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Abstract 

A generalization of the stability analysis is presented: analogously to the stability analysis 
of equilibrium, based on the potential energy, stability analysis of compatibility, based on 
the complementary energy will be introduced. 

Nonlinearly inelastic material is considered, excluding strain softening and damage 
but including strain hardening and locking. The concept of tangent and compliance 
modulus is applied. 

Global stability analysis is investigated, related to the total domain of the state 
variables,distinguishing the dead and rigid type of load, and their relation with the basic 
variational principles. 

Discrete structural model of frame structures with uniaxial nonlinear and nonelastic 
material behaviour will be analysed. 

Numerical illustrations can be studied in the author's papers, in (KURUTZ 1989, 
1993, 1994). 

Keywords: stability, tangent and compliance modulus, tangent stiffness and flexibility 
matrix, potential and complementary energy. 

1. Introduction 

The classical elastic stability analysis is based on the variational principle 
of the potential energy. The dissipative stability theories developed re­
cently need also the potential energy, namely, the increment of it, based 
on the concept of tangentially equivalent elastic structure. Some authors 
introduce also the complementary energy in stability analyses. Indeed, in 
contrast to the elastic problems, the analysis of plastification or, inversely, 
the locking material behaviour makes the variational principle of the com­
plementary energy reasonable. In order to avoid certain confusions in the 
theoretical bases, the systematization of the stability relations of the vari­
ational principles seems to be necessary. 

The dissipative stability analysis needs the concept of the tangent 
modulus and the concept of linear comparison solid which latter was intra-
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duced by HILL (1958). Namely, in the case of a general nonlinear material 
behaviour, the instantaneously changing tangent modulus is needed. 

The wide scope of the recent literature on the classical and nonclassi­
cal stability analysis, using different terminologies and the multidirectional 
approaches of the problem, all require to clear the theoretical bases. The 
type of loading device, the terms 'dead load' or 'rigid load', as well as the 
type of control, the terms 'load or displacement control', need also to clear 
the relation with the energetical description. 

In this paper, these principles of the classical and nonclassical stability 
analysis of discrete systems are presented. 

A generalization of the stability analysis is investigated: parallelly 
to the stability of equilibrium based on the potential energy, the stability 
of compatibility based on the complementary energy will be introduced. 
Global stability analyses are investigated, related to the total domain of 
possible deflections or forces. The type of loading devices and their relation 
with the basic variational principles will also be dealt with. 

A discrete structural model with uniaxial nonlinear and nonelastic 
material behaviour will be analysed. Numerical examples can be studied 
in the papers of KURUTZ (1989, 1993, 1994). 

2. Discrete Models of the Dual Variational Principles 
of Stability Analyses 

Any discrete structural model needs double finitization: finitization of the 
geometrical and that of the functional spaces. 

As for the geometrical jinitization and the related state variables, as 
frequently used in stability analyses, let the bent structure be composed by 
perfectly rigid elements connected to each other by special springs in which 
the material behaviour is concentrated. Let the behaviour of each spring 
be characterized by a one-dimensional nonlinear stress-strain function. 

Let u = {O"i} and e = {cd be the vectors of stresses and strains, resp., 
where the length of the vectors represents the number of all the stress and 
strain components over the structure. In our discrete model the variables 
O"i and ci are forces and deformations of the springs, being work-compatible 
with each other, according to the internal work or complementary work. 
Vectors u(e) = {O"i(ei)} and e(u) = {ei(O"i)} contain the one dimensional 
functions of the material law. 

Let F = {Fi} and u = {Ui} be the vectors of the given external force 
loads and the unknown displacements, moreover, let v = {Vi} and r = {ri} 
be the vectors of the given external displacement loads and the unknown 
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reaction forces, being each Fj, Uj and Vj, rj pairs in work-compatibility with 
each other, according to the external work or complementary work. 

Notice that the force load F is independent of the displacements u, 
so it is a constant or 'dead' load, just like the displacement load v which 
is independent of the reactions r, being constant or 'rigid' load. These 
terminologies and the related loading devices are detailed in (THOMPSO,N 
and HUNT, 1983, p. 188). 

