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Abstract 

In the dynamic analysis of structures supporting a moving load, for the sake of simplifi
cation, the mass either of the moving load or the supporting structures is neglected. In 
earlier papers, examples for reckoning with the timely variation of the mass are found only 
for simple structures. It is well known that dynamic stress values are influenced by exter
nal and internal damping. Their combined effects are only reckoned with in free vibration 
and in exciting by harmonic forces, in cases where the dynamic system has a constant 
mass matrix. There is an adequate numerical method for the analysis of structures with 
several degrees of freedom, with permanent mass matrix, under external damping. An 
algorithm has been presented in this paper for the analysis of dynamic excess displace
ments of structures, for cases both the effects of moving mass and of internal friction have 
to be reckoned with. The developed algorithm and numerical method have been tested 
on examples. The mentioned factors showed important effects, justifying to be reckoned 
with in the analysis of real structures. 
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1. Introduction 

An important problem of the dynamic analysis of structures is to determine 
stresses in a structure due to a moving load. To simplify the procedure, 
in knowledge of parameters involved in the problem, the mass either of 
the moving load or the supporting structures is neglected. Examples for 
the approximate consideration of both effects are found (FRYBA, 1972) 
only for simple structures (simple beams). Values of dynamic stresses are 
affected by external and internal damping. A suggestion has been made 
to reckon with their combined effect (GYORGYI, 1985), but only for case 
of free vibration where the dynamic system' has a constant mass matrix. 
This paper presents a method of analysis for structures with several degrees 
of freedom, timely variation of the mass matrix, exposed to external and 
internal damping. 
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2. Application of Direct Integration 

2.1 Reckoning of Moving Mass under External Damping 

The second-order linear differential equation Mii+Cu+Ku = r describing 
the displacement of structures expresses the dynamic equilibrium at any 
time in the considered time range. Forces of inertia are expressed by'Mii = 
fI(t), damping forces by Cu = fD(t), stiffness forces by Ku = fE(t), while 
r(t) is the vector of external forces. (Matrices are of order n). The dynamic 
analysis is intended to solve the matrix differential equation under initial 
conditions uo, no and iio at a time to, and in knowledge of displacements, 
to compute the dynamic stresses. 

The initial value problem is solved advisably by the Wilson (J method 
(BATHE and WILSON, 1976). Wilson assumes a linearly varying accelera
tion between times t and t + (J!:::..t. (For (J = 1.4, the procedure is certain 
convergent. ) 

In this case: 

(1) 

. ... 1 T2 (.. •• ) 
UHT = Ut + UtT + 2 (J!:::..t Ut+8.6.t - Ut , (2) 

. 1.. 2 1 T3 (.. •• ) 
UHT = Ut + UtT + 2UtT + (3 (J!:::..t Ut+O.6.t - Ut • (3) 

Hence: 
.. 6 ( ) 6. 2" 
Ut+O.6.t = ((J!:::..t)2 Ut+B.6.t - Ut - (J!:::..t Ut - Ut, (4) 

. 3 ( ) 2 . (J!:::..t •. 
UHIJ.6.t = (J!:::..t UH£i.6.t - Ut - Ut - -2-Ut . (5) 

Assuming r(t) to linearly vary during this period: 

Displacements at time t + (J!:::..t result from: 

M ( 
6 6. 2") C ( 3 2' (J!:::..t .. ) = rH£iAt + ((J!:::..t)2 Ut + (J!:::..t Ut + Ut + (J!:::..t Ut + Ut + -2-Ut 

(6) 
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Thereupon, displacements, velocities and accelerations may be computed 
at time t + Ilt. For constants M, C, K, coefficient matrix 

A = (K + 6 2 M + 8 ~ c) 
(8Ilt) ut 

has to be decomposed but once after having assumed time interval Ilt, 
while the right-hand vector is time-dependent. If computation has also to 
reckon with the moving mass, the mass matrix M(t) = M+MI(t) has to be 
applied. In this case matrix A will be time-dependent, and for every time 
interval, time-consuming decomposition has to be performed. To avoid it, 
it is suggested to formulate the dynamic problem as Mu + Cn + Ku = r, 
where r = r - MIU = r - rI-

In this case displacements result from: 

" M (6 6. 2) C ( 3 2 . 8 ilL. ) = rt+o~t + (8Ilt)2 Ut + 81lt Ut + Ut + 81lt Ut + Ut + -2-Ut 

. (7) 

where 

Now, vector Ut+IJ~t is seen to have appeared also in the right-hand of the 
equation, to be computed by iteration. Now, the solution is accelerated, 
but there is only convergency if the accessory mass is not too big compared 
to the structural mass, or the integration spacing is not too small. 

