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Abstract

Throughout their lifespan, reinforced concrete buildings may encounter many challenging circumstances, such as exposure to 

chloride ions. Exposure to the elements, particularly in coastal areas, may lead to a decrease in durability and degradation of concrete 

structures. Artificial intelligence (AI) may be utilized to create models that accurately predict the chloride diffusion coefficient (CD) of 

non-steady state concrete over a long duration by analyzing experimental field data. This approach has the potential to boost the 

evaluation of the durability of a certain building structure by highlighting the most significant factors. This work showcases the use of 

the support vector regression (SVR), multi-layered perceptron (MLP), and random forests (RF) for predicting the DC of concrete under 

different exposure conditions. The fire hawk optimization algorithm (FHOA) approach was employed to improve prediction models 

that were trained on a dataset consisting of 216 data points. The findings indicate that the RFFHOA, MLPFHOA and SVRFHOA models have 

significant promise in properly forecasting the CD of concrete under different exposure situations while maintaining acceptable R2 

values. The results suggest that RFFHOA, MLPFHOA and SVRFHOA may reliably predict specific CD values in various exposure situations. 

The RFFHOA attained R2 values of 0.9951 throughout training and 0.9971 throughout testing. In detail, MLPFHOA had a R2 value of 0.9659 

throughout training and 0.9756 throughout testing. The R2 value for SVRFHOA's test stage is 0.9835, whereas the training stage is 0.9659. 
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1 Introduction
Reinforced concrete (RC) is widely used in infrastruc-
ture because of its cost-effectiveness and durability [1]. 
Chloride-induced damage may significantly impact RC 
structures, especially those in coastal, marine, and off-
shore locations, resulting in costly repairs. Once chloride 
reaches a certain percentage in concrete, it de-passivates 
the reinforcing steel, causing corrosion imitation. Chloride 
infiltration might potentially cause rapid structural col-
lapse [2]. Understanding the penetration level of chlorides 
in concrete is crucial for extending the endurance and ser-
vice life of buildings and developing appropriate rehabili-
tation strategies. It is challenging to estimate the diffusion 
coefficient or chloride penetration in concrete for every 
project owing to time and budget constraints [3]. Several 
investigations have estimated chloride penetration utiliz-
ing Fick's second rule, as given in Eq. (1) [4]:
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Where C(x, t) represents chloride concentration at depth x 
and time t, and D represents diffusion coefficient. Standard 
formulas may overlook important factors and provide false 
forecasts due to the complexity and time-dependent nature 
of chloride intrusion [5]. Utilizing mineral compounds, 
including fly ash (F), ground granulated blast furnace slag 
(GGBS), and silica fume (SF) may significantly lower the 
rate of diffusion and stop reinforcement corrosion, accord-
ing to a number of empirical investigations [6, 7]. Using 
pozzolanic materials may prevent hostile species from 
breaching the steel-concrete contact by reducing porosity 
and limiting chloride ion motion [8, 9]. To avoid longitudi-
nal empirical testing, an appropriate forecast model for D 
must be developed utilizing powerful computational tools 
and including the above phenomena.

Traditional approaches for determining the association 
among variables rely on statistical analysis using linear 
and non-linear regression formulas [10, 11]. Regression 
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models are not dependable because they are limited by 
pre-defined linear or non-linear equations binding the 
issue to the model [12, 13]. Additionally, these models' 
assumptions and extensive function range for curve fitting 
might lead to inaccurate forecasts, especially for com-
plex datasets [14, 15]. Complicated engineering events are 
modeled using machine learning (ML) approaches accord-
ing to natural tools to address these difficulties [16–19]. 
Precise and trustworthy ML methods are genetic pro-
gramming, gene expression programming, and artificial 
neural networks (ANN). These methods primarily con-
struct models by training on available data. These meth-
ods' ability to recognize patterns may lead to an easy way 
to comprehend engineering patterns [20]. ANN clearly 
has advantages due to: 

1. It learns from examples, generating input-output 
correlations from data, and eliminates the need for 
scholars to choose the suitable regression formula. 

2. It can simulate complicated procedures and integrate 
outliers, enabling wider applicability [21]. 

ANN is a great tool for tackling complicated engineer-
ing issues with many parameters because to its capabilities.

