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Abstract

Measuring the stress intensity factors (SIF) at the tip of the meridian cracks of a dome can help evaluate the fracture process. 

The calculation of the SIF for planar cracks, based on truncating the Williams' series expansion, can be extended to curved surface 

cracks using the equivalent plane transformation method. This study investigates the effects of dimensions, crack length, and 

distributed loading area on the SIF at the crack tip, both experimentally and numerically. The results show that dimensionless SIFs 

generally increase with the crack length, distributed loading area and thickness ratio (thickness/ radius). The distribution load prevents 

any tension within the contact zone and suppresses top-surface radial cracking. The effect becomes more pronounced as the model 

thickness increases. Within the bearing capacity limits, designing a wide loading edge can effectively inhibit the propagation of 

meridian cracks and increase the service life of the dome.
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1 Introduction
The maintenance of building structures is crucial for 
preserving their integrity and ensuring long-term use. 
Accurate assessment helps find issues and gives effective 
measures. Zavvar, et al. [1–4] analyzed stress concentra-
tions under different loads with numerical simulations. 
Meanwhile, Ahmadi, et al. [5–8] derived parameterized 
formulas to characterize stress concentrations for different 
conditions. Domes are commonly used in ancient build-
ings, those long-span structures, often built from masonry 
and concrete, are susceptible to cracking due to their lim-
ited tensile strength. St. Peter's Church. [9, 10] and simi-
lar ancient buildings develop cracks of varying degrees as 
their domes age. Evaluating and repairing cracks in domes 
remains a challenging problem, and requires sophisticated 
mechanical and mathematical models [11–13].

The stress intensity factor (SIF) is a common param-
eter to describe the stress intensity at crack tips and 
can be used to determine the crack growth [14, 15]. 
Experimentally, the on-planar SIF can be calculated with 
the Williams' series [16–18] For non-planar SIF of cracks 

on shell structure, Vormwald, et al. [19, 20] assumed 
thin-walled cylindrical shells as flat surface to determine 
SIF, but this approach is too crude and introduces large 
errors. Additionally, Camacho-Reyes [21] gives a differ-
ential geometry method based on the 3D-DIC for crack 
tip field characterization on non-planar (curved) surfaces, 
but it is limited to surfaces with zero Gaussian curvature. 
More recently, Cao and Sipos [22] proposed a method for 
calculating the SIF of cracks on surfaces with non-zero 
Gaussian curvature, such as domes. This method makes it 
possible to obtain the SIF of cracks on domes. Therefore, 
this method was adopted in this study.

In this paper, the evolution of crack tip SIF is obtained 
by experiments and numerical simulations. The effects of 
geometry (dome thickness and crack length) and loading 
(top axial loading area) on the dimensionless SIF are con-
sidered. Results can be referenced when designing and 
building a dome. After the crack length is detected and the 
load is estimated, the SIF at the crack tip can be obtained 
by interpolating the results of this paper.
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2 Methodology
The calculation of the SIF for planar cracks, based on trun-
cating the Williams' series expansion, can be extended to 
curved surface cracks using the equivalent plane transfor-
mation method [22]. Furthermore, the SIF can be calculated 
for meridian cracks in thin-walled hemispherical domes. 

The evolution of crack tip SIF is obtained by experi-
mentally using top-distributed loading of dome specimens 
containing prefabricated cracks. In the experiments, we 
considered the effects of prefabricated crack length and 
distributed loading area on crack tip SIF.

We also conducted numerical simulations under the 
same parameter conditions to make the results more refer-
enceable. In the numerical simulation, we considered the 
effects of crack length, distributed loading area and dome 
thickness on the crack tip SIF.

In this work, as Fig. 1 shows, we use loading apex angle 
θ denotes distributed loading area, the center angle of the 
crack φ denotes crack length.

