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Abstract 

A program package for computers was developed to test empirical methods of interpolation 
of deflection ofthe vertical which can be used to determine deflections of the vertical by any 
method of interpolation either along triangulation chains or in networks covering arbitrary 
large areas. In the course of our test computations in Hungary first we compared different 
empirical methods of interpolation then we tried to get an answer to the question whether 
the reliability of interpolated data can be increased by introducing appropriate weighting. 
Another important object of our investigations was to determine optimal geometrical 
arrangement for interpolation networks. 

Keywords: deflection of the vertical, torsion balance measurement, gravity gradients. 

1. Computer Program Package for Interpolation 

The computer program package developed by us is able to determine de
flections of the vertical based on torsion balance measurements either along 
triangulation chains or in networks covering arbitrary areas using any of 
the interpolation methods fully described in (VOLGYESI, 1993). It can plot 
the interpolation network and vector diagram of interpolated deflections of 
the vertical, calculate geoid heights by astronomic levelling and also plot 
either perspective or isoline map of geoid for the area. 

The operation of the program package developed for personal com
puters is visualized in Fig. 1. 

A catalogue file has to be created as a first step of the computing 
process which contains all known data of torsion balance measurements 
within the area to be processed (codes of measurement points, co-ordinates, 
second derivatives W~, Wxy ), and the catalogue should contain the known 
values of deflection of the vertical for astrogeodetic points available. 

Besides the catalogue file another input file should be made for the 
program package which contains data of the interpolation network (the 
point codes of point pairs forming sides of triangles in a triangulation net-
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Fig. 1. 

work should be given in pairs and those points should be noted where com
ponents of deflection of the vertical are known). 

According to the process visualized in Fig. 1 the first program of the 
package, named FGVINPUT, selects from catalogue file the data needed for 
process, using file containing data of the interpolation network, and de-
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pending on the interpolation method to be used for further computation it 
produces input data set with appropriate format for certain (FUGGOSUC, 

FGVSUORT, FUGGOVON, FUGGOOLD, FUGGOORT) programs. Here we can 
choose for example whether to perform interpolation with unreduced or to
pographically reduced torsion balance measurements; it can be given which 
point to choose as origin of the local co-ordinate frame and here it should 
be fixed which interpolation method will be used for further computations. ' 
According to Fig. 1 we can choose from the following five possibilities: 

Program FUGGOSUC determines along arbitrary interpolation 
chains between two astrogeodetic points from torsion balance measure
ments direct values of components of deflection of the vertical in points of 
the chain by the successive elimination method discussed in (VOLGYESI, 

1993). Input data for program are: co-ordinates of the points of interpo
lation network; at each point either directly measured torsion balance W A 

and W xy second derivatives or D. W A and D.l¥xy values that are computed 
using these derivatives through the formula D. W = Y,V - U; as well as known 
6,7]1 and En, 7]n deflections of the vertical at starting and closing points of 
chain. Using those data the program computes nij length and G.ij azimuth 
of each side of the chain; by using formula 

calculates Tij .values for each triangle side, its variances and covariances; 
and for these sides 

!:lEji sin (Xij - !:l7]ji cos G.ij = Tij (2) 

expression is utilized to get the D.Eij, !:l7]ij component differences; and 
so using these values and the input data unknown ~, 7] deflections of the 
vertical and their variances are computed at points of the interpolation 
network. Finally output files are generated by the program either to print 
out results or for an optional post processing. 

By the program FGVSUORT the !:lE, !:l7] component differences of de
flections of the vertical bet\veen points of an interpolation chain between 
two astrogeodetic points can be determined using given torsion balance 
measurements by the method of matrix orthogonalization. In input data 
of the program are completely identical with input data of the program 
FUGGOSUC and is similar to the FUGGOSUC program in that it can only be 
used to compute interpolation chains for which deflections of the vertical 
are given at its starting and closing points. 

Program FUGGOVON can be applied to compute not only simple in
terpolation chains but networks of arbitrary shape. Direct values of E, 7] 
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components of deflections of the vertical at points of the network are de
termined by the program based on given torsion balance measurements by 
giving consideration to fixed e, "1 values at astrogeodetic points of arbi
trary number and distribution. Input data for program are: co-ordinates of 
points of the interpolation network, W.6. and W xy second derivatives which 
are measured directly by torsion balance or .6. W.6. and .6. W xy values com
puted from them; known eo and "10 deflections of the vertical at points of 
constraint of arbitrary number and finally sides of interpolation network 
orderly (given by pairs of point numbers). By using these data it can be 
computed first by the program the length and azimuth of each side then 
the coefficient matrix and vector of constant terms of observation equa
tions are set up, unknown e, "1 values and their standard deviations are 
determined and finally output files are produced both for printing out the 
results and for an optional post processing. 

Program FUGGOOLD is a modified version of program 
FUGGOVON. Difference between the two programs lies in the fact that in 
the input data of FUGGOOLD sides of the interpolation network are not 
included because these are generated automatically by the program FUG

GOOLD. Instead of the sides a ma.ximum distance should be given very 
carefully; and neighbouring points (torsion balance measurement sites) are 
searched for by the program within this maximum distance where network 
sides can be formed. This program can very advantageously be applied to 
such 'homogenic' areas where torsion balance measurement stations are ly
ing from each other at an approximately equal distance and sides of nearly 
the same length will be resulted. 

FUGGOORT is considerably a more capable program than the preced
ing four ones and it can handle very large matrices and besides this it is 
the most fast and accurate among interpolation programs we programmed. 
FUGGOORT can be applied to compute interpolation networks of arbitrary 
shape. Direct values of ~,1] components of deflections of the vertical can 
be determined through matrix orthogonalization adjustment process from 
given torsion balance measurements for network points by considering fixed 
e, "1 values at astrogeodetic points of arbitrary number and distribution. 
Input data of program are identical with that of FUGGOVON. FUGGOORT 

can handle very large matrices using a programming idea, hence interpo
lation networks containing several hundred points can also be computed 
and adjusted simply by its use. Moreover, this algorithm may also be used 
very well to solve any adjustment task of surveying, the coefficient matrix 
of which is large and sparse (containing many zero elements), because the 
coefficient matrix of observation equations can be stored up for the matrix 
orthogonalization adjustment process by saving much storage space. 
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The preceding five interpolation programs create data files of two 
types: the first displays computation results in the form of a table which 
can easily be viewed while the second is for purpose of post processing. 
During post processing according to the sketch in Fig. 1 we have the 
opportunity either to plot the interpolation network and interpolated de
flections of the vertical or to plot detailed geoid map of the area by using 
computed deflections of the vertical. 