Recent research has focused on using ANN methods 
to forecast mechanical qualities [22] and design concrete 
blend proportions. Some researchers have modeled the 
endurance qualities of concrete owing to its heterogeneity 
and complexity. High-performance concrete (HPC) chlo-
ride ion permeability was simulated by Parichatprecha and 
Nimityongskul [23], Song and Kwon [24], and Hodhod and 
Ahmed [25] utilizing 86, 120, and 300 datasets, accord-
ingly, and input factors pertaining to concrete blend pro-
portions. Evaluation of model efficiency involves com-
paring findings to empirical values and using regression 
analysis. To enhance the performance of neural network 
models, it is advised to include a large and quantitative 
dataset, since the proposed models obtained excellent pre-
cision [24]. According to the empirical outcomes, an exper-
imental model employing a neural network approach was 
developed to forecast the chloride permeability of concrete 
containing ground pozzolans as a function of 6 input vari-
ables (i.e., water to binder ratio, percent replacement, test-
ing ages, pozzolans type, aggregate to cement ratio), with a 
correlation coefficient (R) as high as 0.97 [26]. In their work, 
Najimi et al. [3] used an ANN model and artificial bee col-
ony algorithm (ABC) to forecast fast chloride ion perme-
ability using blend variables. This research found a strong 
link and found that neural network models outperformed 
regression and genetic methods. Several investigations 

have associated blend characteristics with chloride diffu-
sion coefficient in carbonated or non-carbonated concretes 
in steady or non-steady states [27]. Boğa et al. [28] mod-
elled concrete chloride ion permeability using the ANN 
and adaptive neuro-fuzzy inference system (ANFIS). With 
the input variables of cure type, curing duration, GGBS, 
and corrosion inhibitor, the research attained a precision 
level of 73%. Whereas Hoang et al. [29] employed mortar 
age, depth of measured position, diffusion dimension, and 
presence of reinforcement as the input to model chloride 
penetration of concrete mortar employing ANN approach, 
Asghshahr et al. [30] took environmental conditions, pene-
tration depth, water-to-cementitious material ratio, and SF 
mass into consideration. The three investigations exam-
ined empirical outcomes from 54, 162, and 132 datapoints, 
but did not account for potential factors like concrete blend 
proportion, age, or environment, leading to low precision 
and generalization capability [12]. 

The models from literature used two innovative types of 
ensembles artificial intelligence (AI) methods, genetic pro-
gramming forest (GPF) and linear genetic programming for-
est (LGPF) methodologies, to mimic the chloride diffusion 
coefficient (CD) of concrete. As a result of the investiga-
tion, actual field data were gathered. As the control ensem-
ble methodology, the random forests (RF) technique was 
used for comparison. The highest-performing LGPF model 
outperforms even the most sophisticated GPF and RF mod-
els. Findings show that the percentage of silica particles in 
the binder, exposure time, and circumstances most affect 
concrete endurance [31]. The ANN developed 4 meta-
heuristic optimization algorithms that rely on marine crea-
tures: the whale optimization algorithm (WOA), the marine 
predator's algorithm (MPA), and the jellyfish search opti-
mizer (JSO). The offered methods were used to mimic con-
crete's CD under atmospheric, tidal, impact, and submerged 
circumstances. The research included 216 field trial data 
points. Findings show that simpler synthesized approaches 
outperform the old strategy. The Wilcoxon rank-sum test 
shows that ANN-JSO outperforms other ANN methods. 
Additionally, the mean ANN-MPA, artificial neural net-
works salp swam algorithm (ANN-SSA), and ANN-WOA 
test results stay unaltered [32]. Research offered several 
ML techniques to estimate the chloride diffusion coeffi-
cient of concrete with supplementary cementitious materi-
als (SCMs) like SF, ground granulated blast furnace slag, 
and fly ash. A database was established, consisting of nine 
input parameters. Eight ML models were assessed, includ-
ing Support Vector Machine (SVM), Extreme Learning 
Machine (ELM), K-Nearest Neighbours (KNN), Light 
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Gradient Boosting (LGB), Extreme Gradient Boosting 
(EGB), RF, Gradient Boosting (GB), and AdaBoost (AB). 
Gradient Boosting predicted the chloride diffusion coeffi-
cient best. Choose the finest ML method Gradient Boosting 
helped establish a reliable soft computing method for con-
crete structure endurance design, such as mix design opti-
mization and binder selection [33]. 

1.1 The study contribution and structure
Due to the intricate nature of forecasting the CD of con-
crete, which exhibits time-dependent behavior, standard 
models relying on short-term empirical studies suffer from 
several limitations. Several objections of the rapid chloride 
penetration test (RCPT) include the fact that it assesses flow 
prior to attaining a stable migration state, elevates the sam-
ple's temperature due to high voltage, and evaluates flow 
for all ions rather than only chloride ions. Conducting lon-
gitudinal field testing on the CD of concrete requires a sig-
nificant investment of both time and financial resources. 
This topic emphasizes the significance of the findings 
derived from extensive and thorough field studies on the 
durability and crack resistance of concrete carried out over 
an extended period of time. To enhance the understanding 
of the CD of concrete in real-world scenarios and provide 
more dependable results, merging the outcomes of these 
significant studies and utilizing AI methods to evaluate the 
collected data as a comprehensive database is proposed. 
The present study compiled a comprehensive database of 
longitudinal investigations on the CD of concrete in mar-
itime environments, employing data from prior research. 
The CD of concrete is then characterized using support 
vector regression (SVR), multi-layered perceptron (MLP), 
and RF models, which are constructed and compared 
with existing models to assess their effectiveness. In this 