3 Experiment
3.1 Specimen fabrication
PMMA is a commonly used material in structural experi-
ments. Ewing and Williams [23] studied the behavior of 
spherical PMMA shell under pressure, while Liu et al. [24] 
investigated the stress singularity at the crack tip of PMMA 
cylindrical shells. Qasim et al. [25] tested the margin crack-
ing of hemispherical PMMA shells under top-loading condi-
tions. Compared to rock and cement, PMMA is an ideal homo-
geneous material, offering better experimental consistency.

As Fig. 2 shows, thermos-molding is an efficient method 
for fabricating a hemispherical shell. The PMMA plate is 
heated until it becomes soft and is held in place by two 
up-and-down fixers. The upper fixer contains a hole with 
the radius of the target hemispherical shell. By blowing 
pressurized gas into the gap between the lower fixer and 
the PMMA plate, the plate is molded to the desired shape. 
After cooling down and cutting, a hemispherical PMMA 
dome is fabricated. Meanwhile, the material properties are 
tested using a uniaxial tensile test on a PMMA plate from 
the same batch. The results are shown in Table 1.

3.2 Experiment processing
As shown in Fig. 1, the specimen has an inner radius R of 
100 mm and a thickness h of 5 mm, and it is compressed 
by uniaxial force. The loading conditions significantly influ-
ence the location and propagation direction of the cracks. 
Generally, the point contact between the hard indenter and 

Table 1 The material properties of PMMA

Material Modulus of elasticity
E [MPa]

Poisson's ratio
ν

PMMA 1200 0.37

(c)
Fig. 2 Thermomoulding of PMMA dome specimens (a) heating the 

PMMA plate; (b) moulding PMMA by pressure gas; (c) cutting

(b)

(a)

Fig. 1 dimensions of specimen and the defination of the loading apex 
angle θ and the center angle of the crack φ
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the top of the dome tends to generate radial cracks originat-
ing from the apex [25]. The distributed load, however, pre-
vents tension within the contact zone and suppresses radial 
cracking on the top surface [26]. In this study, the loading 
force is distributed by the spacer, whose size is determined by 
the contact surface apex angle θ. For different loading condi-
tions, the apex angle θ is set to 20°, 30° and 40°, respectively.

Meanwhile, the pre-existing crack is created by the 
diamond wire saw, and the length of the crack is denoted 
by the corresponding crack center angle φ. The crack cen-
ter angles φ used in the experiment are 10°, 15°, 20°, 25°, 
and 30°. As shown in Fig. 3, domes were loaded vertically 
along their axis of symmetry (Zwick/Roell Z-150 testing 
machine of the Adolf Czakó Laboratory at the Budapest 
University of Technology and Economics) with a load-
ing speed of 0.25 mm/min. Vaseline was greased between 
the bottom of the dome and the plate to reduce friction, 
and the displacement fields during loading were recorded 
using the Correlation Solutions VIC-3D system for the 
next processing.

3.3 Post-processing
In this study, the 3D-DIC system utilizes VIC-Snap 
– VIC-3D the software [27] (designed by Correlated 
Solutions, Columbia, SC, US), along with a two-camera 
and illuminator set-up. Two digital cameras, each equipped 
with a pair of FUJINON (HF75SA-1) lenses with adjustable 
focal length, provide the required resolution and accuracy. 
As shown in Fig. 3, a white light source illuminated the 
specimen's surface during testing. The deformed images 
were correlated with the unloaded image to obtain the dis-
placement fields. The captured images had a semicircu-
lar region with a radius of 800 pixels with an 8-bit depth. 

In this study, a subset size is 11 × 11 pixels, with an accu-
racy of 0.02 pixels. Additionally, the crack tip is visually 
identifiable in the current study. Fig. 4 shows the U, V, and 
W displacements on the specimen's surface. 