2.2 Taking a Moving Mass and a Proportional 
Internal Damping into Consideration 

In the relationships above, physical purport of matrix C has not been con
sidered. For an external damping, the matrix can be assembled in knowl
edge of single damping elements related to the structure. For a damping 
due to frequency-independent internal friction, the matrix of equivalent 
external damping - for different damping parameters of single structural 
units - may be assumed in knowledge of complex stiffness matrix Ku+iKv, 
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in form C = MV 1_1_) V*Kv using eigenvectors normed to M of the 
\Wru 

eigenvalue problem Kuvr = W;uMvr (GYORGYI, 1985). (Now, in the ma
trix differential equation of vibration K will be replaced by Ku.) 

For structural units with the same damping parameters (proportional 

damping) the equivalent damping matrix C = vMV 1_1_) V*K and 
\Wru 

Ku = uK, where 

4, 
v=---2; 4+, 

Wr 

Wru = VI + ~ ; 
1J , =-. 
7r 

Here 1J is the logarithmic decrement of damping, Wr may be obtained from 
the 1'-th eigenvalue of the eigenvalue problem Kv = w2Mv for the un
damped case, while V is a matrix containing eigenvectors normed for M. 
Obviously, in case of internal damping, the direct integration problem has 
to be preceded by solving an eigenvalue problem. All these argue for tak
ing it into consideration in selecting the solution method of the dynamic 
problem, and to try to apply modal analysis. 

3. Applying Modal Analysis 

9.1 Reckoning with a Moving Mass without Damping 

The problem is to solve differential equation Mii+Ku = r-Ml ii. Solution 
is wanted in form u = Vx, in knowledge of eigenvalues and eigenvectors 
normed to M(V*MV = E) of the eigenvalue problem Kv = w2Mv. (Ac
tually, initial conditions for x are xo = V*Muo, xo = V*Muo). After 
substitution and multiplying from the left by transposed matrix V*: 

V*MVx+ V*KVx = q, (9) 

where 
q = V*r - V*MIVX = f- Bx. (10) 

Due to orthogonality, theoretically, n single-unknown equations may be 
considered. It is known that in solving real technical problems, in the so
lution computed on the basis of eigenvectors it is sufficient to involve a 
certain number (m < n) of eigenvectors, computable by convenient proce
dures (e.g. subspace iteration) even for extended systems. Equation 1': 

•• 2 
xr + wr xr = qr . (11) 
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According to those above: 

(12) 

where: 
f b* .. qr l+9Al = rl+9Al - rl+9Al Xt+IIAt, , (13) 

fr,+9A, = fr, + e (jrt+9AI - fr,) , 

brl+9Al = b r, + e (brl+9Ai - b rl ) • 

To compute qrl+9AI requires Xt+9At, to be computed exactly in knowledge 
of values xri+9Ai from a relationship similar to (4). For a guaranteed con
vergency, iteration may be applied also here. 

The problem may also be solved without iteration. In this case, vec
tors and/or matrices of size m corresponding to the number of eigenvectors 
involved into the analysis lead to the equation system: 

= ft+£lAt + (Bt+9At + E) Ce1t)2Xt + e~/Ct + 2Xt) 

Here D is a diagonal matrix with element r being w; + 6 2' while' E is 
(e~t) 

a unit matrix. Although now an equation system has to be solved, it lasts 
much less time than to decompose matrix A for every time step. 

9.2 Reckoning with a Moving Mass in Case of 
Proportional Internal Damping 

For proportional internal damping, differential equation of motion becomes: 

In knowledge of eigenvalues and eigenvectors normed for M of the eigen
value problem Kv = w2Mv, solution may be sought for in form u = Vx. 
After substitution and multiplying by transposed matrix V* from the left: 

V*MVx + vV*MV / ~) V*KV::ic + uV*KVx = q, '(15) 
\Wru 
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where 
q = V*r - V*MIVX = f- Bx. (16) 

Because of orthogona.lity, also now, n single-unknown equations may be 
considered. Equation r: 

.. • 2 
xr + 'Ywruxr + wruxr = qr. (17) 

According to those above: 

6 6. 2" ( 3 2 . e t:..t.. ) = qrt+8tl.t + (et:..t)2Xrt + Ot:..tXrt + Xrt +'YWru et:..tXrt + Xrt + -2-Xrt 

(18) 
Here qrt+8tl.t is the same as for the undamped case (13), comprising vector 
Xt+B~t, so requiring again an iteration procedure. If necessary, the problem 
will be the direct solution of the equation system of order m: 

= ft+B~t + (Bt+B~t + E) Ce~t)2Xt + O~tXt + 2Xt ) + 

G ( 3 2' et:..t .. ) + et:..tXt + Xt + -2-Xt , 

where D and G are diagonal matrices, elements r of them w; + 6 2 + 
(e t:..t) 

3 
e t:..t 'YWru and 'YWru. 

