, 
it can be concluded that the GBM regression model demon-
strates the best fitting performance, while the SVM regres-
sion model exhibits the poorest fitting performance.

Fig. 12 depicts the boxplots representing the GBM, RF, 
XGB, and SVM regression models based on the evaluation 
metric RMSE. Among these models, the GBM regression 
model exhibits the smallest mean value when evaluated 

using the RMSE metric. The black solid line within each 
boxplot denotes the minimum value on the left side and the 
maximum value on the right side for each model. Notably, 
the SVM model displays a substantial difference between 
its maximum and minimum values, indicating significant 
variation compared to the other three models. Conversely, 
the lengths of the black solid lines for the GBM, RF, and 
XGB regression models are similar, suggesting a compa-
rable range between their maximum and minimum values. 
In conclusion, the GBM regression model demonstrates 
superior performance, while the RF and XGB regres-
sion models exhibit similar levels of performance, and the 
SVM regression model performs the least effectively.

4.2 Comparison between Machine Learning Methods 
and Finite Element Analysis
In the previous section, it was determined that the GBM 
regression model achieved the highest accuracy in pre-
dicting the FOS. Building upon this finding, our focus 
now shifts towards comparing the results of the limit 
equilibrium method's simulation with the predictions of 
the GBM regression model. The ultimate objective is to 
identify the most accurate model for FOS prediction by 
evaluating both the finite element analysis method and the 
machine learning method. This article primarily utilizes 
the SLOPE/W module within the GeoStudio software, 
which serves as a powerful tool specifically designed for 
analyzing slope stability. The SLOPE/W module employs 
the limit equilibrium theory to model and analyze the sta-
bility of slopes characterized by various soil types and 
intricate stratigraphy. Moreover, it takes into consider-
ation the pore water pressure conditions prevalent within 
the slopes. Comparisons of the modeled safety factors are 
presented in Fig. 13, depicting the comparisons between 
the GBM regression model and the finite element analy-
sis method. The x-axis represents the true values, while Fig. 11 Residual cumulative distribution plot

Fig. 12 Boxplot of the RMSE performance evaluation metric for 
different models
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the y-axis represents the predicted safety factors by the 
GBM model and those obtained through the finite element 
analysis method. A more accurate prediction is indicated 
by points closer to the diagonal line. As observed, the dis-
tribution of points representing the predicted values by 
the GBM regression model is closer to the diagonal line, 
whereas the points representing the finite element model 
exhibit relatively greater dispersion. Consequently, the 
finite element analysis method performs slightly inferior 
compared to the GBM regression model in terms of pre-
dicting the FOS when compared to the true values.

Fig. 14 present the errors between the predicted values 
and true values for the corresponding GBM regression 

model and finite element analysis, respectively. The length 
of the error bars reflects the magnitude of the differences 
between the predicted and true values, with longer error 
bars indicating larger disparities.

Through careful comparison and analysis of these 
two plots, it becomes apparent that the errors in the FOS 
values calculated by the finite element model are nota-
bly larger within the range of 2 to 2.5 when compared to 
the range of 0 to 1.5. Furthermore, the errors in the pre-
dictions made by the finite element model are generally 
greater than those in the GBM regression model. This is 
evident from the overall shorter error bars in the GBM 
regression model for most data points.

Based on this analysis, it can be concluded that the GBM 
regression model provides more accurate predictions of 
the slope's FOS. The results indicate that using the GBM 
regression model yields smaller errors and therefore rep-
resents a more reliable approach for predicting the FOS.

It is important to note that when considering time effi-
ciency, constructing the proposed finite element model 
necessitates the individual construction of geometric con-
ditions, definition of the analysis method, and specification 
of internal characteristics for each slope case. Once the 
model is established for each case, the FOS can be calcu-
lated in batches. However, this modeling process involves 
creating different slope dimensions and internal features, 
which would typically require approximately 9 hours for 
the 47 slope cases mentioned in this article.

Please bear in mind that the provided time estimation is 
based on the available information and may vary depending 
on factors such as the complexity of the slope cases, compu-
tational resources, and modeling techniques utilized.

In contrast, machine learning models provide the advan-
tage of predicting FOS by inputting a dataset of relevant 
slope feature parameters into the model. This approach offers 
faster computation times compared to the finite element 
modeling process. During training, parameter grid tuning 
and 500 000 iterations are performed, taking only 2 minutes.

In summary, the use of machine learning models not 
only provides higher accuracy but also significantly 
reduces computation time. This demonstrates the effec-
tiveness of the proposed method outlined in this article.

Please note that the provided information is based on 
the details given. Actual performance and speed may vary 
depending on factors such as the size and complexity of 
the dataset, computational resources, and specific imple-
mentation techniques.