To calculate the SIF of a curved shell, the displace-
ments on the curved shell must first be projected on a 
plane. As shown in Fig. 5, the equivalent planar of thin 
shell (tangent plane) is located at the crack tip. The vec-
tor k denotes the unit normal vector of the surface at the 
crack tip, The vector i denotes the unit vector in the tan-
gent plane, directed along the extended crack, set j = k × i, 
where ‘×' denotes the cross product. The displacement vec-
tors U, V, and W in the global coordinate system (x, y, z) 
can be projected to the local coordinate system (i, j, k) via:
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where matrix A (x, y, z) → (i, j, k) is the transformation 
matrix, u, v, w are the displacement vectors in basis (i, j, k). 
The component w direct along k spanned by i and j, which 
means the 2D displacement components are vectors u, v.

It should be noted that u and v cannot be used directly 
to calculate SIF, as ignoring w would be unreasonable. 
Here, we aim to take w and the curvature R of the curved 
shell into account when obtaining an equivalent plane that 
contains the displacement. Following the lead of [22] we 
introduce two assumptions:

1. the distribution of w in basis (i, j, k) is close to linear 
around the crack tip; hence.

w ax by c� � � ,  (2)

where the constants (a, b, c) can be obtained from the mea-
surements via a least-square fit.

2. close to the crack tip, the surface is a paraboloid, in 
case of spherical specimens, 
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respectively. Where W(x, y) in global basis (x, y, z) denotes 
the midsurface of the shell in the unloaded state.

In the case of a shell with moderate curvature, the clas-
sical Föppl-von Kármán (FvK) shell equations can be 
readily extended [28, 22]. To satisfy the extension, the dis-
placements u v,� �  on the equivalent plane should read:

u u aW x y a x aby� � � � � �, ,
1

2

1

2

2  (4)
Fig. 3 A specimen placed into the testing machine
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U, V, and W can be obtained from measurements, The val-
ues for u, v, w and be calculated by Eq. (1), w is used to 
determine a plane and constants (a, b, c). The equivalent 
displacements u v,� � can be calculated on the equivalent 
planar of thin shell. Then, the SIF can be calculated via the 
2D William's expansion [17].

4 Simulation
As shown in Fig. 6 (a), the model generated by ABAQUS 
is similar to the experimental setup. The radius R of the 
hemispherical shell model is 100 mm, the thickness h var-
ies within the range of R/10, R/20, R/30. The top loading 
has an apex angle θ of 20°, 25°. 30°, 35°, 40°, while the crack 
center angle φ is set to 10°, 15°, 20°, 25°, 30°. The material 
properties of the model are the same as those of the exper-
imental material, as listed in Table 1. As Fig. 6 (a) shows, 
the top loading is a distributed load, the load force P is 
applied at the load control point at the top of the numeri-
cal model, and the load control point binds (binding type: 
Kinematic at all degrees of freedom) with the load surface 
to apply the load force to a distributed loading, the load-
ing force increases linearly over time from 0 N to 1,000 N. 
and the boundary condition to the bottom of the model is 
that all degrees of freedom except the x and y direction are 
constrained at the bottom of the model. 

Fig. 5 Projection of the displacements on the tangent plane

Fig. 4 U, V, and W displacement on the surface of a specimen displacement field observed by DIC on the surface of a specimen (a) U displacement; 
(b) V displacement; (c) W displacement; (d) total displacement

(d)

(c)

(b)

(a)
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The mesh of the model shown in Fig. 6 (b) uses the ele-
ment type C3D20R (20-node quadratic brick reduced inte-
gration element) surrounding the crack tip, while the rest 
of the model uses the element type is C3D8R (8-node lin-
ear reduced integration element). Since the thickness of 
the numerical model varies, the typical size of the element 
is set to 1/4 of the thickness h of the model. The region sur-
round the crack tip is meshed with a finer mesh to improve 
the precision of  the stress singularity.

Moreover, as shown in Fig. 7, for the C2D20R ele-
ment surrounding the crack tip, moving the midside node 
toward to the crack tip can also increase the accuracy of 
the stress intensity factors calculation. Generally, to set 
the singularity for an elastic fracture, the midside node 
parameter should be 0.25 near the crack tip. For shell struc-
ture models, the midside node parameter should be greater 
than 0.25 but less than 0.5 to avoid the element Jacobian 
from becoming negative [29]. Therefore, the midside node 
parameter is set to 0.3 for all simulation. 

