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The displacement of a high-viscosity fluid by a low-viscosity fluid leads to fractal occur­
rence in a homogeneous porous media. In this paper the possibiiities of using a GIS 
(Geographical Information Software) software in determination of fractal characteristics 
of immiscible fluids in subsurface environment are presented. In porous media the prob­
lem of giving precise answer for transport processes requires new methods in possession of 
powerful computers. One of the new methods in technical hydraulics is the fractal growth 
phenomena (VICSEK, 1989). 

In this paper we report our first experimental results in the field of analyzing un­
stable pictures, applying Hele-Shaw cell (HELE-SHAW, 1898) as a laboratory tool and a 
GIS software to follow the displacement process in the porous media in order to reach a 
more appropriate hydrodynamical dispersion coefficient. 

Keywords: ground-water hydraulics, GIS, fractal theory, viscous fingering, percolation 
theory, Hele-Shaw cell. 

The geometry of natural objects ranging in size from the atomic scale 
to the size of universe is central to the models we construct in order to 
'understand' nature. The geometry of particle theorem, of hydrodynamic 
flow lines, of landscapes, in short, the geometry of nature is so central in 
various fields of natural science that we tend to take the geometrical aspects 
for granted. Mathematicians have developed a concept that transcends 
traditional geometry. These complex shapes are called fractals and can be 
characterized by a noninteger dimensionality. An important field where 
fractals are observed is that of far-from-equilibrium growth phenomena 
(VICSEK, 1989). 

It is often read in various GIS books that the GIS is such a tool which 
provides representations of the spatial geographic feature of the world, and 
these features can be described by some forms of maps. In our experiments 
we have regarded for the GIS as a picture analysing tool, without any 
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geographical connections. This may be a contradiction, but the GIS is not 
only just an algorithm package, and the GIS represented services we can 
easily simulate with writing numerous programmes. 

In this paper we deal with the fractal subsurface hydraulics with the 
help of GIS. After a brief introduction the first chapter, in the second Chap­
ter we show the connection between the GIS and the fractal phenomena. 
The third chapter deals v.rith theoretical basis of viscous fingering in porous 
media, then in the fourth the connections between the DLA algorithm and 
the viscous fingering are presented. 

The fifth chapter shows the basis of percolation theory with that we 
are able to simulate the dispersion easier within a GIS. 

The sixth and seventh chapters show our experimental results. 

2. GIS and Fractal Phenomena 

1,VOrd fractal implies properties as in fraction or fragmented: III essence 
fractal geometry has ideas of fragmentation and self-similarity. Self-simil­
arity is symmetry across different scales: there are patterns within patterns 
(LAURINI THO?v1PSON, 1992). 

One of the basic algorithms of generating fractal objects is the Cantor 
dust (Fig. 1). Such a process of pattern formation has two components: 

1. initiator (0 level in Fig. 1) 
2. repetitor (often recursive process is used) (MANDELBROT, 1982). 
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Fig. 1. Cautor dUiit 
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An encoding method will serve to distinguish the different points. 
Identifying the initiator as 0, at the first subdivision ;,'le have pieces 0.0 
and 0.2. At the second step there are four segments, encoded as shown; at 
the next step there are eight, and so on. At step N the set consists of 2N 
segments, and ea-eh has a numerical code with N ternary digits after the 
'decimal points'. The segment length is l· , where l is the unit length. 
For the its ratio is 1/3. 

Data pI'O(:e~;slng and storage may be more economical if less informa-
tion can be used to meet the same reqlliI'ernE;il1Gs. TI1US} area units may be 

A data reduction can also occur 
dimension rather than t17;JO or 

a zero-dimensional - -J _~"O' 
if objects could be In 
three. 

as (1 zero-dimensional 
it is not of EuclideaT! GO find a one-

dimenSIonal curve pa"SSlng tnrOll?;Jtl the infinity of jJCYHH",. 11 Vie 

think of a as a two-dimensional square the side of which tends tOYiard 
zero; in the spirit of fractal geometry, it is to find a curve 

a t'vvo-din1ensional space~ no\v the curve IS defined as a sort of 
ribbon, the -vvidth of v/hich tends to"Yvards zero et 

'The space 
mathematician G. 
(Fig. 2). 

curve y,ras exhibited ill 1890 by the Italian 
and nOVl it is kno"\Aln as the Peaiio 

6 
7 

11 

Pig. 2. Using Peano ordering in computer 

In practice, the encoding of space-filling curves uses one coordinate, 
called key by most practitioners, to stand for two or more coordinates 
(MEIXLER, 1983). 