The interpolation network and vector diagram of interpolated deflec
tions of the vertical are displayed on the screen by program FGVPLOTT 

where the plot on screen can be directed from optionally to a printer or 
plotter if it is required. It can be selected from the menu system of FGV

PLOTT, among others, whether to draw on plot point numbers of network 
points, to connect network points forming sides and whether to plot (and 
on what scale) the vector diagram of interpolated deflections of the verti
cal. (It should be noted, however, that by this program without change 
one is able to plot any kind of a geodetic network). 

If a detailed geoid map of an area from interpolated deflections of the 
vertical is required, the way indicated in Fig. 1 should be followed. Detailed 
geoid map of the area of the interpolation network is computed by program 
CSILLASZ by astronomical levelling. Input data for program CSILLASZ are 
computed by utility program FGVTOGRD, GRID and GRDTOCSI stepwise. 

2. Data of Test Computations 

The area surrounding Cegllid, as can be seen in Fig. 2, extended over some 
1200 km2 and well-measured by torsion balance was chosen for the purpose 
of our test computation. 

Distances between astrogeodetic points and density of the torsion bal
ance stations among them in our test area correspond to average flatland 
conditions in Hungary as can be seen in Fig. 2; however, in the upper area 
of the figure near Pilis and Albertirsa it is apparent that torsion balance 
stations were located more densely as it was usual in the Hungarian Plain. 
This can be found along the southern extension area of G5d5lllf Hills where 
the change of gradients and second derivatives, that can be measured by 
torsion balance, is greater. 

2.1 Co-ordinates of Interpolation Points 

For our test computations in Hungary co-ordinates of torsion balance mea
surement stations in Budapest Stereographic System were available with 
the reliability of the order of m. This was completely enough for us be-
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cause ±50 m error in co-ordinates used for vertical interpolation of deflec
tion causes an error in the components of vertical deflections of only one 
hundredth of a second of arc (BADEKAS - MUELLER, 1967). 

An arbitrary internal point in the given area is suitable to be chosen 
as zero point of the co-ordinate frame (VOLGYESI, 1993). 

To this local frame the co-ordinate transformation 

x' = (x - xo) cOSJL + (y - YO) sinJL , 

Y' = -(x - xo) sin JL + (y - YO) cos JL 

can be used to convert points; - where JL denotes grid convergence at zero 
point of the new (local) frame, xo and yo are co-ordinates of zero point of 
the local frame in the old frame. 

2.2 Torsion Balance Measurements 

In our country torsion balance was used to measure a good many num
ber of stations; very large part of the area of Hungary - first of all flat
land and hilly areas of moderate height - were covered with network of 
torsion balance stations. As far as torsion balance measurements are con
sidered Hungary is the most well-measured country in the world. Earlier 
torsion balance measurements were carried out mainly for the purpose of 
prospecting and for this end only Wzx and W zy horizontal gradients were 
processed. Nevertheless WLl and Wxy second derivatives are known at each 
measurement station also, which can be used in geodesy. Torsion balance 
measurement data are available for the area of Hungary in Eotvos Lorand 
Geophysical Institute. 

Torsion balance measurement points' location in our test area is dis
played in Fig. 2. Stations were not located with the same density because 
- as we have mentioned - observations were carried out with a greater den
sity of points in 'disturbed' areas of rugged topography. 

To evaluate deflections of the vertical so-called anomalies of 

~WLl = W Ll - ULl , 

~Wxy = Wxy - Uxy 

should be used instead of measured WLl, W xy values, where ULl and Uxy 
denote normal values of the second derivatives. 

The above mentioned ~ W Ll and ~ W xy anomalies of second deriva
tives were determined in the test area for each station and isoline maps in 
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Fig. 3 and Fig . .4 were plotted using these values. Isoline values plotted 
are in units of 1O-9s2

, that is 1 E (Eotvos). 
The following accuracies are characteristics of torsion balance mea

surement data, with the previous notations, 

J.LfvA ~ 1.7 , 

JLfvxy ~ 1.5 , 

CWA,WXY = 0 

based on the detailed studies of (BIRO - FOLDVARINE - HAZAY - Ho

MORom, 1965) and (BADEKAS, 1967), that is standard error of the W ~ 
values is ±1.3 E, of the Wxy values is ±1.2 E and the correlation coefficient 
can be treated as zero. 

2.3 Corrections to Torsion Balance Measurements 

Second derivatives measured by torsion balance include many kinds of ef
fects. For further processing - depending on the task torsion balance 
measurements are to be used for - different effects have to be considered 
and corresponding corrections may be applied to .6. VV~ and .6. TVxysecond 
derivatives. 

Mainly neighbouring topography and its density inhomogeneities have 
a considerable effect on the results of torsion balance measurements. It is 
usual to compute the effect of neighbourhood in two or three steps, e.g.: 
(BADEKAS - Mu ELL ER, 1967). There is not a uniform agreement as to 
the limits of computation, - we deal with the corrections according to the 
following division: 

1. The effect of immediate neighbourhood of the measurement point up 
to 100 m - the so-called terrain correction (oW S

), 

2. the effect of masses in the range between 100 and 5000 m - the so
called topographic correction (OWi), 

3. the effect of masses beyond range of 5000 m the so-called cartographic 
correction (owe). 
Spirit levelling height data of the immediate neighbourhood are nee

ded to determine terrain correction. The ground is usually made flat in
side a circle of two-three meters of diameter around the torsion balance 
measurement point and it is usual to level symmetrically along 8 directions 
at 1.5, 2, 3, 5, 10, 20, 30, 40, 50 m distance from the meaHurement point. 
Levelling beyond the 50 m range is only for a greatly rugged terrain to a 
maximum of 100 m distance. Terrain correction is usually determined from 
levelling data by using graphs or tables. 
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The accuracy of terrain correction is influenced mainly by three fac-

accuracy of measured height differences, 
error of the approximate density value used in the computation, 
departures of the real and its approximating model surface of the 
ground. 
Considering all the three error sources the standard error of terrain' 

correction of both second derivatives is 

according to investigations of (BADEKAS - MUELLER, 1967). 
Needed height data for computing topographic correction can be taken 

from topographic maps. The same method can be used to compute correc
tions as for the terrain correction. The same investigation of (BADEKAS -