The inner function in ABAQUS used to calculate the 
SIF requires the number of contours surrounding the 
crack tip. The first layer of elements surrounding the crack 
tip is used for the first contour integral to calculate the SIF, 
and additional layers of elements are used for the subse-
quent contours. In this study, the number of contours is set 
to 10. Fig. 8 shows the SIF K1-contour number series plot 
of an element at the crack tip. K1 at the small contour devi-
ates from K1 of other contours, which is consistent with 
the suggestion in ABAQUS manual [29]. Considering the 
singularity at the crack tip, for linear elastic simulation, 
the SIF results from the first and second contour should be 
excluded for better accuracy.

5 Results
From both the experiment and simulation, the results can 
be obtained. For better comparison and to avoid the influ-
ence of structure dimension, as shown in Eq. (1), it is com-
mon to calculate the SIF as its corresponding dimension-
less SIF F (also known as the normalized SIF) [30–32].

F K a�
1
� � ,  (6)

Fig. 7 Setting of the singularity at the crack tip C3D20R element [29]

(b)
Fig. 6 Simulation model (a) model dimensions, boundary conditions 

and loading set-up; (b) meshing of model, the meshing at the crack tip is 
enlarged for better clarity

(a)

Fig. 8 Stress intensity factor K1 for different contour for model with 20° 
loading apex angle and 10° crack center angle
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where, K1 is the stress intensity factor for model 1 (open-
ing) cracking, σ = P/(πR2sin2θ), P is the amount of loading 
force, R is the radius of structure, θ is the half of loading 
area apex angle, a = Rφ is the length of crack, and φ is the 
center angle of crack.

Generally, the dimensionless SIF can be described 
as the function of material properties (elastic modu-
lus E, Poisson's ratio ν), dimensions (thickness ratio h/R), 
and others (crack center angles φ, loading apex angle θ, 
and etc.) [33]. As shown in the format, the dimensionless 
SIF in this study is defined as the function of dimensions, 
crack center angle, and loading apex angle only.

F f h R� � �, , .� �  (7)

Fig. 9 shows both experimental and numerical dimension-
less SIFs for comparison, as φ increases, the dimension-
less SIF increases. Specifically: when θ = 20°, the dimen-
sionless SIF ∈ [0, 10]; when θ = 30°, the dimensionless SIF 
∈ [5, 15]; when θ = 40°, the dimensionless SIF ∈ [10, 20], 
the results from experiments and simulations can match 
well. Detailly, When θ = 20° (Fig. 9 (a)), the dimension-
less SIF from the numerical simulation increases mono-
tonically, and the dimensionless SIF from the experiment 
almost coincides with that of the numerical simulation. 
And for loading apex angle θ = 30° and 40°, they show the 
same trend, but the increasing trend decreases for θ = 30° 
(Fig. 9 (b)), φ = 25°, and the curve of simulation decreases 
for θ = 40° (Fig. 9 (c)), φ = 20°.

As Table 2 given, the percentage of relative differences 
between the experiment to simulation dimensionless SIF, the 
difference is small when the crack center angle φ is small 
and big when at the crack center angle φ = 30°, As shown in 
Fig. 10, the contact diagram between the specimen and the 
spacer, The friction between the gasket and the specimen is 
limited, compared with the top loading method (Fig. 6 (a)) of 
the numerical simulation model, the constraint effect of the 
top load on the crack close to the loading edge in the experi-
ment is lighter than that under the numerical simulation con-
ditions, specifically, when the crack tip is less than 40° from 
the loading edge, the stress field near the crack tip is affected. 
Fig. 11 provides a good example: the stress contour of the 
model with θ = 40° and φ = 30° shows that the crack tip is 
close to the loading edge, and the influence from the loading 
edge affects the stress field surrounding the crack tip.

