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Abstract 

A mixed variational principle based on a bilinear material model and on complementary 
potential energy is applied to the analysis of plane problems. Two discrete models are 
used to the construction of the fundamental equations. The first model consists of rigid 
rectangular panels connected along the edges by springs acting in tension, compression and 
shear and the other one is based on the standard finite element method. The application 
is illustrated by the solution of a numerical example. 
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1. Introduction 

The nonlinear behaviour of materials is approximated very often by mul
tilinear or bilinear stress-strain relationships. LOGO - TAYLOR proposed 
a special bilinear material model at which the Total stress is represented 
as the sum of a linearly elastic and a linearly elastic, pseudo-plastic com
ponent. Using this model and the complementary potential energy they 
developed a mixed extremum principle for the analysis of trusses [1]. Re
cently, the material model and this principle have been generalized and an 
other extremum principle based on the potential energy has been derived 
[2, 3]. Besides, the study has been extended to the optimal design of trusses 
with bilinear force-deformation characteristics and also to other structural 
problems [3, 4, 5, 6]. 

The aim of this paper is to apply the above material model and ex
tremum principles to the investigation of nonlinear plane problems. It will 
be assumed that the nonlinear behaviour can be approximated by the bi
linear material characteristics proposed by LOGO - TAYLOR. 

Two different discrete models will be used to the construction of the 
fundamental equations. The first model consists of rigid rectangular panels 
connected by springs acting in tension, compression and shear, while the 
other one is based on the standard finite element approach. 
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First, we present briefly the bilinear stress-strain relation and then 
construct the fundamental equations and the extremum principles based 
on the bilinear material model and on the two different discrete models. 
Finally, the application will be illustrated by a numerical example. 

2. The Bilinear Stress-Strain Characteristics 

The bilinear material model proposed by LOGO - TAYLOR [1] has two 
components. One component is linearly elastic (Fig. Ja) with the material 
law: 

a- = Ee, (1) 

while the other one is linearly elastic, pseudo-plastic (Fig. lb) described by 
the equations: 
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By the parallel connection of these two components a material model 
can be obtained which corresponds to the bilinear stress-strain relation 
shown in Fig. le: 

where 

(J' = 0'+ Ee, 

_ {Ee, 
(J'= 

0'0, 
if 10'1 - 0'0 < Oj 

if 10'1 - 0'0 = O. 
(3) 
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The material constants of the 'pseudo-plastic' component can be expressed 
in terms of the constants E, Eo, and 0"0 of the bilinear model: 

E= Eo- E, (4) 

The second component of the model is called 'pseudo-plastic' since it is 
assumed that loading and unloading take place on the same way without 
energy dissipation. Hence Eq. (3) represents a holonomic bilinear material 
and the solution methods based on this material model are suitable to the 
holonomic analysis of the structures. 

3. Rigid Panel Model 

The rigid panel model consists of rectangular rigid panels connected along 
the edges by springs acting in tension, compression and shear (Fig. 2a). 
This model has been proposed by KALISZKY et al. and successfully used to 
the static and dynamic analysis of prefabricated panel buildings [7, 8, 9]. 

z o 
n I 

---r----, 

:rn (i) 

J r'"---'-1.r--=-

c, 

I 
I 

I ~ --
, y I Z bl 

hI 

Q) bl 

Fig. 2. 

The disc (wall) under consideration and shown in Fig. 2a is divided 
by i = 1, 2, ... , n vertical and by j = 1, 2, ... , 1 horizontal lines (edges) 
into rectangular panels. It is assumed that the panels are perfectly rigid 
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and all the deformations are concentrated in the springs interconnecting 
the panels and acting in tension, compression and shear (Fig. 2b). The 
disc is subjected to proportional loading with the load parameter m. The 
load consists of concentrated forces and couples acting at the centroids of 
the panels. Additional loads along the free edges of the disc can also be 
applied by replacing the springs by external forces. The external forc,es and 
the spring forces acting on the panel ij and the corresponding deformations 
of the springs are listed in the vectors 

(5) 

Note that here the subscripts of N, T, nand t cannot be interchanged. 

3.1 Constitutive Equations 

We assume that the force-displacement relations of the springs can be 
characterised by the bilinear material model described in Chapter 2. The 
spring coefficients r, ro, No, I, 10 and To shown in Fig. 3a - b can be de
termined on the basis of theoretical consideration [7, 8, 9]. In case of panel 
buildings the springs represent the in situ connections of the prefabricated 
panels therefore their force-deformation relations can be obtained by ex
periments [10]. In the knowledge of the above coefficients the constants of 
the 'pseudo-plastic' components are determined by the relations 

(7) 

Then the constitutive equations of the springs are expressed in the following 
forms: 

N = {Tini, if INil- NOi < 0; 
(8) 

NOi, if INil-Noi=O. 
where 

where T = { liti' if ITd - TOi < 0; 
(9) 

TOi, if ITil- TOi = O. 
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In Eq. (8) we tacitly assumed that the response of the springs is the same 
in tension and compression. Introducing additional constraints, however, 
the sign-dependent behaviour of the springs can also be taken into account. 