IVluELLER, 1967) shows the standard error of topographic corrections: 

J.Lswt ~ J.Lswt ~ ±2 E . A xy 

Height data needed to compute cartographic correction can also be taken 
from maps. The very same method can be used to compute correction as 
for terrain or topographic corrections. The same investigation of (BADEKAS 

- MUELLER, 1967) shows the standard error of cartographic corrections: 

J.L8W C ~ J.Lswc ~ ±1 E . 
A :cy 

In our test area in Hungary the values 

and 

\vere available at each measurement point as well, and isoline maps of 
Figs. 5 and 6 were drawn using these data. Labels of contour lines are in 
Eotvos unit. There was no reason for computing cartographic corrections 
in our test area because these corrections are negligibly small. 

It is because the test area surrounding Ceglt~d is flat the ~ wi and 
~ vV;y values can be considered practically - using a designation by Eotvos 

subsurface anomalies. 
For the sake of simplicity ~ wi and ~ W;y values are corrected; and 

as for ~ W Ll. and ~ W xy are uncorrected second derivatives they will be 
called later on. 
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U sing the law of error propagation, 

J.lb.Wt ~ ±4.3 E , 
L> 

J.lb.Wt ~ ±4.1 E 
xy 

values are yielded for standard errors of corrected second derivatives. 
If isoline maps of our test area in Hungary, ,6,Wb. in Fig. 3, ,6,Wl in 

Fig. 5, ,6, W xy in Fig. 4, and ~ W;y in Fig. 6 are compared it can be seen 
that the relatively small corrections resulting from the nearly flat terrain do 
not affect considerably the appearance of ,6, W b. and ,6,IYxy second deriva
tives, they only simplify the picture a little. More significant variations can 
only be seen in the vicinity of Pilis where corrections are greater due to the 
more rugged topography of the southern extension part of Godollo Hills. 

2.4. ~ and Tf Values for Starting and Checking the Interpolation 

Six points can be found in the area of Hungary in Fig. 2 where ~,Tf deflec
tions of the vertical are known. Each of these points is such that gravimet
ric (approximately absolute) deflections of the vertical are available based 
on gravity data; four of them (originally points labelled 1, 2 and 3, and 
later 27) are astrogeodetic points. Points 1, 2 and 3 are starting and clos
ing ones of interpolation lines, points 13, 14 and 27 served the purpose of 
checking interpolated values. It is noted that only components of gravimet
ric deflections of the vertical were known at point 27 previously, hm:vever, 
during the time of our test computations astronomic position determina
tion was carried out by the Cartographic Institute of the Hungarian Army 
and so meanwhile this point became astrogeodetic stations as well. Rela
tive deflections of the vertical provided by the Documentation Department 
of FMI refer to a relative geodetic datum. 

The accuracy of relative deflections of the vertical at the astrogeodetic 
stations 1, 2, 3 and 27 can be described by the standard error of astronomic 
position determinations, which is, according to (BIRO - FOLDv ARINE 

HAZAY - HOMoRom, 1965) 

J.l~o ~ f.L1)O ~ ± 0.2/1 

Further examination is required if the accuracy of relative deflections of 
the Vertical at astrogeodetic (checking) points 13 and 14 is needed. because 
gravimetric deflections of the vertical are directly available at these points 
instead of relative deflections of the vertical. If relative deflections of the 
vertical are also required at these points, one should know both relative and 
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absolute deflections of the vertical at least at three neighbouring points in 
order to determine the mutual position of the relative and absolute ellipsoid 
along an area. Then relative (astrogravimetric) deflections of the vertical 
corresponding to known gravimetric deflections can be computed at these 
points. 

In the present Case at astrogeodetic points 1, 2, 3 and 27 both relative 
and gravimetric deflections of the vertical are available and thus relative 
deflection components at points 13 and 14 were determined from gravimet
ric ones. The accuracy of relative (transformed) values that were deter
m.ined so at points 13 and 14, depends mainly on the accuracy of gravimet
ric deflections of the vertical, which is according to (BIRO - FOLDV ARINB 
- HAZAY HOMORom, 1965) 

"" "" ± 05" f-l~gr "" f-lTJgr "" • • 

Because of the gravity effect of surface topography is also included in the 
known values of deflection of the vertical at the above listed points; and 
because of interpolation computations were also performed during one pro
cess of our test computations with WL!.. and W:cy second derivatives pro
vided with topographic corrections also, hence topographic correction was 
necessary for known components of deflection of the vertical as well. This 
correction was determined according to the method of (RENNER, 1952) 
by considering surface topography of the innermost neighbourhood around 
computation points. 

3. Test Results and Implications 

It was the first important task of our test computations to test different 
methods of solution of interpolation and their intercomparison. The most 
suitable method can be chosen then as the result of this test. After this the 
problem of weighting is treated, and tried to throw light on the matter how 
the accuracy of interpolation is affected by the geometrical configuration 
of interpolation networks, i.e. what is the optimal geometric arrangement 
of networks. 

3.1 Intercomparison of Different Methods of Solution 

Practical solutions of interpolation can be classified to the following two 
main groups (VOLGYESI, 1993): in the case 'A' ~~, ~'TJ differences of com
ponents of deflection of the vertical are treated as unknowns, and in the 
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case 'B' e, 7] components of deflection of the vertical at points themselves 
are the unknowns to be determined. 

In case of solutions of the group 'A' (i.e. when .6.e, .6.7] differences 
between points are the unknowns) there are three possibilities of the inter
polation: 
AI: the complete coefficient matrix, formed by the coefficients of 4n - 6 

equations of type 

and 

.6.eji sin Otij - .6.7]ji cos Otij = Tij 

.6.eji + .6.ekj + .6.eik = 0 , 

.6.7]ji + .6.7]kj + .6.7]ik = 0 , 
n-l 

L .6.~i+1,i = ~n - 6 
i=l 

n-l 

L .6.7]i+1,i = 7}n 7}1 
i=l 

has to be inverted, i.e. 4n - 6 unknown .6.~, .6.7] values are computed 
(VOLGYESI, 1993). 