Generally, the ordered paths have similar shapes at different scale 
levels (self-similarity). In our case we have used the GIS as follows: 

analyzing fractal pictures; 
generating fictitious porous media (based on RSA algorithm) 
(HINRICHSEN et al., 1986); 
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calculating percolating networks (using the GIS software PC based 
ARC/INFO NETWORK module) (BAKUCZ, 1993). 

3. Viscous Fingering in Porous I-vIedia 

The problem of viscous fingering in porous media is of central importance in 
determination of hydrodynamical dispersion. It has recently been shown 
that viscous fingering in porous media is fractal (CHEN - V1lILKINSON, 

(a) 

(b) 'l{:;~ 

1 

le) 

Vi!]. 3. Experimental results, 'randomness'; a < b < c l CH Er; 'vVll.I~H\SO;-i, 1983) 

1983). Viscous fingering in porous media is a phenomenon occurring when 
a less viscous fluid is displacing a more viscous one: a planar boundary be­
tween the fluids is unstable against small perturbations, and in the course 
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of time the interface adopts a fingered configuration. Since the interfacial 
tension provides a stabilizing effect at short distances, the fingering of im­
miscible fluids in a porous medium is usually a macroscopic phenomenon 
in which the fingers are large compared to the pore scale (DEGREGOR!A 
SCHWARZ, 1987). 

Viscous fingering in porous media is often compared to what occurs 
in a Hele-Shaw cell. In this cell the flO"lN takes between tvvo par­
allel plates. CHEN and VVILKINSON (1983) demonstrated that when the 
channel randomness in an cell is increasing the 
received picture shovls fractal behaviour. 'hcorefo:re, the viscous :!irtg{,ring 

determined pore geOTIlet;ry with stochastic 
nature. IS the stochastic IlLlmerlC<'U a,lg'DrJ.tb,m to 
create a porous lH'o;U.Lct, because the porous media is considered as a fra.,ctal 

et al., 1986; 
In 3 the expE;nm'~n·taJ results can be seen, and in 4 the result 

of numerical simulation are shown. 

4~ Viscous and 

The fractal structures of viscous fingering in porous media closely resemble 
those obtained from the diffusion-limited aggregation model of VVITTEN 
and SANDER (1983). Similar structures have also been obtained by fluid­
fluid displacement in radial Hele-Shaw cells using non-Newtonian viscous 
fluids. The relationship between fluid-fluid displacement in porous media 
and DLA was first discussed by PATERS ON (1984). 

The original lattice model of Wit ten and Sander for DLA was modified 
to represent the displacement of a viscous fluid by non-viscous one in a 
two-dimensional porous medium. In Fig. 5 we represent an early stage in 
a small-scale simulation on a square lattice (LENORMAND, 1985). 

The sites occupied by the zero-viscosity fluid are shaded and the 
growth sites are represented by open squares. To simulate the viscous 
fingering process, one of the unoccupied surface sites is selected at ran­
dom and the random walk is started from that site. After each random 
walker is launched from an unoccupied surface site the simulation time is 
incremented by tt, where N is the total number of surface sites. The ran­
dom walk trajectory is stopped and the site from which the random walk 
originated is filled if the random walker moves a distan:-..::e greater than R 
from original seed. The circle radius represents the edge of the cell. The 
random walk trajectory tl in Fig. 5 shows a random walk which results in 
growth. When the random walk trajectory reaches a second unoccupied 
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(a) ;>.. = 0 

(b) A = ~ 

(c) >. 

Fig. -1- :Numerical results - random variable a < b < c (CHEI' Y\iILKINSON, 1983) 

surface the random 'v'lalk is but does not occur: t2 
trajectory in Fig. 5. 

The simulation is continued until the growth reaches the edge of the 
cell. 

