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Abstract 

The set of curves giving the general solution of the differential equation yll = Y I k1 and 
describable with exponential equations also has properties characteristic of non-Euclidean 
geometries in the Euclidean plane. They also allow a non-conventional geo=trical de­
termination of trigonometric functions promoting the extension of the representation of 
complex numbers and variables. Thus relations of seepage flows concerning hydraulics 
of wells and several conclusions drawn from them can be extended and the surveying of 
mutual interference of wells will be simpler. This paper also gives example for using non­
Euclidean methods in geometrical considerations for technical purposes, in our case for 
describing plane flows. 

Keywords: non-Euclidean flow, complex varia.ble functions. 

1. Lines of Exponential Equation in the Euclidean Plane 

1.1 Derivation and Determination 
of the Lines of Exponential Equation 

Those y = yea:) lines of a plane plotted in a rectangular coordinate system 
representing the general solution of the second-order differential equation 
where kB > 0 

d2y(a:) yea:) 
da:2 =];2"' 

B 
(1) 

(the set of lines also comprises coordinate axes and a: = const. lines, that is, 
lines parallel with the y axis as well) are called lines of exponential equation 
or exponential lines as they have the shape 

(2) 

where Cl and 02 are real numbers. 
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y 

Fig. 1. Addition of lines of exponential equation results in lines of hyperbolic equation 

If in Eq. (2) either Cl = 0 and C2 = YO =1= 0 or Cl = YO =1= 0 and 
C2 = 0 then (for both cases) 

(3) 

that is, 'simple' exponential lines will be obtained. For further cases, when 
Cd C2 > 0, then instead of variable x with shifting the axis by xo the 
variable (x - xo) can be introduced and with selecting 

kB Cl 
xo = - ·In- (4) 

2 C2 

can be achieved that Yo = Cl . e- XO
/

kB = C2 . e XO
/

kB should be from which 

x - xo 
y(x - xo) = 2· yD' ch --. 

kE 
(5) 

In the case of C1/C2 < 0 with an Xo selection defined by sign change within 
the logarithmic expression in Eq. (4) YO = Cl' e-XO

/
kB = -C2' eXO

/
kB , thus 

x - Xo 
y(x - xo) = 2· yD' sh-y;;;-. (6) 

Hence for a general case lines expressible by Eq. (2) are cosine hyperbolic 
or sine hyperbolic curves in a coordinate system of appropriately shifted 
horizontal axis (Fig. 1). 
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1.2 Geometrical Relations 
in the System of Exponential Lines 

1.2.1 In the case of fixed kB and coordinate axes only one exponential 
line links up with two given points - A(XA' YA) and B(XB' YB) - of the 
Euclidean plane, since from Eq. (2): 

YA = Cl . eXA
/

kB + C2 . e-xA
/
kB

, 

YB = Cl . eXB
/
kB + C2 . e-xB

/
kB

• 

(7) 

The linear equation with two unknowns Cl and C2 is unequivocal since the 
D determinant of the 'coefficients' consisting of the exponential expres­
sions is: 

(8) 

except when XA = XB. For this case (if YA =1= YB at the same time) the 
line fitted to the two points and considered to be exponential will be the 
straight line x = x A parallel to the Y axis also seen in the basic definition. 

1.2.2 With a fixed kB value and coordinate system two not coinciding 
exponential lines will 
(a) either cross each other in one point (they have a real common point) 
(b) or approximate each other asymptotically (they have a common 'in­

finity point') 
(c) do not cross each other (have imaginary common points). 

All these follow from Eq. (7) in the case of YA = YB and XA = XB. 
The exponential lines Y = Y1 (x) and Y = Y2 (x) have the same coordinates 
in the common point P(xp, yp). Let the coefficients of line Y1 be Cn and 
C12, those of Y2 C21 and C22. Thus 

After reduction: 
x p = k B . In C22 - C21 . 

2 Cll - C12 

Let us mark the fraction in logarithm with G. If 
(a) G > 0 then Xp is real, and so is the crossing point, 
(b) G = ° then xp -t -00, 

(10) 

l/G = 0, then xp -t 00, both versions mean that the two exponential 
lines meet asymptotically 

(c) G < 0, then xp is imaginary and so is the crossing point. 
The crossing, asymptotic or non-crossing position of the exponential 

lines do not correspond to the crossing or parallel behaviour of Euclidean 
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straights but to the lines classified as 'straights' in the Bolyai geometry 
which really may be in crossing, 'parallel', (here: 'asymptotic') or non­
crossing position. 