work, the SVR, MLP, and RF models are improved utiliz-
ing a proven optimization approach called fire hawk opti-
mization algorithm (FHOA). When estimating the CD of 
concrete, several significant factors are taken into account. 
These include the water-to-binder ratio, the ratio of coarse 
aggregate to total aggregate, the ratio of SF to binder, the 
ratio of superplasticizer to binder, the curing process, the 
exposure duration, and the exposure condition. This study 
makes a valuable contribution to the field of civil engineer-
ing by proposing a novel model for the coefficient of dif-
fusion of concrete, denoted as CD. This tool facilitates the 
evaluation of the resilience of concrete buildings.

In the first section, the background information on the topic 
was addressed, the significance of the study was explained, 
and the objectives and scope of the research was scruti-
nized. Also, the existing literature and related studies were 
reviewed. Secondly, the steps related to data pre-processing 
were discussed. Next, the base description of the considered 
algorithms was accomplished such as training algorithms, 
and hyperparameter tuning. In the next step, the results of 
developed models discussed and compared with each other. 
Finally, the summary of key findings was discussed. 

2 Methodology
2.1 Applied models and optimization algorithm
2.1.1 Fire hawk optimization algorithm (FHOA)
It has been presented FHO as one of the novel metaheuris-
tic methods [34]. This method is inspired by the hawk's 
manner of pursuing a hunt by dispersing flames around 
the hunting area (Fig. 1). To build a tiny fire, the hawk will 
take a flaming stick and drop it somewhere else that has 
not burnt. The prey is scared off by this little fire and is 
forced to run away quickly and anxiously, making it easier 
for the hawk to grab them. 

Fig. 1 Fire hawk model search space schematic
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Initialization is the first step in the FHO process. 
The initial definition of a number of possible answers (X) 
is the location vectors of the fire hawk and its target. These 
vectors' starting locations in space are determined by an 
arbitrary initialization procedure. The location vectors are 
expressed as in Eqs. (2) and (3).
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The ith answer candidate in the search area is represented 
by Xi , where d is the dimension of the issue being consid-
ered. The total number of candidates for solutions in the 
search space is N; X i

j 0� �  denotes the answer candidate's 
starting location. The ith answer candidate's jth decision 
parameter is denoted by X i

j . The ith answer candidate's jth 
decision parameter has minimum and maximum bounds 
denoted by X i

j
,min

 and X i
j
,max

, whereas rand is a uniformly 
distributed arbitrary integer in the interval [0,1].

The subsequent phase is to evaluate the target function 
for the candidate answer while taking into account the 
chosen optimization issue as expressed in Eqs. (4) and (5) 
in order to pinpoint the fire hawk's position in the region. 
where PRk represents the kth prey in the search area tak-
ing into account the total number of m prey, and FH1 rep-
resents the 1st fire hawk taking into account the total num-
ber of n fire hawks in the search area.
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The fire hawk's target's interval from it is computed in 
the subsequent stage. Equation (6) calculates the total inter-
val that the fire hawk must travel to reach its target victim. 
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Where the fire hawk and prey's locations in the search area 
are represented by ( x1 , y1 ) and ( x2 , y2 ). The variables m 
and n represent the total number of prey and fire hawks 
in the search area, respectively, and DK

I  denotes the 
entire interval between the first fire hawk and the kth prey. 
Equation (7) illustrates the location modification process 
in the FHO primary search loop, which is the subsequent 
stage of the method.

FH I IFH r GB r FH I nnew

near
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1 2
1 2, , , ,  (7)

Where GB represents the worldwide greatest answer in the 
search area regarded as the primary fire, and FH I

new  is the 
updated location vector of the 1st fire hawk (FHI). The other 
fire hawk in the search area is called , and the uniformly 
distributed arbitrary integers r1 and r2 in the range of (0,1) 
are used to calculate the fire hawk's movement in the direc-
tion of the primary fire and the other fire hawk territories.

The movement of the hunt inside every fire hawk area 
is taken into consideration as a crucial component of ani-
mal manner for the location update procedure in the sub-
sequent phase of the method. Equation (8) may be used to 
take this action into account throughout the location mod-
ification procedure.
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To ascertain the prey's progress in the direction of the 
fire hawk and the safe spot, r3 and r4 are uniformly distrib-
uted arbitrary integers in the range of (0,1). SPI represents 
the safe spot under the fire hawk realm. Whereas PRq

new  is 
the 1st fire hawk's (FHI) new position vector around the qth 
prey (PRq). In the area of search that is thought to be the 
primary fire, GB provides the finest option.