5. Percolation and Viscous 

BROADBENT and HAMMERSLEY (1957) discussed the general situation of a 
fluid spreading randomly through a medium, where the abstract terms fluid 
and medium could be interpreted according to the context. The random­
ness can be of two quite different types. In the familiar diffusion process 
the randomness is the random walks of the fluid particles. The other case 
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5. Schematic represemation of the model 

in which the randomness is frozen into the medium itself, was denominated 
a percolation process. 

The most remarkable feature of percolation process is the existence 
of a percolation threshold, by which the spreading process is confined to a 
finite region. 

There is no sharp distinction between percolation processes and dif­
fusion in many applications (SAPOVAL et al., 1985). 

In our case we discuss the percolation in terms of a fluid wetting pores 
when injected from a single site. This discussion presupposes the pores are 
empty so that a fluid may actually enter each pore. 

Consider pores that form a connected network and are filled by an 
incompressible fluid (water). Our problem is to determine the hydrody­
namic dispersion on the set of pores. Another fluid (water with potassium­
permanganate) that is injected can only displace the water on the backbone 
of the percolation cluster (where one particle started from one side of the 
network just reaches the other side at the percolation threshold). The 
parts of the percolation cluster that are only connected to the backbone by 
a single site are called dangling ends. The driving fluid cannot enter the 
dangling ends since the trapped water has no escape rate. 

OXAAL et al. have made a physical model (1987) of percolation clus­
ter. The model was molded and has cylindrical pores. The pores are 
connected by channels. The model was filled with high-viscosity coloured 
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glycerol. The results showed that the displacement process took place on 
the percolation cluster. 

The viscous displacement process on the fractal percolation cluster 
can be modelled numerically by solving a flow equation (so-called Laplac­
equation) with appropriate boundary conditions (SHERWOOD, 1987). 

OXAAL et al. showed that the agreement between the experiment and' 
the simulation was very good. In fact 70-80% of the sites invaded by air are 
common to the experiment and the simulation at any time in the invasion 
process. 

This agreement shows that fluid displacement at the percolation 
threshold is almost entirely determined by geometrical effects since the 
numerical simulation does not take into account such factors as interfacial 
tension and v'letting properties that are known to influence ordinary two 
phase flo',v in porous media. 

Vie have carried out a numerical simulation to check the results of 
Oxaal by the help of GIS method. At this position the GIS PC ARC jINFO 
NETvVORK module can be used for the determination of the channel flow 
velocity. The size of experimental channel network is 170 X 170. In our pro­
cedure vve have not taken separately the numerical and the experimental 
process. It means that we created a GIS coverage from Oxaal's experi­
mental result-picture and in this coverage the ARC jINFO calculated the 
flmv velocities and the Laplace equation for every channel. The agreement 
supported Oxaal's results (BAKucz-L., 1993). 

6~ F'ractal StructUI"e 

6.1 

VIThen a tracer is added to a fluid flowing in a porous medium, it disperses 
because of molecular diffusion and convection. The dispersion front of 
miscible displacement has a fractal structure as et al. (1988) wrote. 

The macroscopic description of dispersion can be 'ivritten (SAFFMAN, 

1959): 

~~ = V(D V C - UC). (1) 

Here C (T, t) is the tracer concentration as a function of position (r) and 
time (t). The dispersion tensor D(U) depends in general, on the imposed 
hydrodynamic flow velocity (U). For homogeneous porous media this dis­
persion tensor is only characterized by two independent components: the 
longitudinal and the transverse dispersivities. 
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Dispersion of tracers in a stationary fluid (U = 0) is due to ordinary 
molecular diffusion. Mal\2Sy et al. showed a new feature when they analyzed 
the dispersion front itself: contours of constant tracer concentration are 
self-affine fractal curves confined by the width of the dispersion front. 

6.2 Experimental Results 

we describe the first results of experiments carried out in order to 
explore the dynamics of hydrodynamic dispersion in a two-dimensional 
porous medium. The results of these experiments will be compared with 
simulations carried out a modified et 

press~re 

gague 

Fig. 6. Experimental setup sketch for central Hele-Shaw cell 

We have used linear and central Hele-Shaw cells. The central Hele­
Shaw cell setup is shown sketchily in Fig. 6, and the linear Hele-Shaw setup 
can be seen in Fig. 7. The porous model consists of the following sequence 
of disks: d ~ O.20mm, O.2Q-O.30mm, O.3G-O.50mm, O.5Q-l.OOmm and 
1.5Q-2.00mm. 