1.2.3 Having a fixed k B value and coordinate system and the y = Y1 (x) 
equation of at least one exponential line fitting to the point P( xp, yp) known 
the equation of all other exponential lines going across this point can be 
determined from this. ' 

A selection xp = 0 can be made in the origin of the abscissa without 
detriment to general, validity. Using Eq. (9) for two exponential lines fit­
ting to point P the exponential coefficients will be units, thus only the 0 
coefficients remain: 

or 

With this marking 

012 = 011 + 0) 
022 = 021 - O. (11) 

Hence if the equation of the exponential line fitting to a point P is known 

then the equation of any other exponential line fitting to the same point 
(kB = const.): 

The exponential equations of the lines going across the same P point only 
differ in an additive sine hyperbolic function. 

1.2.4 Two, crossing exponential lines determine two further ones 
asymptotical in one direction to the first, in the other direction to the 
second crossing exponential line. 

Let the coefficients of the two crossing exponential lines according to 
the.form (2) be 011 and 021, 012 and 022, respectively. The coefficients of 
the furt.her two lines approaching these asymptotically: 013 and 023, 014 
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and 024, respectively. Pursuant to the conditions of Eq. (10) if 023 = 021 

and 013 = 012 then the No. 3 exponential line will approach the No. 1 
line at the 'left' side, the No. 2 line at the 'right' side. If 014 = 011 and 
024 = 022 then the No. 4 exponential line will asymptotically approach the 
No. 2 line at the 'left' side and the No. 1 line at the 'right' side. 

As the condition for the coefficients can always be satisfied our theo-
rem may also be reversed: , 

There are two exponential lines that can be constructed from an out­
side point to any exponential line which do not complement each other to 
a single line and approach the given exponential line one in the first, the 
other in the second direction. 

x 

Fig. 2. To any exponential line l~ or l~, through the point P outside them, two expo­
nential lines 11 and 12, asymptotical to them, can be coordinated. 

This statement is identical with the Bolyai axiom of parallelism if 
the concept of 'parallelism' is identical with the concept of 'asymptotic 
approach' (Fig. 2). Although theorems stated in paragraph 1.2 for expo­
nentiallines in the Euclidean plane and also in the Euclidean rectangular 
coordinate system correspond to the theorems of the Bolyai geometry the 
geometry of exponential lines described this way is not a Bolyai geometry 
as we cannot identically define the 'congruence' axiom. The geometry of 
exponential lines, however, corresponds to the Bolyai geometry in many 
theorems and several approaches may point to further uniformities. 

---------.---------~--- ---~-~~-
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1.3 Trigonometric Interpretations 
in the System of Exponential Lines 

Three points in a plane not coinciding with the same exponential line define 
three exponential lines (according to 1.2.1). These three exponential lines 
surround an exponential triangle. This is called vertical side triangle if one 
side is a straight parallel to the y axis. The exponential triangle of vertical 
side is orthogonal if its base is the line of the x axis. The orthogonal triangle 
is central if its vertex, opposite to the right angle and being on the x axis, 
is in the origo. 

y=y(x) 

A • C x 
o 

Fig. S. Central, orthogonal, exponential triangle 

Suppose the vertexes and their coordinates of the central orthogonal 
exponential triangle be A(O, 0), B(XB' YB), C(XB,O). One right angle side 
of the triangle is the part of the x axis extending from the origo to an x B 

distance, the other a vertical straight of YB height started from the C axis 
point with x B abscissa, its hypotenuse is an exponential line going through 
the starting point (A) and the B point with the equation: (Fig. 3) 

y(x) = s:~ sh k:' (13) 

The differential function of this: 

dy(x) _ t! . h~ 
dx - sh re c k B . 