A2: instead of 4n-6 unknowns we deal only with the absolutely necessary 
2n-2 unknown .6.e, .6.7} values and invert the corresponding coefficient 
matrix of smaller size, 

A3: unknowns .6.';-, .6.7] are determined stepwise (by successive elimina
tion). 
When solving adjustment problems of a rather large size - because 

of the unavoidable accumulation of rounding errors during the computa
tion - it is in any case feasible to look after some method which leads to 
the solution of an equation system with minimum number of unknowns 
(VOLGYESI, 1979). If we do not want the unnecessary work of determining 
unknowns that are not required and we do not want to risk the accuracy of 
solution due to accumulation of rounding errors, then there is nothing to 
say of case Al later on since after all the same e, 7] deflections of the verti
cal are determined in the case A2 but through the computation of consid
erably fewer unknowns .6.~, .6.7]. 

The interpolation method elaborated by RENNER (1952, 1956, 1957) 
also belongs to the group AI, where in its original form .6.~, .6.T] diff·:;rellces 
between network points were chosen as unknowns and it was required in
version of the complete coefficient matrix as well. Because of the above 
mentioned facts we will not deal with this method here. Though we per
formed test computations based on an adapted form of Renner's method 



TEST INTERPOLATION 53 

where not .6.~, .6.1] differences are unknown but direct ~, T] values of inter
polation points but these results will be reported later on in the section 
dealing with suitable geometrical figures of interpolation networks. 

Special computer programs were developed for cases A2 and A3. Only 
absolutely necessary .6.~ and .6.1] unknowns between points of interpolation 
chain connecting two astrogeodetic points are regarded as unknowns by 
both programs and they are determined by method of matrix orthogonal-' 
ization by program FGVSUORT (VOLGYESI, 1980) and by successive elimi
nation (BADEKAS and MUELLER, 1967) by program FUGGOSUC. 

Three different programs were made for handling case B; these are 
FUGGOVON, FUGGOOLD and FUGGOORT. All three programs are suitable 
for computing interpolation networks of arbitrary shape by determining 
direct values of deflection components at network points by considering~, 1] 

fixed values of arbitrary number and distribution. Conventional adjustment 
process is utilized by FUGGOVON and FUGGOOLD to calculate the unknowns 
while numerically more stable matrix orthogonalization process is used by 
FUGGOORT. Program FUGGOOLD is a more efficient version of FUGGOVON 

which computes itself the sides of interpolation networks automatically -
on the contrary to program FUGGOVON. 

ruggoOLO 

Fig. 7. 

Several test computations were performed by all above mentioned in
terpolation programs to examine and compare practical methods of solu
tion of the interpolation. Computation results of the interpolation net
work connecting astrogeodetic points 1 and 2 of our test area (Fig. 7) will 
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Table 1 

Point FUGGOSUC FGVSUORT FUGGOVON FUGGOOLD FUGGOORT 
numb. e" Tt f;" r/, f;" 7/, f;" 7]" f;" 7]" 

1 2.20 4.00 2.20 4.00 2.20 4.00 2.20 4.00 2.20 4.00 
440 1.85 3.98 2.04 4.04 2.05 4.04 1.76 3.98 2.05 A.04 
424 1.80 4.19 2.01 4.04 2.01 4.04 1.67 4.24 2.01 4.04 
426 1.56 4.29 1.91 4.05 1.92 4.05 1.47 4.31 1.92 4.05 
422 1.92 4.94 2.26 4.55 2.26 4.55 1.82 4.75 2.26 4.55 
320 1.68 4.18 2.18 3.88 2.19 3.88 1.91 4.08 2.19 3.88 
316 1.83 5.48 2.22 4.95 2.22 4.95 1.74 4.49 2.22 4.95 
312 1.83 5.57 2.41 5.07 2.41 5.06 2.30 4.60 2.41 5.06 
288 1.91 6.01 2.41 5.30 2.42 5.29 2.15 4.58 2.42 5.29 
851 2.73 5.20 3.49 4.58 3.50 4.58 3.38 3.96 3.50 4.58 
723 3.15 5.71 3.78 4.82 3.78 4.81 3.59 4.03 3.78 4.81 
721 3.35 4.97 4.24 4.17 4.24 4.16 4.22 3.44 4.24 4.16 
224 3.65 5.73 4.36 4.71 4.37 4.70 4.23 3.84 4.37 4.70 
709 3.57 5.58 4.41 4.55 4.42 4.55 4.38 3.68 4.42 4.55 

27 3.74 6.84 4.57 5.59 4.58 5.58 4.53 4.53 4.58 5.58 
704 4.10 6.75 5.06 5.43 5.07 5.42 5.17 4.31 5.07 5.42 
700 4.24 6.75 5.23 5.27 5.24 5.26 5.36 4.02 5.24 5.26 
697 4.49 6.54 5.46 5.07 5.47 5.06 5.60 3.83 5.47 5.06 
696 4.35 6.38 5.31 4.91 5.32 4.90 5.45 3.67 5.32 4.90 
715 4.58 6.13 5.50 4.68 5.51 4.67 5.63 3.46 5.51 4.67 
637 4.45 6.04 5.37 4.62 5.38 4.61 5.54 3.42 5.38 4.61 
638 4.67 5.96 5.51 4.56 5.52 4.55 5.64 3.38 5.52 4.55 
631 4.67 5.77 5.51 4.47 5.53 4.47 5.64 3.38 5.53 4.47 
630 4.98 5.60 5.63 4.41 5.64 4.40 5.66 3.40 5.64 4.40 
624 4.73 5.55 5.49 4.44 5.50 4.44 5.65 3.51 5.50 4.44 
609 5.07 5.61 5.61 4.59 5.62 4.58 5.64 3.72 5.62 4.58 
610 4.85 5.58 5.50 4.66 5.51 4.66 5.65 3.88 5.51 4.66 
614 5.12 5.67 5.53 4.84 5.54 4.84 5.155 4.14 5.54 4.84 
575 5.00 5.59 5.41 4.95 5.42 4.95 5.44 4.41 5.42 4.95 
518 5.60 5.39 5.70 4.85 5.71 4.85 5.55 4.40 5.71 4.85 
615 5.46 4.52 5.59 4.20 5.60 4.20 5.47 3.94 5.60 4.20 
570 6.40 4.03 6.16 3.86 6.17 3.87 5.82 3.73 6.17 3.87 