Furthermore, the prey may attempt to flee to a safer area 
out of the fire hawk zone where they are caught, or they may 
migrate toward another fire hawk zone. It is also conceivable 
for the hunt to approach the fire hawk nearer to the ambush. 
Equation (9) may be used to take these changes into account 
throughout the location modification procedure (Fig. 2).
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In the search area, where FHAlter is one of the other 
fire hawks. The 1st fire hawk (FHI) is encircling the new 
location vector of the qth prey (PRq), which is PRq

new . 
SP is a secure location out of the Ith fire hawk's domain. 
To ascertain the motion of hunt towards other fire hawks 
and secure locations beyond the region, r5 and r6 are uni-
formly distributed arbitrary values in an interval of (0,1). 

Equations (10) and (11) illustrate SPI and SP mathemat-
ically. This is according to the observation that most ani-
mals gather in secure locations when they are in threat in 
order to keep their health and safety.
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PRK represents the kth prey in the search area, while PRq 
represents the qth prey encircled by the Ith fire hawk (FHI).

2.1.2 Random forests (RF) regression
In ensemble learning, RF is a bagging method. Breiman [35] 
integrated decision trees into an RF, which is a large number 
of decision trees produced by randomly selecting parame-
ters (columns) and data (rows). Subsequently, the decision 

tree outcomes were combined, leading to a significant 
improvement in the RF's forecast precision while maintain-
ing the same computation expense. The Bagging method 
and the decision tree make up the RF. The following is the 
bagging method procedure: By using the bootstrapping 
technique, k training samples are chosen at random from 
the initial sample collection of n samples. Novel training 
collections are then created by sampling k times without 
replacing any samples (k training collections are inde-
pendent of one another, and components may be reused). 
The following describes the percentage of the novel train-
ing set that comprises samples from the original sample set:

x
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Out-of-bag forecasters (OOB) are samples from the 
original sample set that are absent from the novel training 
set. They are used to assess how well the decision trees 
produced by the novel training set function. The creation 
of decision trees is assessed using Eq. (14). 
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Fig. 2 Fire hawk position updating
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Where hv represents the anticipated value of the decision 
tree's terminal leaf node, hu represents the result value of 
the uth sample in the data set, and M represents the total of 
the decision tree's squared errors.

K decision trees are created for each of the k training 
sets, and the outcome T is merged by taking the average of 
each of the k decision trees' outcomes ( T1 , T2 , …, Tk ); each 
decision tree has the same weight.

T
k

T T Tk� � ���� ��1 1 2
 (15)

2.1.3 Support vector regression (SVR)
SVM is a type of particular method that is able to be 
utilized to handle regression and classification issues. 
A hyperplane with the largest margin in the feature area 
serves as their fundamental model. The research goal 
of SVR, taking into account the provided train dataset 
{( x1 , y1 ), …, ( xn , yn )}, is to discover a function indicat-
ing the connection between x and y, and the function may 
obtain the matching predicted value when a novel x is pro-
vided. Equation (16) represents this function.

f x w x b
i

n
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�
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1

 (16)

Where the SVR's ultimate research objectives are w and 
b, which determine a linear hyperplane that is able to 
match the training dataset. When the connection between 
x and y is non-linear, the non-linear mapping φ(x) trans-
fers x to a novel area. The link between φ(x) and y in the 
novel area is linear.

In Eq. (17), where Lε is referred to as the ε-insensitive 
loss function given by Drucker et al. [36], the anticipated 
risk may be characterized as the objective of SVR, which 
is to reduce it. In Eq. (18), Lε is determined.
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In order to lessen the predicted risk utilizing an ε-insen-
sitive loss, SVR executes linear regression in the feature 
area. At the same time, it attempts to simplify the model by 
reducing w2 . Equation (19), in which � �i i i n, , ,

* � �� �1  
represent the non-negative slack parameters, which may 
be used to actualize this. These parameters indicate the 
difference between the training dataset's function f(x) and 
the true value.
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This optimization issue may be converted into a dual 
issue, and the dual issue's answer is provided by Eq. (20), 
where ai

* , ai represent the Lagrange multipliers, which 
are able to be obtained by addressing the dual issue and 
K( xi , xj ) represents the kernel function, which is equiv-
alent to the inner product of φ( xi ) and φ( xj ). As the ker-
nel function, every function that fulfills Mercer's require-
ment [37] is acceptable.
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The sigmoid kernel function, radial basis kernel func-
tion, and polynomial kernel function are the three most 
often utilized kernel functions. The radial basis kernel 
function, which is denoted by Eq. (21), is used in this study. 
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Where γ represents a manually adjustable variable, anal-
ogous to ε and C in Eq. (20), all of that has a significant 
impact on the SVR's predicting precision. 