Making use of Eqs. (8) and (9) and introducing the vectors of the 
spring coefficients 

k [I 11 I 1 11 I 1 11 I 1 11 ]T ij = Tij Tij hj Tji Tji Jii Tj+l,i Tj+l,i fj+l,i Ti+l,j Ti+l,j fi+l,j , (10) 

[
-:-;/ -:-;/1 - -:-;/ -:-;/1 - -:-;/ -:-;/1 - -I -;0:;11 - ] T 
N oijN OijTOij IN Oji N OjiTOjil N OJ+l,i N OJ+l,iTOj+l,iIN Oi+l.j1VOi+l,jTOi+l,j , 

(12) 
the constitutive equation of the springs attached to panel ij becomes 

where Q_. _ k ij%, 
{ 

-T 

I) - -

QOij' 

Here the vector 

if IQijl- QOij < Oj 

if IQijl- QOij = O. 
(13) 

--------------
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collects the 'pseudo-plastic' components of the spring forces. Note that 
in Eqs. (10 - 12) and (14) the subscripts of T, j, Qo and Q cannot be 
interchanged. 

Finally, the constitutive equation of the entire structure can be ob
tained by compilation of the relations of Eq. (13): 

- T Q=Q+k q, where 

9.2 Equilibrium Equation 

if IQI- Qo < 0;' (15) 
if IQI - Qo = o. 

Omitting the details the equilibrium of the panel ij shown in Fig. 2b is 
expressed by the equation 

where Gij is the equilibrium matrix of panel ij: 
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(17) 
By compilation of Eq. (16) of all panels the equilibrium equation of the 
entire structure becomes: 

GQ+mP =0. (18) 

Note that in Eq. (16) external forces along the free edges are not taken into 
consideration, however, they can be incorporated in Eq. (18). Substituting 
the constitutive Eq. (15) in Eq. (18) we can express the equilibrium of the 
structure in the following form 

G (Q +kTq) +mP = 0, 

IQI-Qo~O. 

9.9 The Eztremum Principle 

(19.a) 

(19.b) 

The mixed extremum principle elaborated by LOGO - TAYLOR for trusses 
[1, 2] can be formulated in the following modified form for the present 
problem. 
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Among all states of the discretized structure under consideration 
which satisfy the equilibrium and constitutive conditions and correspond 
to an assumed level lIo of the complementary potential energy that is the 
actual one at which the load multiplier m assumes its maximum value. 

Hence, using Eq. (19) the unknown state variables Q, q and the cor
responding load multiplier m can be determined by solving the following 
extremum problem: 

m =max! 
(20) 

(m,Q,q) 

subject to 
G (Q +kTq) +mP = 0, (21) 

/Q/- Qo ~ 0, . (22) 

~ 1 [(!t;j)2 (N':j) 
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(Tij) 
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i=l j=l 2r ij 2r'/j 21 ij 2 2 2 

1 n [(Nji)2 (NJi) 
2 

(Tji) 
2 

r' .. (n' .. )2 r'!. (n,!.)2 I·· (t .. )2] + L L =I + =I, + + J' l' + l' 3' + J' l' -
j=l i=l 2rji 2rji 2fji 2 . 2 2 

-lIo ~ O. (23) 

Here in Eq. (23) the first and the second summation terms .express the 
complementary strain energy of the springs attached to the vertical and 
horizontal edges, respectively. The proof of the principle can be found 
elsewhere [1, 2]. 

4. Finite Element Model 

The bilinear stress-strain relation of Chapter 2 can easily be incorporated 
in the standard finite element approach. To construct the fundamental 
equations let us consider a plane strain problem with e = 1, 2, ... , s 
triangular elements and i = 1, 2, ... , n nodes (Fig. 4). The nodes are 
subjected to proportional loading defined by the forces 

and by the load parameter m. We assume homogeneous state of stress and 
strain in the elements defined by the vectors 

e [e e e]T 
(j = (j z (j y (j zy , (25.a) 
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e [e C = C:z: 
e e]T 

Cy c:z:y • (25.b) 

Hence, inside the elements the equilibrium and the compatibility conditions 
are satisfied. 

4.1 Constitutive Equations 

Let us assume that the property of the material is characterised by the 
bilinear material model described in Chapter 2 and the material constants 
Eo, Go, 0"0 and E, G corresponding to the two linear stages of the material 
are given. Then the constants of the 'pseudo-plastic' component of the 
material can be obtained: 

E = Eo - E, G = Go - G, (26) 

Let us suppose that the ratios of the Young's Modulus and Shear modulus 
are equal i. e. ! = €; in both stages of the material. Then it can easily 
be shown that the Poisson ratios Vo, v, and 17 corresponding to (Eo, Go), 

(E, G) and (E, G), respectively, are equal and become: 

E 
Vo = v = 17 = 2G - 1 . (27) 

Following the concept of the bilinear material model we split the stresses 
of Eq. (25) in two parts 

where 

{ 
D e e 

iT = ..."e e , 
0'0, 

if fCtr',uo) <0, 
if f(ue,uo) =0, 

(28) 

(29) 

(30) 

where f (ue, uo) is the yield function of the pseudo-plastic component and in 
case of plane strain the flexibility matrices of the two material components 
are 

1 
v 

1-v 
0 

De = E De . De=E (l-v) v 
1 0 

(1 + v)(l - 2v) 1-v E 
0 0 

1- 2v 
1-v 

(31) 
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In addition, we assume that the constraint by which the pseudo-plastic 
component ue is controlled is expressed by the Tresca yield condition [11]. 
Hence, the constitutive equation of element e can be written in the following 
form 

and for the entire structure it becomes 

u=iT+De, 

(e = 1, 2, s, s). 