(14) 

x = 0 at the vertex of the triangle and for this point the value of the 
differential function is the tangent of the vertex angle belonging to point A: 

JJ.Jl.. 
kB 

tga = h!i..8..' 
S kB 

(15) 
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Hence for an exponential - central, orthogonal- triangle the tangent func­
tion is not defined by the ratio of the right angle sides opposite and adjacent 
to it but with the modified form of this ratio involving the constant kB and 
a hyperbolic function as well. -

U sing identities sin Cl: = V tg a 2 and cos Cl: = ~ 
l+tg a 1+tg2 a 

* sh* sin a = ..JL and cos Cl: = __ B_ 
A A 

(16) 

can be written, where 
2 

sh 2 XB + YB 
kB k~ 

A= 

Therefore all trigonometric function definitions will be changed compared 
to the definitions of the Euclidean geometry. This is not a surprise for 
those who know spherical geometry and Bolyai geometry,' however, Eqs. 
(15) and (16) do not meet the trigonometric function definition of either of 
the mentioned geometries. 

2. Representation of Complex Numbers on the Eudidean Plane, 
in the Geometrical System of Exponential Lines 

2.1 Interpretation of a Complex Number According to the Euler Theorem 

The complex number composed by summing the real and imaginary parts 
in the form z = x + iy can also be expressed in exponential form or with 
trigonometric functions according to the Euler theorem: 

where r = V x 2 + y2 absolute value 
{) = arcus or argumentum 
i = A imaginary unit. 

(17) 

Eq. (17) makes possible to represent the complex number by including it 
in a rectangular triangle in an orthogonal coordinate system according to 
the interpretation of the Euclidean geometry. The A(O,O) vertex point of 
the triangle is the starting point, its C(x,O) point is on the x axis, the 
B(x,y) point represents the complex number which is now also given by 
the hypotenuse of r length and by the {) angle of the hypotenuse and the 
positive x axis. 
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It is essential, however, that trigonometric functions ofthe Euler theo­
rem given by (17) are mathematical junctions, the Euler theorem itself can 
also be deduced from function series disregarding the geometrical sense. 
This involves that if the trigonometric functions in (17) can also be given 
another geometrical interpretation than the Euclidean the complex num­
ber may also be represented according to this interpretation. If alternative 
interpretations are equally possible in the Euclidean plane, then the same 
points in the same Euclidean plane may obtain different complex number 
interpretations, that is, there are different possibilities for complex number 
representation even in the same coordinate system. 

The interpretation of the tg, sin, cos functions were previously given, 
in Eqs. (15) and (16), for central, orthogonal triangles composed of ex­
ponential lines. Having a fix kB basic length in the existing system of 
exponential lines, by giving a new interpretation to the trigonometric func­
tions in the Euler theorem the representation of the complex number may 
also be given a new interpretation (Fig. 4). 

2.2 Representation of the Complex Numbers 

Replacing trigonometric functions in Eq. (17) according to Eq. (16) derived 
from Eq. (15), including that 7' = A and immediately reducing 

A i·" h x . Y 
z = e = s kB + ~ kB' (18) 

Hence the general P( x, y) point represents the z complex number to be reck­
oned from Eq. (18) in the system of exponential lines with a selected kB . 

The locus of the points represented by complex numbers of z = x + iy 
form in the Euclidean plane and Euclidean system of geometry is a straight 
of 1? angle to the positive x axis if for any conjugate (x, y) values: 

y - = const. = tg1? 
x 

(19) 

Argumentum change yields a series of radii going through the centre. A 
series of radii passing through an arbitrary P(O, yp) point being without 
detriment to general validity on the y axis will be formed by the series of 
points determined by the complex numbers z = y + iCy - yp) for which: 

y -yp 
=----=.c=_ = const. = tg 1? 

x 
(20) 

The locus of the points represented by the complex numbers interpreted by 
(18) in the geometrical system of exponential lines given with a defined kB 
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value in the Euclidean plane is a 'series of radii' going through the origo 
with a starting point tangent forming a -0 angle with the positive x axis if 
for any x, y - see Eq. (15)-

..JL 

h
kBz = const. = tg-o. 

s kB 
(21) 

The equation for the series of exponential radii going across the origo can 
also be formed by expressing 'y from (21) according to (12) and (13). 8h 
curves play the role of the 'straights' of the Euclidean geometry in the 
geometry of exponential lines if the 'series of radii' is going across the 
origo. 