2.1.4 Multi-layered perceptron (MLP)
One of the most often used neural network models is 
back-propagation, which is a multilayer feed-forward in 
ANN. The back-propagation makes use of gradient reduc-
tion and average square fault to modify the link weight of 
the minimal fault total of squares. As a training sample for 
the network in this approach, certain calculated values are 
provided. The link weights' starting values are then sup-
plied [38]. The difference between calculated values and 
predicted values is back-propagated across the network to 
update weights. After the supervised learning technique, 
the difference between the predicted and calculated values 
will be reduced. The network of the non-linear model is 
organized into three levels: back-propagation and feed-for-
ward. Input level, neurons' concealed level with non-linear 
transfer functions, and neurons' outcome level with lin-
ear transfer functions make up the layout of this network. 
The input parameters are presented by xj( j = 1, 2, …, n), 
the neurons' outcome in the concealed levels indicated by 
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zi(i = 1, 2, …, m), and the neural network's result is pre-
sented by yt(t = 1, 2, …, l). 

By providing enough input data, neural networks may 
generate any kind of pattern. In order to match the inputs 
and objectives, the network will be trained using an appro-
priate approach, such as Levenberg-Marquardt back-prop-
agation. Two crucial stages may be implemented through-
out the training procedure to update the values of the 
weights. The concealed level is the initial stage and the 
following function in Eqs. (22) and (23) illustrate how to 
calculate the concealed level for entire neuronal results. 
neti represents the ith node's activation value, zi includes 
the concealed level's result, and fH shows the activation 
function, which, in this instance, is a sigmoid function.

net i ji j i
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The result, or second stage, in which the whole neurons 
in the outcome level's result is shown using the function 
in Eq. (25).
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Here, a line function is indicated by ft(t = 1, 2, …, l). 
Using learning samples, the delta rule minimizes the 
weights that are established using predicted values. 

2.2 Collected data pre-processing
Preparing raw data for further analysis or modeling is the 
goal of pre-processing in data analysis and ML. In order 
to ensure that algorithms are able to make good use of 
the data, pre-processing entails a series of procedures that 
involve cleaning, transforming, and organizing the data. 
The procedures for dealing with missing values, noisy 
data, and outliers were carried out in the first stage. After 
that, the dataset was standardized by selectively short-
ening the aforementioned data. After this, the sensitiv-
ity analysis was carried out to select features based on 
the literature, which included selecting the characteris-
tics that were the most relevant to the problem at hand. 
In addition, the dataset obtained from various sources 
was meticulously merged and divided into two distinct 
stages for learning and evaluation. The distribution of 
the data in both phases was randomized, ensuring that 

all ranges of each characteristic were included. The data-
set used for estimating the CD of concrete in the mod-
els consisted of 216 rows of data, representing different 
exposure situations [39–49]. The dataset was split into 
10 equal-sized subsets (or folds). 10-fold was typically 
chosen when the dataset is moderately sized, providing 
a good balance between bias and variance. In this study, 
the observations were split into two stages: the training 
stage, which comprised 70% of the data (150 recordings), 
and the testing stage, which comprised 30% of the data 
(66 recordings). These proportions are based on the lit-
erature and would be considered for data dividing, along 
with 70/30, 75/25, 80/20, and 90/10. For 3 to 60 months, 
the concrete examples were exposed to a variety of air, 
splash, tidal, and submerged environments. The water-
to-binder ratio (W/B), coarse aggregate to total aggre-
gate (CAG/TAG), silica fume-to-binder ratio (SF/B), 
superplasticizer to binder ratio (SP/B), curing mechanism 
(CM), exposure time (ET), and exposure condition (EC) 
are the non-dimension form of the dataset that was intro-
duced for development. CM = X + 0.01Z is the formula 
for CM, where X and Z stand for the curing method and 
period (in days), respectively. For curing circumstances 
of air-curing, humid-curing, water-curing, and 95% 
humidity-curing, X takes on values of 1, 2, 3, and 4, corre-
spondingly. For both the training and testing sets of char-
acteristics, Table 1 shows their statistical qualities. Fig. 3 
shows the scatter and box plots of input traits against the 
target. The scatter plot will allow the reader to visually 
assess how strongly the input traits relate to the target 
(e.g., whether linear or non-linear patterns exist). Also, 
the box plot will offer insights into the distribution of 
these traits and whether any outliers may affect the rela-
tionship between input traits and the target.