2 5.20 3.40 5.20 3.40 5.20 3.40 5.20 3.40 5.20 3.40 
1 and 2 = given points; 
27=checking point: (67 = 4.80,1727 = 5.42) 

be presented in more detail. Computation results of different interpola-
tion programs can be compared in tabular form for chain 'Cegled 1-2/B' 
in Fig. 7. Output results of programs FUGGOSUC, FGVSUORT, FUGGOVON, 

FUGGOOLD and FUGGOORT can be found in Table 1. It can be seen that 
some results were provided by FUGGOVON and FUGGOORT and values com-
puted by FGVSUORT differ only few hundredth of an arc second by these. 
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Interpolated values by FUGGOVON and FUGGOORT at checkpoint 27 are the 
most close to known t;, Tt values (difference of ~ is -0.22" and of Tt is + 
0.16") but results are not much worse for FGVSUORT (differences here are 
-0.23" and + 0.17"). The interpolation network which can be seen on 
Fig. 7 is a good example of cases where program FUGGOOLD must not be 
used. It is discernible that network points are substantially more distant, 
from each other near the closing point 2 than near the other closing point 
1 . Hence if such a distance is prescribed so as not a single point should 
be left where points are more distant from each other, then also redundant 
network sides are created where points are closer to each other along which 
the change of 6. TiV.6. and 6. lo/xy values are no more linear. Such network 
sides can be seen on Fig. 7 next to astrogeodetic point 1 which were con
nected by continuous lines by the computer. Therefore in accord with 
our expectations - differences are greater at checkpoint 27 with respect to 
knmvn 1;, Tt values (differences are -0.2i' and +0.89"). 

Interpolated values by program FUGGOSUC differ more sharply from 
previously mentioned computation results and from known deflection com
ponents at point 27. Difference of ~ is -1.06" and of TJ is + 1.42" at point 27. 

Of course different interpolation methods were examined through 
computation of not only the chain 1-2/A but also through a number of 
other ones. Results of these computations are summarized in Table 2. 

In this table differences of computed and known ~,Tt values are in
dicated at checkpoints of different interpolation networks by the succes
si"ve elimination method FUGGOSUC and programs FGVSUORT, FUGGOVON 

and FUGGOORT. Standard deviations were computed using above men
tioned differences that are characteristic to the accuracy of each interpola
tion method. 

Table 2 

Sign of check. FUGGOSuC FGVSUORT FUGGO-VON/ORT 
network point 5E, 51) " 5E," 51)" 5E," 51) " 
1-2/A 27 -0.53 -0.7,5 -0 . .54 -0.74 -0.54 -0.74 
1-2/B 27 -1.06 +1.72 -0.23 +0.17 -0.22 +0.16 
2-3/A 13 -0 .. 57 -2.34 -0.62 -2.51 -0.63 -2.·54 
2-3/B 13 +1.75 +4.70 +0.71 +0.93 +0.70 +0.89 
2-3/B 14 +2.50 +2.07 +1.31 +0.38 +1.26 +0.27 
3-1/A 14 -0.31 -0.68 -0.10 -0.48 -0.09 -0.58 
3-1/B 14 +0.31 -0.10 +0.65 +0.15 +0.71 +0.26 

Standard ±1.27 ±2.23 ±0.70 ±1.08 ±0.69 1.09 
deviatiolls: ±1.81 ±0.91 ±0.91 
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According to the results of our tests which are summarized in Table 1 
and Table 2 to examine and compare different interpolation methods it 
can be stated that in most cases deflection of the vertical computed by 
successive elimination differed greatly from values yielded by other methods 
and in many cases they differed sharply from known checkpoints' values. 
There are nearly two times as great errors in values of deflecti01~ of the 
vertical computed by successive elimination as the interpolated values of 
different methods which fact can be seen from the data of Table 2. 

The accuracy of results yielded by programs FGVSUORT, FUGGOVON 

and FUGGOORT can be taken as practically identical but unfortunately the 
possibility to apply FGVSUORT is somewhat limited because - similarly to 
the program FUGGOSUC - this program can exclusively be used in such in
terpolation chains the starting and closing points of which are astrogeode
tic points. The chain can contain no other point of restraint besides these 
two astrogeodetic points. Any other known values of deflection of the ver
tical inside the network besides the two extreme points can only be used 
for checking. 

Output results of program FUGGOOLD are not presented in Table 2 
because it is useful to compute with different distance limits depending 
on point distribution and so by jointly comparing them would not have 
yielded a true, uniform representation of facts. Our examinations showed 
that the accuracy of programs FUGGOVON and FUGGOORT can be attained 
by program FUGGOOLD only if interpolation points are homogeneously dis
tributed and the distance limit is appropriately small. Hence even if it is 
very comfortable only if our points are homogeneously distributed it is 
worth creating network sides by the computer. 

We haven't met such a task during our test computations for which it 
was possible to give preference to any of the two programs FUGGOVON and 
FUGGOORT depending on the accuracy of interpolated values. Nevertheless 
it is a crucial issue for preferring program FUGGOORT that - on the contrary 
to program FUGGOVON it can be used to compute interpolation networks 
of a very large size. 

If final conclusions should be drawn from the results of our compara
tive tests it can be stated that the errors of deflections of the vertical com
puted by successive elimination are nearly twice as big, hence it is not suit
able to apply method of successive elimination (to use program FUGGOSuc). 

In our test area when interpolation chains are computed programs FGV

SUORT, FUGGOVON and FUGGOORT yield results of practically the same ac
curacy, but the application of program FGVSUORT is somewhat limited be
cause it can only be used for such interpolation chains the extreme points 
of which are astrogeodetic ones. In our examinations same results were 
provided by programs FUGGOVON and FUGGOORT in all respects for chains 
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with relatively few points expect that in networks of larger size FUGGOORT 

is numerically more stable according to other tests, and it runs also if the 
number of unknowns is greater. Finally it can be concluded that it is very 
comfortable to use the program FUGGOOLD instead of FUGGOVON but it is 
worth creating network sides by this program only where our points are 
homogeneously distributed. 