. The ch curve is one line of the series of exponential radii passing across 
point P(O,yp), different from the origo, symmetrical to the y axis, that is, 
the line with the equation: 

(22) 

Now its ordinates are increased with the 

(23) 

system of equations giving the sh function in exponential form, derived 
from (21) according to (12). Hence a general exponential series of radii 
may be composed, depending on the actual coefficients, that is, on -0, of 
purely exponential, ch and sh curves as well. As the derivative of the 
function selected for base in Eq. (22) is equal to zero in the locus x = 0, 
that is, in the P point, it will have no effect on tangent relations of Eq. 
(23) even after composition. Therefore the equation 

1!.::::.1l.E.. 
kB -- = const. = tg-o 
sh~ 

kB 

will be true for every (x, y) point of the exponential series of radii going 
across point P(O, yp). 

2.3 Representation of Complex Variable Functions 

If the w = <p + i'ljJ complex variable is a function of the z = x + iy complex 
variable, thus w = fez), then this function relation means that the series 
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of lines defined by the f operation and fulfilling the conditions cp = const. 
and 'lj; = const. can be expressed in the coordinate system of variables a: 
and y belonging to z by functions of form y = yea:) and represented in the 
existing geometrical system. 

The z complex variable can also be expressed in a polar coordinate 
system: 

if the origo is selected for a pole. If the point representing the complex 
number a:o is the pole then 

(z - zo) = 7' . ei.{j 

Let us see the complex variable function w = In(z - zo). After separating 
real and complex variables and selecting for w cp = const. and 'IjJ = const. , 
equations 

T = e'" and {) = 'ljJ (25) 

will be obtained. The second equation will be examined further in this 
paper. 

The equation {) = 'ljJ yields for different 'ljJ value selections a 'series 
of radii', namely in the Euclidean system of straights series of radii com­
posed of straights and, in the system of exponential lines: 'series of radii' 
composed of exponential equation lines. 

Suppose that Zo = i . yp, that is, the pole is on the y axis in yp 
distance from the origo. The line of the exponential line system according 
to Eq. (2) and given by the coefficients Cl = C2 = ypl2 

() yp (:elkB -:elkB) a: Yl a: = - e + e = yp ch-
2 kB 

. (26) 

will in any case go across this point. The sh functions of Eqs. (12) and 
(23) will be added to this. {) = 0, according to (26). 

Let us see the special case C = ±ypI2, then 

(27) 

Here 
(28) 

Further C values can be reckoned with selecting for 'ljJ = {) between 0 and 
7r regularly 7r In, 27r In ... k7r In [k = 1,2 ... n]. 

The 'exponential set of radii' crossing the P point contains lines of ch 
equations and sh equations as well. The border between them is the line of 
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the simple exponential curves, one asymptotic to the positive, the other to 
the negative x axis. Lines of ch equation do not cross the horizontal axis, 
but all exponential lines crossing it are of sh equation. 

The transformation of the complex variable function w = In(z - zo) 
in the system of exponential lines not only differs from the Euclidean sense 
transformation but also has an independent meaning for flows to ,be de-' 
scribed below. 

3. Description of Seepage Flow 
in the Geometrical System of Exponential Lines 

9.1 Water Table Depression of Wells or Relief Drains 

Fig. 5. Water table depression is equal to the load of a cord or chain which is propor­
tional to the displa<:ement 

The depression of groundwater surface can be dynamically treated like a 
cord or chain loaded with a distributed force system where the acting force 
('upward force' here) is proportional to the displacement of the cord or 
chain due to loading. In this case conditions of Eq. (1) are satisfied as 
the equilibrium form of the cord curve is given by its second derivative 
proportional to load. The general solution of the (1) differential equation 
which also was available from the former z = In(z - zo) transformation in 
the geometrical system of exponential lines can approximately be obtained 
from t:Q.e known well-hydraulic equations (Fig. 5). For single percolation 
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wells this means that depression calculated from steady-state groundwater 
level for an x distance to the centre of the well is: 

y(x) = y(O) . e±/kB, (29) 

where the depression of the y(O) origo has to be substituted accord~g to 
measurement data, on the base of depression 'outside the well' instead of 
'inside the well'. The kB value - 'Bolyai inflexion' of length dimension of 
the depression system - can be determined empirically, depending on the 
quality of the water supplying layer. This is in relation through the equa­
tion hB = R/e [e = 2.718 ... ] with the R value of the theoretically finite 
'depression radius' determinable from different theories. The marking hB 
indicates Bolyai geometry origin to discern it from the kD Darcy depression 
coefficient of velocity dimension being also used in this paper (Fig. 6). 