To fully analysis how the dimensions, θ, and φ affect 
the dimensionless SIF, the results of simulations with 
different thickness ratio are shown in Figs. 12, 13, 
and 14, corresponding to the models with thickness ratio 

(c)
Fig. 9 Comparison of dimensionless SIF results of simulation and 
experiment (a) loading apex angle θ = 20°; (b) loading apex angle 

θ = 30°; (c) loading apex angle θ = 40°

(b)

(a)

Table 2 The percentage of relative differences between the experiment 
to simulation dimensionless SIF [%]

loading apex 
angle θ [°]

Crack center angle φ [°]

10 15 20 25 30

20 49.18 34.61 12.72 1.93 35.64

30 59.69 45.66 14.00 16.58 44.95

40 23.97 25.80 1.14 5.91 122.38
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h/R = 1/10, 1/20, 1/30. Subfigure (a)s show the dimension-
less SIF varies with different φ values for models with dif-
ferent θ values. Subfigure (b)s show how the dimensionless 
SIF varies with different θ values for models with different 
φ values. From all curves, the dimensionless SIFs show an 
increasing trend with the increase of both of φ and θ gen-
erally, as well as with the increase of thickness ratio h/R. 
For models with the same φ and θ, the model with a greater 
thickness has a higher dimensionless SIF.

Meanwhile, similar to the trend in Fig. 8 (c), the 
decrease in dimensionless SIF when θ is large enough 
is clearly shown in subfigure (b)s of Figs. 12, 13, and 14. 
The curves with crack angle of φ = 30° interest with the 
other curves. For different thickness ratios, the intersec-
tion points vary: the higher the thickness ratio, the larger 
the θ value at which the intersection occurs. For the other 

Fig. 11 Stress contour of simulation model with 40° loading apex angle 
and 30° crack center angle

Fig. 10 The contact of the specimens to the spacer

(b)
Fig. 12 Dimensionless SIF for model with h/R = 1/10 (a) dimensionless 

SIF varies with different φ values; (b) dimensionless SIF varies 
with different θ values

(a)

(b)
Fig. 13 Dimensionless SIF for model with h/R = 1/20 (a) dimensionless 

SIF varies with different φ values; (b) dimensionless SIF varies 
with different θ values

(a)
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curves, the phenomenon where a larger loading can sup-
press the increasing trend of the dimensionless SIF also 
exists. As Fig. 14 (b) shows, the suppression of increas-
ing trend of the φ = 25° curve is evident, and the extent of 

the suppression decrease with the increase in the thickness 
ratio. This means that there is a zone outside the load area 
where the increase in the dimensionless SIF can be sup-
pressed or even decrease. For different thickness ratios, 
the thicker the model, the smaller the size of this zone.

6 Conclusions
Observing the SIF at the tip of the meridian cracks of the 
dome can help evaluate the fracture behavior of the dome. 
The calculation of the SIF for planar cracks, based on trun-
cating the Williams' series expansion, can be extended to 
curved surface cracks using the equivalent plane trans-
formation method. Through experiments and numerical 
simulations, the effects of dimensions, crack length, and 
distributed loading area on the SIF at the crack tip were 
studied. The results show, 

1. the dimensionless SIFs show an increasing trend 
with the increase in crack length, distributed loading 
area and thickness ratio (thickness/ radius) generally.

2. The distributed load prevents any tension within the 
contact zone and suppresses top-surface radial crack-
ing. The thicker the model, the more pronounced the 
effect. Within the bearing capacity, designing the 
loading edge to be wide can effectively inhibit the 
propagation of meridian cracks and increase the ser-
vice life of the dome.
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(b)
Fig. 14 Dimensionless SIF for model with h/R = 1/30 (a) dimensionless 

SIF varies with different φ values; (b) dimensionless SIF varies 
with different θ values

(a)
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