2.3 Performance evaluators
To assess the effectiveness of the RFFHOA, MLPFHOA and 
SVRFHOA models and facilitate comparison, eight effi-
ciency factors were taken into consideration. The coef-
ficient of determination (R2), the root mean square error 
(RMSE), the mean absolute error (MAE), the relative 
absolute error (RAE), root relative square error (RRSE), 
normalized mean square error (NMSE), Theil inequality 
coefficient (TIC), agreement of forecasting results (IA) are 
the indices that are being taken into consideration. 
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Table 1 Characteristics of the chosen input variables

Subset
Index

Minimum Maximum Standard deviation Variance Average Skewness Kurtosis

Input 1: W/B

Train phase 0.3 0.5 0.0681 0.00464 0.431 −0.397 −1.206

Test phase 0.3 0.5 0.0631 0.00398 0.428 −0.201 −1.1964

Input 2: CAG/TAG

Train phase 0.51 0.65 0.0316 0.001 0.554 1.8188 3.739

Test phase 0.51 0.65 0.0255 0.00065 0.552 2.43 7.887

Input 3: SF/B

Train phase 0 0.143 0.046 0.0021 0.0459 0.355 −1.283

Test phase 0 0.143 0.0481 0.0023 0.0445 0.41 −1.4043

Input 4: SP/B

Train phase 0 2.4 0.692 0.4791 0.609 1.306 0.899

Test phase 0 2.4 0.5486 0.301 0.4301 2.3038 5.9377

Input 5: CM

Train phase 2.07 3.28 0.444 0.1975 2.968 −1.382 0.2836

Test phase 2.07 3.28 0.4129 0.1705 3.0101 −1.648 1.352

Input 6: ET (Days)

Train phase 3 60 18.6314 347.129 19.81 0.8713 −0.533

Test phase 3 84 20.02 400.74 19.67 1.185 0.5944

Input 7: Exposure type (Count)

EC Tidal (T) Splash (SP) Atmosphere (A) Submerged (SU)

Train phase 84 32 21 11

Test phase 30 22 9 5

Target: CD

Train phase 0.21 27.55 4.552 20.722 3.667 2.373 6.8196

Test phase 0.21 21.79 4.2584 18.1346 3.4839 2.484 7.339
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Fig. 3 The chosen input variables vs. target
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The formulas include the parameters md , m̄ , zd , and 
z̄ , which represent the observed values, the mean of the 
observed values, the simulated values, and the mean of the 
simulated values, respectively. Furthermore, D represents 
the overall quantity of datasets.

3 Results and discussions
3.1 The procedure of FHOA-based models
Data preparation, simulated training, and hyperparame-
ter tweaking are essential steps in constructing RFFHOA, 
MLPFHOA and SVRFHOA models. The FHOA method may 
successfully identify the optimal hyperparameters to 
improve simulation efficiency. Table 2 shows the parame-
ters related to the procedure of FHOA-based models.

Cleaning and preparation of the incoming dataset 
involved encoding category features and fixing missing 
values. In order to assess the procedure's efficacy, the data 
set was split up into many classes for training and testing. 
It was found that a few hyperparameters required adjusting. 
The conventional hyperparameters for SVR are c, ε, and γ, 
for RF are ne , maxd , and maxf , and for MLP are neurons in 
the first, second, and third hidden layers. Next, one target 
metric that could be used as a productivity indicator was the 
RMSE function, which could be optimized or minimized 
based on a particular set of hyperparameters. Moreover, the 
FHOA was used to determine the ideal configuration of the 
hyperparameters. Utilizing the entire training dataset and 
the identified ideal hyperparameters, the RFFHOA, MLPFHOA 
and SVRFHOA models were built. Finally, the accuracy and 
reliability were assessed using the test process. 

3.2 Discussion
This study aims to evaluate the effectiveness of the RFFHOA, 
MLPFHOA and SVRFHOA techniques in determining the CD 
of concrete. Fig. 4 displays the observed and expected 
amounts of concrete CD under various exposure conditions 
via the testing and training stages of the recommended 
RFFHOA, MLPFHOA and SVRFHOA procedures. Moreover, 
the error ratio is also presented for the training and test 
stages with the aim of residual presentation. The preci-
sion of RFFHOA, MLPFHOA and SVRFHOA in predicting CD 
was evaluated using the metrics R2, RMSE, MAE, RAE, 
RRSE, NMSE, IA, and TIC, as shown in Table 3. In addi-
tion, this research evaluated the outcomes of the devel-
oped models with the most related research to evaluate the 
dependability and effectiveness of the models [50, 51]. 