Fig. 13 Comparison between the predicted values and true values of the 
FOS using the GBM and finite element analysis model

Fig. 14 Error bar plot depicting the difference between the predicted 
values and true values of the FOS by GBM regression model and finite 

element model
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4.3 Engineering application examples
The proposed project is situated in the southwestern part 
of Baota District, Yan'an City. Its construction is expected 
to have a positive impact on enhancing the efficiency 
of the transportation system in the Nan Ni Wan Scenic 
Area. The project's starting point is located in Mafang 
Village, Nan Ni Wan Town, with a connection to the exist-
ing S303 road. From there, it proceeds westward along 
the planned S303 transit line, passing through Taoshuwan 
Gully until it reaches Wangzhuang. After traversing a tun-
nel and connecting with the existing old road, the route 
continues through Nan Panlong and Miaotai, following 
the alignment of the Junwei Gully. To traverse the area, the 
route incorporates nine mountain ridges through tunnels 
while remaining aligned with the Junwei Gully. It then 
passes through Rentai and Yejiazhuang before cross-
ing under the disused West Extension Railway, Bao Mao 
Expressway, and the operational West Extension Railway 
double track. Finally, the route intersects with G210 at San 
Shili Pu. The total length of the route is 32.022 kilometers.

The research object focuses on the slope of the Fanzhuang 
Road segment, specifically from K12+130 to K12+350. This 
slope is situated near Fanzhuang Village, Nan Ni Wan 
Town, at the exit of the Nan Panlong Tunnel. Serving as a 
road embankment slope, it has a height of approximately 
45 meters and is constructed using a stepped cutting method. 
It consists of a total of nine steps, each measuring 5 meters 
in height. The third and fifth steps have a width of 5 meters, 
while the remaining steps have a width of 3 meters.

Based on the investigation conducted, it has been deter-
mined that the slopes in this area possess loose soil structure 
with significant pore development. Consequently, after exca-
vation of the road embankment slopes, instability may occur 
due to the influence of upper loading and heavy rainfall.

As discussed in Section 4.2, it is established that the 
GBM regression model offers the most accurate predictions 
for the FOS of slopes. Building upon this finding, this sec-
tion focuses on the development of a prediction model for 
the FOS of highway soil slopes based on the GBM regres-
sion model. The slope's characteristic parameters obtained 
from geotechnical tests are presented in Table 5. Utilizing 
these slope characteristic parameters as independent vari-
ables, a predicted FOS value of 1.498 is derived.

The slope of Nan Ni Wan is chosen as the research object, 
and the VADOSE/W module is employed to establish the 

model. By inputting the slope characteristic parameters 
obtained from Table 5, the FOS of the slope is calculated 
using the Mohr-Coulomb model. Fig. 15 illustrates the model 
representing a slope with a height of 68 m on the left side 
and 24 m on the right side. The base width measures 120 m, 
while the top width is 20 m. Moreover, the slope consists of 
nine stepped sections, each with a height of 5 m. In Fig. 15, 
the green portion represents the most critical sliding surface 
of the slope, indicating that the slope failure occurs due to 
sliding from left to right. Through numerical simulations, 
it has been determined that the most critical sliding surface 
of this slope lies between the first and sixth steps, with a 
calculated FOS of 1.524. This suggests that the slope is con-
sidered stable. Additionally, during a field survey, cracks 
were observed in the third step. Consequently, the numerical 
results align with the actual conditions and are consistent 
with the predictions made by the GBM model.

5 Conclusions
Based on the slope characteristic parameters and the FOS, 
a relationship has been established where the slope charac-
teristic parameters act as independent variables and the FOS 
serves as the response variable. In this study, machine learn-
ing methods, including GBM, SVM, XGB, and RF mod-
els, are proposed for predicting the FOS. These models are 
compared with the finite element model to identify the most 
accurate method for predicting the FOS. The feasibility of 
the proposed models is then validated using slope engineer-
ing examples, leading to the following conclusions:

1. Utilizing the GBM, SVM, XGB, and RF models, we 
establish a predictive regression model for FOS and 
compare their performance. Among these models, 
the GBM regression model outperforms the others, 
achieving an MAE of 0.069154, MSE of 0.007334, 
RMSE of 0.085641, and R2 of 0.98937. Hence, it 

Table 5 Slope characteristic parameters

H/m β/° ru C/kPa γ/kN/m φ/°

45 32 0.15 50 20.5 28.7 Fig. 15 Calculation results graph of the slope model
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can be concluded that the GBM regression model is 
well-suited for accurately predicting the FOS.

2. By using the feature parameters from the slope cases 
in the test set as independent variables, we model and 
perform finite element analysis for FOS in GeoStudio. 
When comparing the finite element model with the 
GBM model shows slightly higher accuracy and 
greater efficiency in predicting the FOS.

3. The characteristic parameters of the slopes obtained 
from indoor experiments were used to establish a 
finite element model in GeoStudio for FOS analysis. 
By comparing the FOS predicted by the GBM regres-
sion model with the FOS obtained from the finite ele-
ment model, we find that the difference between the 
two is small and within an acceptable range of error. 
The on-site engineering surveys confirmed the pres-
ence of cracks on the third step, thus validating the 
finite element model's prediction that the most criti-
cal sliding plane is between the first and sixth steps. 
Both the numerical results and GBM model predic-
tions are consistent with the actual site conditions.
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