3.2 The Problem of Weighting 

According to theoretical considerations (VOLGYESI, 1993) during the ad
justment process of interpolation two simple approximations were adopted: 
on one side since Tij fictive measurements computed through Eq. (1) can 
be regarded as uncorrelated, hence the weight matrix is a diagonal one; on 
the other side since there are terms in the main diagonal of our weight
ing coefficient matrix which are proportional to squares of the side lengths 
therefore it comes out from the inversion that weights of our fictive mea
surements are taken as proportional to the inverse square of distance. 

FuggoORf 

rietYork: "CEGLED ~-2/A-B" 

10" 

Fig. 8. 

During test computations we tried to get an answer to the question 
whether accuracy of the interpolated values can be increased by this weight
ing. To this end computation of deflections of the vertical for networks on 
Figs. 8, 9 and 10 were carried out without weights (using unit weights) 
and with weights previously mentioned. 
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FuggoOOT 

Hetuork: "CEG LED 2-3/A-S" 

10" 

Fig. 9. 

FuggoOOT 

Fig. 10. 
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Table 3 

Sign of check. without weights using weights 
network point 6~1/ 61]11 6~1I 61]11 

1-2/AB 27 -0.85 +0.30 -0.81 +0.11 
2-3/AB 13 +0.88 +0.79 +0.80 +0.58 
3-1/AB 14 +0.09 -0.21 +0.22 -0.03 

Standard ±0.71 ±0.50 ±0.67 ±0.34 
deviations: ±0.61 ±0.53 

Computation results are summarized in Table 3 where it is shown how 
large deviations resulted at checkpoints of different interpolation networks 
between known and computed ~, 'T/ values which come from unit weights 
and inverse square weighting. Also mean square deviations were calculated 
by these deviations which are characteristic to the accuracy of these two 
methods. 

By reason of these tabulated data it can be stated that the accuracy of 
interpolated values can be increased only by a little by introducing weights. 
In our test area the increase is about 0.08". 

A vectorial picture of values computed by weighting was drawn in 
Figs. 8, 9 and 10 as well. These vectors can either be considered as 
horizontal force components or direct e = V~2 + 'T/ 2 values of deflections 
of the vertical. (The first differs from the second only by a factor of the 
vector g). 

According to our interpretation deflections of the vertical can be con
sidered as vectors when for positive direction of veCtors the direction from 
ellipsoidal zenith towards astronomical zenith is chosen and for length of 
vector the absolute value of e is chosen at the point under question. Hence 
by using an appropriate scale either values of deflection of the vertical or 
horizontal force components can be read from the same figure. 

3.3 Geometry of Interpolation Networks 

Coefficients al and Cl in the case of successive elimination method depend 
only on the network geometry whereas coefficients bl and dl are functions 
of partly the geometrical arrangement of network and partly of AW ~ and 
ATV:z:y second derivatives (VOLGYESI, 1993). In the first place let us exam
ine how standard deviations 
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1 

~" =± [~1. + (t, ak )' ~; + I'~r 
and 

1 

~" = ± [~;. + (t, Ck )' I'~ + I'~r 
will be developed according to different geometrical arrangement of net
works. 

To this end let us compute how much misclosures can be expected by 
elimination method for deflections of the vertical determined according to 
the following three versions: 

- in the first version: when ~ values are fixed, when ~ components at 
both closing points are given and 7J component is given at only one of 
closing points; then parameter u is yielded by the expression 

n-1 n-1 

~~n1 = L aiU + L bi (3) 
i=l i=l 

- in the second version: when'fJ values are fixed, when 7J components at 
both closing points are given and ~ component is given at only one of 
closing points; then parameter U is yielded by the expression 

n-1 n-1 

~7Jnl = L Ci U + L di (4) 
i=l i=l 

- and finally in the third version: when both ~ and 7J values are fixed, 
when both ~ and 'fJ components are given at both closing points and 
parameter u is yielded through the expression 

U= 
(
",n-1 )2 2 (",n_1)2 2 
.L..Ji=l ai f.LEdu~ + .L..Ji=l Ci f.LEb Ury 

( 
n-1 )2 2 (n_1)2 2 

I:i=l ai f.LEd + I:i=l Ci f.LEb 

(5) 

by an adjustment process. 
In the above cases misclosures w~ and Wry of ~ and 7J components of 

deflection of the vertical are defined through the equations 

w~ = ~~nm - ~~~m , 
I 

Wry = fj.7Jnm - ~7Jnm , 

(6) 

(7) 
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where Ll~nm and Ll7Jnm are differences of deflection components at astro
geodetic points n and m; Ll~~m and Ll7J~m denote the sum computed by 
(4) or (3) in the case of fixed ~ or 7J values, respectively. 

Let the error of '2:bi in (3) and (4) be cb and the error of '2:di be cd. 

Then the value of Uo free from error can theoretically be computed from 
(3) through the equation 

n n 

I: aiuo + L bi + cb = ~nm 
i=m i=m 

as 

(8) 

On the other side it comes from (8) and considering (7) yields 

It can be proved (BADEKAS and MUELLER, 1967) that 

where anm denotes azimuth of the line that connects two astrogeodetic 
points, hence 

(9) 

Similarly 

W~ = cd cot anm - cb • (10) 

It comes from expressions (9) and (10) that 

and 

that the closing error Wt; of component ~ is advantageously reduced when 
the anm azimuth of the line connecting initial and endpoint of interpolation 
net\vork approaches 900 or 2700 bl1t it becomes infinitely large as anm 
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Network: "CEGLED 750-2" /azimUlh= 89-53/ 

Fig. 11. 

azimuth approaches 0° or 180°. In the latter case even values of component 
e computed through adjustment (5) are extremely unreliable. (We face a 
completely similar but reversed situation for Wry values and components 
of TJ). 