The model was made by coating a plexiglass disk (5 mm thick and 
40cm in diameter) with a 0.1-(0.2)mm layer of transparent two phase 
epoxy and on it the previously enumerated fractions. After the epoxy layer 
had hardened, the excess of glass spheres was removed, leaving a monolayer. 
In our experiment we have injected firstly clear water at the center of 
the model, filling the pore space of the model. Then coloured water is 
displaced with a stable pressure using a pressure regulator. The resulting 
finger structure was photographed firstly with 37 mm camera and next 
with video camera controlled by IBM PC AT. A typical time between each 
picture in the first case was 10 s, in the second case 0.2 s. In the analyzing 
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7. Experimental setup for linear Hele-Sh!l.w cell 

8. Digitized front within GIS (with simplified colours). 1. Linear Hele-Shaw cell wit!": 
1..5-2.0 mm porous 

process 'lve u.sed 
connection to the cameras. 
which directs the process to 

PC 3.4. D GIS software as a digitizing tool 
Within GIS a macro (AML) can be started 

determine the fractal dimension of the fractal 
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Fig. !J. Di;e;itized Hele-Sbcnv cen 

\vith 0.2-0.3 mm porous 

structure. In order to identify the active gro\F;lth zon·e at a .c' uIn1e, 
and to filter out noise from the coverage in we subtracted the 
picture taken at the previous time. The earlier coverage was subtracted by 
superimposing the negative of the earlier below the positive of the 
last coverage. In this way we can determine the growth zone, that we use 
in order to point out the fractal behaviour of the dispersion. An example 
of digitized picture is shown in Fig. 8 and in Fig. 9. 

The simplest geometry for solving the transport equation is the case 
where tracers are added as a step function in a linear geometry at x = O. 
The concentration profile then is given by 

(2) 

Here erf( x) is the error function, Ro = Ut is the position of the front, U IS 

h l · d h 'd h r h d' . r • ')fD \1/') iD t e ve OCIty an t e WI L 01 t e IsperslOn Iront IS W = ~\ lit)' -. \ I1 IS 

the longitudinal dispersion coefficient (BEAR, 1972)). 
In our case we have to use a more complicated situation for solving 

a transport equation because of radial geometry. However, for the present 
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purposes sufficient accuracy is obtained by our estimating the average con­
centration: 

C(r, t) = ~ ch, t)21iri, (3) 

where the sum extends over the observed concentrations c(ri' t) in the pixel 
labelled by i at the t-th moment. In possession of set C(r, t) the hydro­
dynamic dispersion can be calculated by the help of a functional relation. 
(BEAR, 1972). This function can be built into ARCjINFO GIS as an AML 
macro, and the digitizing coverage can be analyzed in an easier way than 
using other software package. 

1. Conclusion 

The subsurface fractal hydraulics have been studied in a GIS environment. 
We showed the basics of viscous fingering, percolation theory and DLA 
algorithm. We have pointed out the connections between GIS and fractal 
pheno.me~na. 

The GIS is a useful tool when we want to analyze our picture. A 
growing unstable zone can be seen as a picture, on which we are able to 
tryout a lot of statistical METHODS. A kind of statistical method is the 
determination of fractal dimension which is very important in the field of 
calculating the hydrodynamics dispersion. 

Using the percolation theory a result has been shown that analyzed 
the fractal picture from Oxaal (OXAAL et al., 1987). have found a good 
agreement (BAKUCZ, 1993). 

We developed an experimental setup (after et al., 1987) in 
which we solved a GIS based analyzing system to determine in the Hele­
Shaw growing viscous finger. 

We have to continue our research in the field of fractal hydraulics in 
environment 0,-5 follows: 
comparing more experimental results, 
developing an exact mathematical basis for fractals in a GIS with 
particular regard to the hydraulical problems, 
creating the connection betWeen the unstable thermodynamical for­
malism and the dispersion the help of chaotic 
systems in GIS. 
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