The results suggest that RFFHOA, MLPFHOA and SVRFHOA 
have significant promise in properly forecasting the CD 
of concrete under different exposure situations. During 
the training stage, RFFHOA achieved R2 value of 0.9951, 
and during the testing stage, it achieved a value of 0.9971. 
To be more specific, MLPFHOA received a R2 value of 0.9659 
during the training phase and 0.9756 during the testing 
phase. SVRFHOA's testing phase has a R2 value of 0.9835, 
whereas the training phase's value was 0.9659. It is neces-
sary to thoroughly evaluate the effectiveness of auxiliary 
measures such as NMSE, RAE, RRSE, MAE, TIC, and IA 
for this particular purpose. The lowest values were shown by 
the RFFHOA model for the error-based metrics RMSE, RRSE, 
and RAE. These numbers were more than 50% lower than 
those of the MLPFHOA and SVRFHOA. For instance, RFFHOA 

Table 2 The parameters related to the procedure of FHOA-based models

Optimization Initialization Value Coupled models Parameter Optimal value

FHOA

Parameter free RFFHOA ne 186

Iterations 200 maxd 126

Runs 10 maxf 102

Populations 50 MLPFHOA Function Back-propagation

Neurons in the input layer 7

Hidden layers 3

Neurons in the first hidden layer 20

Neurons in the second hidden layer 20

Neurons in the third hidden layer 10

Neurons in the output layer 1

SVRFHOA C 193

ε 2.21

σ 8.32

Function RBF
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Fig. 4 The FHOA-based models' findings: (a) scatter plots, and (b) ratio plots

(a) (b)

had the lowest value throughout the training stage (0.113) 
based on the MAE index, which was lower than the scores of 
0.354 for MLPFHOA and 0.3028 for SVRFHOA. Furthermore, 
RFFHOA displays the lowest value at 0.0661 throughout the 
testing stage according to MAE values, which was smaller 

than MLPFHOA value at 0.3373 and SVRFHOA value at 0.2736. 
Fig. 4 displays the performance of the RFFHOA, MLPFHOA 

and SVRFHOA networks by presenting the error ratio among 
anticipated and observed values. The analysis encompasses 
both the training and evaluation phases. A greater frequency 
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of errors near the 1 line and narrower distribution plots 
indicates greater precision and more pleasing outcomes. 
The RFFHOA framework displays a substantially focused 
error distribution with confined upper and lower limits, 
with the majority of cases clustered around the 1 line.

As previously mentioned, [50, 51], the results of the 
superior model (RFFHOA) in the present study are compared 
with the research literature. To facilitate comparative 
analysis, the R2 and RMSE measures were utilized. It is 
clear that the R2 values increased in the learning and eval-
uation sections, going from 0.9033 [51] and 0.8815 [51] to 
0.9951 and 0.9971, accordingly. This clearly demonstrates 
the expansion. The recent findings from a study [50], con-
ducted throughout the All-data phase show a significant 
improvement in performance. The R2 value increased 
from 0.9495 to 0.9685 in RFFHOA, from 0.9495 to 0.9955 
in MLPFHOA, and from 0.9495 to 0.9768 in SVRFHOA. 
Additionally, the RMSE value decreased from 1.033 to 
0.7972 in RFFHOA, from 1.033 to 0.3008 in MLPFHOA, and 
from 1.033 to 0.685 in SVRFHOA.

Hybrid RF model is generally easier to interpret. Feature 
importance can be easily extracted, allowing insights into 
which variables contribute most to predictions. Neural 
networks, especially deep ones, are often seen as black-
box models, making it difficult to interpret individual fea-
ture contributions. Next, due to its ensemble nature, RF is 
less prone to overfitting, as it averages the results across 
many trees, reducing variance. While ANNs can overfit if 
not properly regularized, especially when the network is 

deep or when the dataset is small. Moreover, RF is more 
robust to outliers and noise in the data. Since it builds mul-
tiple trees, it can ignore outliers or noise in some trees, 
reducing the impact on the overall model. In contrast, 
ANNs can be sensitive to noise and outliers, especially if 
they are not properly handled in pre-processing.

3.3 Parameters' importance analysis
During this investigation, sensitivity analysis is employed 
to assess the influence of input variables or factors on per-
formance. Model sensitivity assessments give a methodical 
approach to comprehending the impact of input variables 
and factors on the model's performance. The objective of 
this endeavor is to enhance the process of making deci-
sions, comprehension, and the optimization of models. 
In this work, each of the built models was enhanced with 
a distinct set of input variables, thereby creating the aug-
mented model (RFFHOA). In order to analyze the impact 
of various inputs, three metrics were developed and com-
pared with RFFHOA: R2, IA, and TIC. The results of this 
comparison are shown in Table 4. The disparity in met-
rics will escalate in direct correlation to the extent that 
the absence of components impacts the outcome. The find-
ings suggest that the bulk of the input elements have lit-
tle impact on the outcome when compared to the RFFHOA. 
It is important to mention that there is a significant rise in 
the TIC, and a significant fall in the R2 and IA value when 
parameters associated with ET and EC are eliminated 
from the input set. After deleting the EC, the R2 and IA 