Computations were performed to test the above statements along a 
chain, which can be seen in Fig. 11 between stations 750 and 2 - where 
the azimuth of the line connecting starting and closing points of the chain 
(very close to 90°), Ct750-2 = 89°38' was altered between the values of 
89°23' and 89°53' by a movement of point 750 by some 10 m in the x 
direction. Computations were carried out in both directions 750 -t 2 and 
2 -t 750 as well with fixed ~nm, fixed TJnm values; and with fixed ~nm and 
TJnm values according to adjustment (5). Misclosure of component TJ with 
fixed ~nm values are very high (Wry = 15.15") in agreement with theoretical 
considerations and also standard deviations of interpolated values are very 
high. Computation results can be studied also in Fig. 12 where it can easily 
be seen that as the azimuth of the fictitious line connecting starting and 
closing points approaches 90° the reliability of interpolation declines much 
(in the case of two fixed ~ at both endpoints and one fixed TJ component at 
only one of endpoints). 

A very similar defect arises for the case Ctnm = 0° (180°) hence our 
test computations for this case have no detailed presentation. 

We have tried to find an answer to the question in our test computa
tions which arrangement of points of interpolation network is optimal so as 
to compute deflections of the vertical of the highest accuracy. To this end 
we compared the accuracies of interpolated values for single and double 
chains, for an arbitrary area and for point distribution by Renner. These 
computations were performed by the program FUGGOORT in each case and 
by weighting discussed in the previous chapter in order to be fully compa
rable. 
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First computations were carried out along single and double chains as 
they can be seen in Figs. 8, 9 and 10. Single chains are: in Fig. 8 between 
astrogeodetic points 1-2 the upper 'A' and the lower chain 'B', in Fig. 9 



64 L. VOLGYESI 

between astrogeodetic points 2-3 the upper 'B' and the lower chain 'A', 
and in Fig. 10 between points 3-1 left side chain 'A' and right side chain 
'B'. Double 'AB' chains are: complete networks in Figs. 8, 9 and 10. 
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Interpolated results of single 'A' and 'B' chains and of double 'AB' 
networks as the combination of these two can be compared in Figs. 13, 14 
and 15. Chains 'A' and 'B' that are side by side to each other contain 
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identical points for which the computation should give theoretically the 
same ~ and 7J values computed either along chains 'A' or 'E'. Interpolated 
values of identical points of neighbouring chains are connected by simple or 
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broken lines in Figs. 13, 14 and 15. It can be seen that interpolated values 
of identical points of chains that are next to each other (simple and dotted 
lines) differ by much in most cases, sometimes the difference exceeds the 
value of 3/1. It can be noted as well the greater the deviations in identical 
points of two neighbouring ('A' and 'B') chains, the more favourable the 
picture is when a combined ('AB') network from two chains is interpolated, 
because these latter lines (denoted in these figures by dashed-dotted lines) , 
run in the midst of the two greatly departed extreme values and in most 
cases they approximate better given ~, Tt values at checkpoints as well. 

Table 4 

chain 'A' chain 'B' common 'AB' 
network point 8~1I 8r7" 8~1/ 8r/1 8~1I 8r7" 

1- 2/AB 27 -0.54 -0.74 -0.22 +0.16 -0.81 +0.11 
2 - 3/AB 13 -0.63 -2.54 +0.70 +0.89 +0.80 +0.58 
3 -1/AB 14 -0.09 -0.58 +0.71 +0.26 +0.22 -0.03 

Standard +0.48 +1.56 +0.59 +0.54 +0.67 +0.34 
deviations: ±0.91 ± 0.53 

Results of computations were summarized also in Table 4. We have 
made a comparison in this Table between computed and known ~, Tt values 
that resulted in various networks at checkpoints. Standard deviations that 
are characteristic to the accuracy of interpolation were also determined 
based on the above differences for different kind of chains. 

It can be deduced from these tabulated data and from Figs. 13, 14 
and 15 that more accurate ~, Tt values can be gained by computing along 
a double chain rather than along single chains. 

It was mentioned previously that test computations were also carried 
out by the interpolation method of Renner. We think proper the report 
on these results here as well because our conclusions on this matter are 
basically related to the network geometry. As the principle of the method 
of Renner requires a square network of 1.5 km length it was applied to 
cover our test area (Fig. 16). It is because there are no torsion balance 
measurements at grid points of this network second derivatives ~ W ~ and 
~ W xy were taken at these points as readings from isoline maps of Figs. 3-6. 
Hence basically a linear interpolation was applied to get second derivatives 
from torsion balance measurement at corner points of the square shaped 
network. (Empty squares were used to indicate such network points in 
Fig. 16 where no torsion balance measurements were made and second 
derivatives were determined by the above process.) As it can be seen 



68 L. VOLGYESI 

l 
I ...• 

. !~. 

~" r-bh 
~.t. 1:::" 
.11 

! I' 

PfJ LIIJ 
LL-ki 
J' ! ' I 

OOOO£=' 



TEST INTERPOLATION 69 

in Fig. 16 the square-shaped network was located so that astrogeodetic 
station 3 is its corner point and 1 and 2 were attached to the network by 
triangles. Control points 13, 14 and 27 are corner points of the square
shaped network so interpolated deflection values can be checked directly. 

This network has 177 points altogether and 174 of these are points 
of unknown deflection values. There are altogether 348 unknowns because 
there are two unknown components of deflection of the vertical at each 
point and 542 equations can be written in all. 

In Fig. 16 e = J~2 + 7]2 deflection of the vertical which resulted from 
the computation was visualized in a vectorial form previously discussed. 
VVe may see in this figure that deflections of the vertical interpolated by 
the method of Renner differ considerably from known values at checkpoints 
drawn as thick line vectors. 