(32.a) 

(32.b) 

(33.a) 

(33.b) 

Here the vectors u, iT and e contain the stresses O'e, ~ and the strains ee, 
respectively, of the elements e = 1, 2, ... , s. 

4.2 Equilibrium Equation 

Omitting the details well known from the literature [12] and making use 
of Eq. (32) the equilibrium equation of the joint i loaded by the external 
force mF i becomes: 

h 

LBi (iT + Deee) +mFi = O. 
e=l 

y 

I y, 
I 

- I 

Fig. 4. 

(34) 
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Here for a typical element e shown in Fig. 4 

(35) 

be e e 
i = Yj - Yk, 

e e e 
Ci =::Ck -::Cj, (36) 

and e = 1, 2, ... , h denote the elements which contain the node i. By 
the compilation of Eq. (34) for all nodes i = 1, 2, ... , n the equilibrium 
equation of the entire structure becomes: 

B (iT + De) + mF = O. (37) 

4.9 The E::ctremum Principle 

The mixed extremum principle proposed by LOGO - TAYLOR for trusses 
[1, 2, 3] for the present problem can be formulated in the following form. 

Among all states of the plane strain problem under consideration 
which satisfy the equilibrium and constitutive equations and correspond 
to an assumed level TIo of the complementary potential energy that is the 
actual one at which the load multiplier m assumes its maximum value. 

Hence, using Eqs. (33) and (37) the unknown state variables iT, & 

and the corresponding load multiplier m can be determined by solving the 
following extremum problem: 

subject to 

m = ma.x! 
(m,O'",e) 

. B (iT + De) + mF = 0, 

(e = 1, 2, s, s) , 

(38) 

(39) 

(40) 

E [( e)2 (e)2 v (e e )2 ( e )2]} -+ 2(1 + v) exx + eyy + 1- 2v exx + eyy + 2 exy - TIo ~ O. 
(41) 

Here Eq. (42) is the complementary potential energy and f).e denotes the 
area of the element e . 

.. _------------_ .. _--_ ..•.... 
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5. Solution Techniques and Applications 

The above principles are stated in form of constrained, nonsmooth, non
linear mathematical programming. There are several methods in the liter
ature to solve them [13] and among others the bundle method [14] is one 
of the most suitable. The basic algorithm solves unconstrained, nonlin
ear programming problems with either a smooth or nonsmooth objective 
function and the constraints can be taken into account by formulating an 
Ll-penalty function or using some barrier function techniques. Since our 
problem consists of smooth intervals, in these intervals smooth algorithms 
can be used. Then a search direction for the variables is obtained and a line 
search is performed to get a new iteration [15]. On the basis of the above 
solution techniques a computer program was elaborated on FORTRAN 77 
language for IBM 3090 and HP 9730 computers. 
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In order to study a specific state of the structure one has to assume an 
appropriate value IIo of the complementary potential energy. Then, using 
the principle and the solution techniques described above one can determine 
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2, 

Erergy 

Fig. 6. Load multiplier-energy 

ENERGY 

Fig. 7. Load multiplier-energy 

the load intensity m and all the state variables which correspond to the 
assumed energy level of the structure. Repeating this procedure one can 
conduct a load history analysis or can easily find the state of the structure 
which corresponds to a requested load intensity. 

To illustrate the application let us consider the structure of Fig. 5a 
already subdivided into rigid panels and subjected at the centroids of the 
panels 1,1; 1,2; 1,3 and 1,4 to equal (F2: = 2kN) horizontal forces with a 
common load multiplier m. For the sak~ of simplicity we assume that all 
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Fig. 9. Horizontal displacement - load multiplier in vertical section at i = 2 

the springs have the same coefficients (Fig. 5b): 

TO = 20kN/cm, 
T = 5kN/cm, 
No = lOkN, 

10 = lOkN/cm, 
1 = 2.5 kN/cm, 
To = 5kN. 

411 

Then using Eq. (7) the constants of the 'pseudo-plastic' components are as 
follows: 

T = 15kN/cm, 
No = 7.5kN, 

t = 7.5kN/cm, 
To = 3.75kN. 
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Fig. 11. The collapse mechanism of the structure 

Some results of the load history analysis are shown in Figs. 6 - 11. Figs. 7 
- 10 contain the results obtained by the general bilinear material charac
teristics given above, while the diagram of Fig. 6 shows the results of the 
elasto-plastic structure when r = 0 and f = O. Finally Fig. 11 illustrates 
the collapse mechanism of the structure at the collapse load multiplier 
mcoll = 1.3476. 
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