By applying one-parameter load for the force and for the displacement 
type loading one-by-one, we have Fo = '\Fo and vo = j.J,Vo in which .\ is 
the force and j.J, is the shape type load parameter, while Fo and Vo are the 
initial values of the loads. 

In the recent literature some authors use the terminology: 'load con­
trol' and 'displacement control' (BAZANT and CEDOLIN, 1991, p. 648), 
related to the basic type of load parameters. If the loading process is con­
trolled by any statical parameter .\ then load control, and inversely, while 
controlling the process by a kinematical type j.J" displacement control is 
spoken of. 

As for the functional jinitization and the related generalized coordi­
nates, assume that the kinematical state of the structure can be character­
ized by n number of independent kinematical parameters, and, similarly, 
that the statical state of the structure can be described by m number of 
independent statical parameters. Then the kinematical (displacement type) 
parameters q = {qi}, i = 1,2, ... , n and the statical (force type) parameters 
p = {Pi}, i = 1, 2, ... , m are used as the so-called generalized coordinates 
of the given numerical solution. 

It is well-known that the potential energy functional1l"(e, u) requires 
the compatibility conditions as subsidiary conditions. By introducing the 
generalized kinematical coordinates q, and by applying the transformations 
of kinematics 

u = u(q) , e = e(u) = e(u(q)) = e(q), 

consequently, the functional 11"( e, u) is reduced to a scalar function 11"( q) 
which is kinematically admissible at the same time. 

Similarly, by considering the complementary energy functional 
1I"*(oo,r), the required equilibrium conditions are to be fulfilled. By in­
troducing the statical type generalized coordinates p and by applying the 
transformations of statics 

r = r(p) , 00 = oo(r) = 00 (r(p)) = oo(p) , 

the functional 11"* (00, r) is reduced to the scalar function 11"* (p) which is 
statically admissible at the same time. 
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In any case, as the connection between the functional and geometrical 
finitization, by introducing any type of generalized coordinates, it is neces­
sary to transform the concerning state variables to be work-compatible with 
the chosen generalized coordinates. 

3. The Tangent and Compliance Modulus 

By supposing that the nonlinear and nonelastic structure can be substituted 
by its tangentially equivalent elastic version (BAzANT and CEDOLIN, 1991, 
p. 635), the strain energy Wee) at e can be as the potential function of the 
stresses O"(e) considered. Thus, the strain energy is equal to the internal 
potential, namely Wee) = 11'in(e). So 

in which 
k ( ) _ d

2
11'in(e) 

t e - de2 

is the tangent modulus related to the linear comparison solid introduced by 
HILL (H. 1958). This tangent modulus is the function kt(e:) as the actual 
tangent of the stress-strain function O"(e). Indeed, the classical tangent 
modulus aims to give a simple Hooke's law like relation between the stress 
and strain increments 

{ 
ko 

dO" = Kt (e:) de: where Kt(e:) = kt(e:) 
if de: < 0, (unloading), 

if de: ~ 0, (loading), 

where ko is the initial modulus of elasticity and kt(e:) is the actual modulus 
(actual tangent) at e: of the stress strain curve 0" (e). By using the hypothesis 
of the tangentially equivalent elastic behaviour, the dual phenomenological 
theories for the hyperelastic materials can also be used. Here W*(a-) is 
the complementary strain, or the 'stress' energy, which can be considered, 
as the complementary 'potential' function of the strains that is W* (0") = 
11'in(O")' 

Thus, the idea arises that similarly to the stability of equilibrium 
analysed on the basis of the potential energy and the concept of tangent 
modulus, the stability of compatibility can be investigated, on the basis of 
the complementary energy and the concept of compliance modulus. For 
the concept of the compliance tangent modulus, we assume the validity of 
the Legendre transformation 

W ( f:) + W* ( 0") = 0" e: . 
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Thus, by excluding strain softening, the compliance modulus is restricted 
to the domain of nonnegative tangent moduli only. 