Table 5 

Checking point Renner's method program FUGGOORT 

6e l 6r/, 6~" 6r/, 

27 +2.89 -9.62 -0.69 -0.51 
13 +3.84 -1.24 +0.54 +0.96 
14 +3.95 -0.26 +0.55 +0.29 

Standard ±3.59 ±5.60 ±0.60 ±0:65 
deviations: ±4.70 ±O.62 

Computation results were summarized in Table 5 as well. For the 
moment let us consider only the first part of this table where a comparison 
was made. Large deviations resulted between known ~, 7] values and that 
of computed according to the Renner's method. Standard deviations m~ = 
±3.59" and mT} = ±5.60" unfortunately prove that this method - at least 
in our test area - should not be applied. According to our investigations 
these large standard deviations and the inapplicability of the method under 
discussion are resulted from the following two main sources of error: 

1. The grid distance of the square-shaped interpolation network by Ren
ner is an unvaried value for the whole area. This may cause deep 
problems for areas where grid constant is larger than the maximum 
distance for which the differences of ~ W Ll and ~ Wxy values can be 
treated as linear. The linearity of differences of .6. W Ll and .6. W~y val
ues between two points is but the most important prerequisite takL-L 
as fundamental equations (1) and (2) were obtained through an inte
gral approximation (VOLGYESI, 1993). Such areas in our test field is 
the vicinity of astrogeodetic station 1 where according to Figs. 3 and 
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4 this requirement evidently has not been met. This difficulty is hard 
to overcome because if grid constant reduced in the given area, then 
number of unknowns will increase. 

2. Another source of error is the interpolation of b.. W 6. and b..1Vxy values 
at grid points of the square-shaped network from measurement data 
of neighbouring points because there are no torsion balance measure
ments at these corner points. These interpolated second derivatives .:. 
mainly at such more 'disturbed' sites as the surrounding area of point 
1 - can considerably differ from actual values. 
To eliminate the above mentioned two sources of error it is useful to 

choose torsion balance measurement sites to be points of the interpolation 
network (in more disturbed areas according to the density of torsion bal
ance measurements) with an increased point density and to interpolate an 
arbitrary shaped network instead of a regular square-shaped one. Recently, 
however, by applying modern computer technique there is no need to make 
our computations more simple by using a regular square-shaped grid. 

The interpolation network in Fig. 17 was created to get rid of these 
sources of error. This network has 206 points in all and 203 of these are 
points with unknown deflections. Since there are two unknown components 
of deflection of the vertical at each point there are 406 unknowns for which 
558 equations can be written. In Figs. 18 and 19 ~ and 1] components of 
deflections of the vertical are visualized in isoline maps that resulted from 
the computation. Besides this it was given in the second part of Table 5 how 
large deviations arose with program FUGGOORT at checkpoints between 
computed and known ~,TJ values. Standard deviations m~ = ± 0.60" and 
m1) = ± 0.65" computed from these departures at checkpoints corroborate 
the fact that even for large continuous ~, TJ values of acceptable accuracy 
can he computed where the interpolation network is suitable. 

4. Summary and Conclusions 

A program package for mainly PC and partly for larger computers were 
developed for actual computations which can be used to determine deflec
tions of the vertical by any method of interpolation either along chains or 
in networks covering arbitrary areas, to draw interpolation network and 
vectors of interpolated deflections of the vertical. 

Test computations were performed in the area surrounding CegZed, 
extending over some 1200 km2 and well measured by torsion balance, where 
both topographic conditions and the densities of torsion balance and as
trogeodetic stations reflect average flatland conditions in Hungary; more 
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to this there was a possibility to check calculations because astrogeodetic 
and astrogravimetric data were available. 

During our test computations firstly we made a comparison between 
some practical methods of interpolation. First a conclusion was drawn that 
it is not advantageous to use the traditional Eotvos and Renner method 
because a considerable surplus work is done when 4n - 6 unknown values 
are dealt with instead of the absolutely necessary 2n - 2 ~~ and ~'T7 un
known components of deflection of the vertical at n points of the interpola
tion network. And this affects disadvantageously the accuracy of results in 
large networks since rounding errors are unavoidable to accumulate. Un
favourable observations were gained through the application of successive 
elimination method since it was established that deflections of the vertical 
computed by successive elimination have two times as big errors. Hence it 
is not practical to use this method as well. The most advantageous among 
practical solutions of interpolations are those methods of solution where 
directly ~, 'T7 values are chosen and computed at points instead of ~~, ~'T7 

differences of deflection components between two points. In our test com
putations we gained the most favourable experiences through the practical 
application of matrix orthogonalization process. 

An answer was searched for during our tests to the question whether 
the accuracy of interpolated deflections of the vertical can be improved 
by using appropriate weights. By the analysis of our calculations it can 
be established that the accuracy of interpolated values slightly increases 
when the observations, which are based on torsion balance measurements, 
are provided with a weighting inverse to the square of distance between 
interpolation points. The accuracy of interpolated values in our test area 
was improved by a value of 0.08" when the above weighting was applied. 

We intended also to determine the optimal geometrical arrangement 
of interpolation networks and it was treated as one of the most important 
problems. The results of our test computations have shown that the worst 
geometrical arrangement is to create simple chains between astrogeodetic 
points. It is extremely disadvantageous when successive elimination is used 
to create simple chains where the azimuth of the line connecting the start
ing and closing points of the chain is close to 0° (180°) or 90° (270°). Near
est interpolated values to known deflections of the vertical at checkpoints 
were obtained when the computation was performed along double chains. 
In this case the standard deviation ±0.53" of interpolated deflections of the 
vertical was yielded from known deflections at checkpoints. The worst re
sults were provided by the geometrical arrangement of Renner between in
terpolation points in our test area. There were two major reasons for this 
as our investigations have shown. First, the same grid constant should not 
be used for all parts of the area since thus differences of ~ W ~ and ~ W xy 
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between neighbouring points will not even approximately remain linear in 
more 'disturbed' areas. Second, torsion balance measurement data must 
be interpolated for points of the square grid hence values so determined 
- especially in more 'disturbed' areas - can deviate considerably from ac
tual values. To eliminate these two error sources it is useful to choose tor
sion balance measurement sites to be points of the interpolation network 
(in more disturbed areas according to the density of torsion balance mea': 
surements) with an increased point density and to interpolate an arbitrary 
shaped network instead of a regular square-shaped one. Standard devia
tions m~ = ±O.60" and m1} = ±O.65" computed from deviations at check
points in such a network in our test area confirm the fact that even for 
large continuous areas ~, 7J values of acceptable accuracy can be determined 
where the geometrical arrangement of interpolation network is suitable. 

If in some area of Hungary which was surveyed by torsion balance 
there were astrogeodetic points available with an increased density of points 
in the future it would be also important to test the optimal density of 
astrogeodetic points of restraint for interpolation, that is whether it is 
possible to decrease errors of interpolated deflections of the vertical by 
increasing number of astrogeodetic points. 
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