o 

Yo 
y 

x 

-""""'"-~y(Xo+2x ) 

~----,,yIj(Xo+X);' C· Y(Xo) 

y (Xo) 

y(x):: Y
a

' e-x/kB 

Fig. 6. Depression of a single percolation well by a water table line of exponential 
equation 

From the derivative function of the depression water surface line also 
follows that the surface slope corresponding to the derivative of the function 
(I) is, 

1= dy(xl = ±~ ±x/kB _ Y (30) e --. 
dx kB kB 

From this: 
y = kB I, (31) 
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which is similar to the well-known equation of the filtration velocity deter­
minable from Darcy's law: 

v = kD I. 

On the ground of (30) and (31): 

kD 
V=-'y, 

kB 

(32) 

(33) 

thus filtration velocity can also be determined from the depression in knowl­
edge of the two k factors. Hence equation for wells' discharge is also ob­
tainable: 

kD 
Q = 2 . 1T' ' r . m k

B
' Yo, 

where Q = discharge 
r = radius of the well 

m = filtration head 
Yo = depression outside the well. 

3.2 Groundwaier Depression of Well Groups 

(34) 

The total depression of two co-operating wells can be determined by alge­
braic summing of the suctions of the single wells - if not only depre~sion 
but also filling is meant here summing of signs is to be included. As in 
spaces between the two wells according to (29) the exponential function 
values of positive and negative signs will be summed by the same kB there 
will always be an x = 0 starting point on the x axis to which either 

y(x) = 2 . YO 
x 

ch kB = Ych (x), (35) 

or 
y(x) = 2 . YO 

x 
. sh kE = Ysh (x), (36) 

will be valid for the water table depression line. It is known that, disregard­
ing, constants, the functions Ych (x) and Ysh (x) are mutually derivatives of 
each other, so the I water slope values may also be determined from the 
actual values of the 'other' function. Hence on the analogy of (31): 

Ych = kE . Ish, 

Ysh = kE Ich, 

and, similarly to (33), for the ch-type water table lines: 

kD 
v=kE Ysh, 

(37) 

(38) 
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Fig. 7. Water table lines and velocity figures of two wells due to joint depression (filling 
combined with depression) 
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for the sh-type water table lines: 

(39) 

Hence the 'simple' depression lines are at the same time velocity-figures 
when proportioned with kn/kB. The 'combined' lines will turn with the 
same factor to velocity figure of their contrary type equivalent (Pig. 1). 

3.3 Interaction of Wells 

The water table depression lines of two or more depression wells reach each 
other, mutually increasing depression effect, thus a higher depression will 
occur than would for each well if they supplied the same amount of water 
individually. 

Suppose for two cooperating wells total depression at the No. 1 well 
be Yl composed of the well's own yn depression and the Y12 depression due 
to the other well. The total Y2 depression of the No. 2 well is similarly 
composed of an own Y22 depression and an other Y21 depression. Known 
are only the Yl and Y2 depression values, the Bolyai inflexion base length 
and the x distance of the wells, thus two equations can be set: 

Yl = Yn + Y12 = Yll + Y22 • e -z/kB 
, 

Y2 = Y21 + Y22 = Yn . e-
Z

/
kB + Y22· 

Solution for Yu and Y22: 

-Z/kB Yl - Y2 e 
Yll = ~-~-=--;-:--

1 - e-2z/ kB 

-Z/kB 
Y2 - Yl 'e 

and Y22 = 1 -2z/k -e B 

( 40) 

(41) 

The mutual effect of two wells is defined from the quotient of the summed 
'own' depressions and the sum of the 'own' and 'other' depression. The 
latter 'total', that is, actually obtainable depression values are selected 
to be identical for every well, so Yl = Y2 will drop out from the fraction 
(Fig. 8) 

Yll + Y22 1 17= = Yl + Y2 1 + e- Z / kB • 
(42) 

If two wells are infinitely near and x = 0, efficiency of the cooperation will 
be 0.5, and, if they are infinitely far and x -t 00 then this efficiency will be 
unit. 
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Fig_ 8. Mutual effect of two depression wells and determination of the efficiency of the 
cooperation 
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