9.9 Computation for Other than Proportional Internal Damping 
or for Composite Internal and External Damping 

In this general case, the damping matrix cannot be diagona.lized by means 
of eigenvectors for the undamped solution, so inasmuch as diagona.lization 
is to be made in the left-hand side of the matrix equation, damping forces 
eiI = fD(t) obtained by means of the damping matrix involving the effect 
of external damping and equivalent internal damping have to appear in the 
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right-hand side of the matrix equation. Also now, the dynamic equation 
may be written in the form V*MVx + V*KVx = q but 

q= V*r - V*MIVX - V*CVx = f- Bx - Hie. (19) 

Solution may be obtained from Eq. (12) but the purport of Qrt+6At' 

Now: 

. (20) 

Vectors Xt+O.::lt. Xt+O.::lt depend on vector Xt+II.::lt of elements Xrt+6At in (12), 
requiring an iteration procedure. Unknowns belonging to the subspace may 
be obtained from an equation system of order m if needed: 

[n + (e1t)2Bt+O.::lt + 8~tHl xt+lI.::lt = 

= (Bt+O.::lt + E) Ce1t?Xt + 8~tXt + 2Xt ) + 

G H ( 
3 2' el::t.t .. ) £ + + (Jl::t.t Xt + Xt + -2-Xt + t+1I.::lt· 

4. Numerical Experience 

4.1 The Ezamined Structure 

In numerical experiences, computations referred to a realistic structure. For 
a bridge spanning 30 m, types a and b simulate a bridge with reinforced 
concrete, and with steel structure, respectively. 

L=30 m LLi 
a. 

Fig. 1. Arrangement of the examined structure 

Rigidity and material characteristics are seen in Table 1. 

LLJ 
b. 

The load moving on the bridge amounts to 800 kN. In different cases, 
the moving load velocities have been assumed in the range from 0 to 50 m/so 
Internal damping had a factor "I of 0.1. 
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Table 1 
Rigidity and material characteristics of the structure 

Characteristic Type a Type b 

cross-section area 3.12m2 0.40m2 

moment of inertia of cross-section 2.13m4 0.35m4 

elastic constant of the material 20.000.000kN/m2 200.000.000kN/m2 

Poisson's ratio 0.166 0.3 
weight per unit volume 25kN/m3 150kN/m3* 
* including the accessory weight of the bridge deck pavement. 

4.2 The AppTied Numerical Method 

The dynamic problem has been solved by modal analyses. A numerical ex
periment has been made to determine the number of eigenvectors required 
for a solution of the needed accuracy. Displacement of the structure mid
point has been tested by taking an ever increasing number of eigenvectors 
into consideration. Percentages of excess displacements due to dynamic 
effect in structure of type a, for different velocities are seen in Table 2. 

Table 2 
Excess displacements due to dynamic effect 

Num. of eigenvectors --> 1 3 5 7 
velocity [m/s] L 

10 2.4 3.9 4.1 4.3 
20 4.6 6.0 6.2 6.3 
30 11.3 12.3 12.6 12.8 
50 16.5 18.7 18.8 18.8 

Apparently, reckoning with five eigenvectors yields excess dynamic 
displacements at an adequate accuracy. In this case it is no problem to 
solve the equation system with five unknowns in every time step, that 
may be avoided by application of the iterational procedure within a given 
time step. The time interval in the problem has been assumed as the 
shortest vibration time belonging to eigenvectors in the solution, of a value 

ll.t = ~~ as recommended in literature. This procedure proved to be 

convenient even for three eigenvectors. By the way, reckoning only the 
first, so- called fundamental vibration, and computing the time interval as 

ll.t = i~ (mainly for v < 20m/s) the displacement is much less than that 
for the given vibration pattern applying an exacter computation. 
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Also in this case, applying interval t::.t = 1~~ yields an adequate 

result. This remark is, however, only a theoretical one, namely, applying 
at least five eigenvectors, an interval still less than this critical one was 
obtained. 

Adequacy of the iteration procedure depends on the number of eigen
vectors reckoned with in the analysis, on the size and velocity of the moving 
mass. Applying only the first eigenvector corresponding to the fundamental 
vibration, the procedure is convergent even for a moving load of 800 kN. As 
it was seen, in the given problem advisably five eigenvectors are involved 
to achieve the desired accuracy. Now, convergency subsists even for a load 
of 300 kN. In the iteration process the number of iterations in a given step 
depends on the load velocity. For a lesser velocity this number is lower. 
The statements above are illustrated in Table 9. 