Table 3 The FHOA-based models' findings

FHOA-based models
Performance evaluators

R2 RMSE MAE RAE RRSE NMSE IA TIC

Training data collection

MLPFHOA 0.9659 0.847 0.354 0.112 0.186 0.0107 0.9909 0.0735

RFFHOA 0.9951 0.321 0.113 0.036 0.071 0.0020 0.9987 0.0276

SVRFHOA 0.9744 0.7366 0.3028 0.0958 0.1618 0.0079 0.9932 0.0638

ANN-JSO [50] 0.9033

Testing data collection

MLPFHOA 0.9756 0.6702 0.3373 0.1153 0.1574 0.0185 0.9936 0.0611

RFFHOA 0.9971 0.2478 0.0661 0.0226 0.0582 0.0008 0.9992 0.0224

SVRFHOA 0.9835 0.5502 0.2736 0.0936 0.1292 0.0131 0.9958 0.05

ANN-JSO [50] 0.8815

All data collection

RFFHOA 0.9685 0.7972

MLPFHOA 0.9955 0.3008

SVRFHOA 0.9768 0.685

LGPF [49] 0.9495 1.033
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Table 4 The parameters' importance analysis using RFFHOA

Removed 
attribute
(All variables: 
W/B,  
CAG/TAG, 
SF/B, SP/B, 
CM, ET, EC)

Training data collection Testing data collection

R2 IA TIC R2 IA TIC

– 0.995 0.998 0.027 0.997 0.999 0.022

W/B 0.979 0.995 0.057 0.971 0.992 0.066

CAG/TAG 0.995 0.999 0.028 0.997 0.999 0.022

SF/B 0.968 0.992 0.071 0.959 0.989 0.078

SP/B 0.978 0.994 0.059 0.976 0.993 0.063

CM 0.950 0.985 0.093 0.932 0.979 0.109

ET 0.861 0.962 0.148 0.776 0.932 0.189

EC 0.8533 0.959 0.152 0.8547 0.9585 0.153

values declined from 0.9959 to 0.8558 and 0.9987 to 0.959, 
respectively. Additionally, the TIC value rose from 0.0276 
to 0.152 during the learning phase. In addition, when 
the ET was eliminated, the R2 and IA values decreased 
from 0.9971 to 0.776 and 0.9992 to 0.9329, respectively. 
Conversely, the TIC value grew from 0.0224 to 0.1898 
throughout the evaluation stage. 

4 Conclusions
The researchers developed a technique that integrates 
interconnected SVR, MLP, and RF regression to create 
models that can accurately forecast the diffusion coeffi-
cient (CD) of concrete under different exposure situa-
tions. The present study utilized the FHOA techniques 
to discover crucial variables in the MLP, SVR, and RF 
approaches that might be improved. The study inves-
tigates and contrasts the statistical metrics utilized to 
evaluate the precision and dependability of every model. 
Moreover, the distinctive sensitivity analysis technique is 
applied to assess the impact of eliminating every factor 
on the objective. Furthermore, the present study evaluated 

the dependability and efficacy of the developed models by 
comparing them to the most related studies. 

Results indicate that RFFHOA, MLPFHOA, and SVRFHOA 
significantly predict concrete CD under various expo-
sure conditions. The RFFHOA attained R2 values of 0.9951 
during training and 0.9971 during testing. In detail, 
MLPFHOA had a R2 value of 0.9659 during training and 
0.9756 during testing. The R2 value for SVRFHOA's testing 
phase is 0.9835, whereas the training phase is 0.9659. 

The lowest values were found in the RFFHOA model for 
RMSE, RRSE, and RAE error measures. The results were 
about 50% lower than MLPFHOA and SVRFHOA. For exam-
ple, RFFHOA had the lowest MAE index (0.113) during 
training, compared to 0.354 for MLPFHOA and 0.3028 for 
SVRFHOA. During testing, RFFHOA had the lowest MAE 
value of 0.0661, followed by MLPFHOA at 0.3373 and 
SVRFHOA at 0.2736. 

The R2 and RMSE metrics were used for comparison 
analysis with literature. In the learning and assessment 
phases, R2 values rose from 0.9033 and 0.8815 related 
to literature to 0.9951 and 0.9971 related to this article, 
respectively. The obtained results depicted the improved 
accuracy of developed models with respect to publications. 

When ET and EC variables are removed from the input 
set, the TIC increases, and the R2 and IA values decrease 
significantly. After removing the EC, TIC increased from 
0.0276 to 0.152 via learning. Eliminating the ET resulted 
in a drop in R2 and IA values from 0.9971 to 0.776 and 
0.9992 to 0.9329, respectively. 

From parameter importance analysis, after deleting the 
EC, the R2 and IA values declined from 0.9959 to 0.8558 
and 0.9987 to 0.959, respectively. Additionally, the TIC 
value rose from 0.0276 to 0.152 during the learning phase. 
In addition, when the ET was eliminated, the R2 and IA 
values decreased from 0.9971 to 0.776 and 0.9992 to 
0.9329, respectively. Conversely, the TIC value grew from 
0.0224 to 0.1898 throughout the evaluation stage.
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