Table 3 
Number of iterations required in given time step of the iteration process 

Force kN 100 300 500 800 
Veloc. m/s 10 20 50 10 20 50 10 20 50 10 20 50 

1 3 4 4 6 6 8 9 10 11 24 28 36 
Num. 3 5 6 7 12 13 16 53 42 76 
of 5 7 8 9 32 34 34 
eig. v. 7 11 11 13 

4.9 Excess Dynamic Displacements along the Structure 

In the structure, dynamic effects cause dynamic displacements in excess to 
those static displacements, depending on the velocity and on the structural 
rigidity. In engineering practice a dynamic coefficient is applied, and the 
dynamic effect is replaced by static analysis applying a load multiplied by 
the dynamic coefficient. In fact, however, there is a system of dynamic 
coefficient as seen in Table 4. This table shows percentages of dynamic 
excess displacements of different structural cross-sections for both types of 
structures, at various velocities, for a load of 800 kN . 

This paper was intended to develop a computation method taking 
both the effect of the moving load mass and the internal damping of the 
structure into consideration. Table 5 shows what it means for dynamic 
excess displacements percentages to ignore the damping effect of internal 
damping, or to omit the mass of the moving load (800 kN). 
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Table 4 
Percentages of dynamic excess displacements 

Place of displacement 0.1 L 0.2 L 0.3 L 0.4 L 0.5 L 

Vel. [m/s] ~ type of st. a b a b a b a b a b 

5 0.1 1.0 1.3 0.2 2.1 1.3 2.4 2.0 
10 2.1 3.0 0.5 3.8 0.8 4.5 1.7 4.1 2.2 
20 4.0 1.0 4.8 1.8 5.7 3.0 6.5 4.1 6.2 4.2 
30 9.1 5.0 9.9 5.9 10.9 6.6 12.1 6.4 12.6 5.2 
50 24.0 11.7 24.3 14.4 23.3 14.4 21.3 13.1 18.8 10.8 

Statical displac. [mm] 3.29 2.02 6.27 3.85 8.62 5.30 10.1 6.23 10.7 6.55 

Table 5 
Effect of the moving load mass and of the internal damping 

Type of structure a b 

Vel. [m/s] ~ "M1- " M1 ,= 0, M1 "M1 =0 " M1 ,= 0, M1 "M1 = 0 
5 2.4 5.6 1.8 2.0 4.1 1.9 

10 4.2 7.4 2.8 2.2 3.4 1.9 
20 6.2 11.1 4.3 4.2 8.4 2.4 
30 12.9 17.8 7.9 5.2 10.0 4.9 
50 18.8 22.5 6.9 10.8 16.3 10.0 

Examinations showed omission of internal damping to result in a sig
nificant overestimation of the dynamic effect, while omission of the moving 
load mass to be a neglect to the detriment of safety. 

4.4 Displacement Diagrams 

Displacements of three different points of the structure (type b) due to a 
moving load at velocity v = 30m/s are seen in Fig. 2. 

Displacements at the mid-point of the structure for various velocities 
are seen in Fig. 8. Apparently, in different cases some forms of vibration 
appear with different weights in the solution. Fig. 4 shows the effect of 
neglecting the mass of moving load on displacements at the mid-point of 
the structure for velocity 50m/s. Apparently, reckoning with the damping 
and with the moving mass much affect the timely variation of displacements 
of the given point. 
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Fig. 2. Displacement [mm] at points L/4, L/2, 3L/4 place of moving force [m] 
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Fig. 4. Displacement [mm] of the mid-point in case of different " M1 place of moving 
force [m] 

5. Conclusion 

An algorithm has been presented for computing dynamic excess displace
ments of structures, if effects the mass of the moving load and of internal 
friction are to be taken into consideration. The developed algorithm and 
the numerical have been tested on actual problems. It may be stated that 
the mentioned factors have an important effect, justified to be reckoned 
with in the analysis of real structures. 

References 

FRYBA, L. (1972): Vibration of Solids and Structures under Moving Loads. Prague. 
Publishing House of the Czechoslova.k Academy of Sciences. 1972. 

GYORGYI, J. (1985): Viscous and Hysteretic Damping in Vibration of Structures. Peri
odica Polytechnica Ser. Civil Engineering, VoJ. 29, No. 1-2, pp. 23-31. 

BATHE, K. J. - WILSON, E. L. (1976): Numerica.l Methods in Finite Element Analysis. 
New Jersey. Prentice-Hall, 1976. 