In this way, we can specify the first and second order increments of 
the smooth complementary energy as follows 

where 

() 
d21Tin(0") 

Ct 0" = d0"2 

is the compliance tangent modulus of the linear comparison solid. Thus, 
by the compliance tangent modulus, for strain and stress increments, a 
Hooke's law like relation can be given 

de = Ct(O") dO", where 
if dO" < 0, 

if dO" ~ 0, 

where Ct(O") = l/kt(e) is the actual tangent of the function e(O") and co = 
l/ko is the inverse of the initial elastic modulus ko. 

Similarly to the tangent modulus, the compliance tangent modulus 
changes instantaneously during the material change of state. This makes 
the analysis complicated. 

4. Reduction of the State Variables to be Work-compatible 
with the Generalized Coordinates of Potential and 

Complementary Energy 
The Structural Tangent and Compliance Modulus 

4.1 Reduction of the Stresses and Forces 
The Structural Tangent Modulus 

By using the principle of the potential energy, the kinematical type general­
ized coordinates q are introduced. Thus, both the external and the internal 
potential are expressed in term of the parameters q. Consequently, all the 
statical type quantities, the stresses (1' and the force loads F are reduced 
to be work-compatible with them. 

By applying the generalized kinematical coordinates q, through the 
compatibility transformations e = e(u) and u = u(q), any strain variable 
e; = e;(U(q)) of the internal potential are no more scalar. Consequently, 
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for the first variations of the compound function 7rin(q) = 7rin(e:(U(q))), we 
obtain 

in which 

are the reduced stresses being work-compatible with the generalized coor­
dinates q. 

The above derivatives also can be expressed in matrix form, so for the 
reduced stresses we have 

in which the matrices of the derivatives are 

and 

while 

M(q) = {mik(q)} = A(u) B(q) = {oe:i(u) OUj(q)} . 
OUj oQk 

For the sake of clearness, in the following expressions we neglect the paren­
theses {.} indicating matrices. 

For qualifying the stability, we need the second order increment of 
the internal potential, too 

+ OUi(q) (07rin (e) 02e:/(U)) OUk(q) + (07rin (e) oe:/(u)) 02Uk(q))sqj = 
oqm oe:/ OUmOUk oqj &/ OUk oqioqj 

= ~srr (q, Sq) Sq, 

which can be expressed in matrix form 

2 1 T( T S 7rin = 2Sq M (q) Kt(e(u(q))) M(q)+ 
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+BT(q) (O'T(e(u(q») 8(u(q») B(q)+ 

+ (O'T(e(u(q))) A(u(q))) U(q)c5q= ~c5rr(q,c5q)c5q. 
So we obtain 

afi(q) 
6f(q,6q) = {6fi(q,6q)} = -a-6qj 

qj 

421 

which are the first variations of the reduced stresses f(q), with respect of 
the generalized coordinates q. 

The matrix Kt(e) in c5f is the structural tangent modulus 

forming a diagonal matrix by assuming uniaxial behaviour of each material 
points of the structure. 

The third order matrices 8(u(q)) and U(q) are the second derivatives 
of the functions e (u) in term of u, and u( q) in term of q 

a2Uk(q) 
U(q) = {Ukij(q)} = a a . 

qi qj 

Consider now the external potential energy 7re:z:(U) = _FT u, where F is a 
one parameter force type dead load F = >.Fo, so 7re:z:(U) = ->'P6 u. Here 
the displacements uare work-compatible with the applied load F. 

By applying the displacement parameters q, for the first variation of 
the compound function 7re:z:(u(q» = ->.Ffi u(q) we obtain 

in which 

are the reduced external force loads. 
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For qualifying the stability, we need the second order increment of 
the external potential, too 

in which 

is the first variation of the reduced load P (q). 

4.2 Reduction of the Strains and Displacements. 
The Structural Compliance Modulus 

By using the principle of the complementary energy, the statical type gener­
alized coordinates p are introduced. So, the strains e and the displacement 
loads v are reduced to be work-compatible with them. By analysing the 
duality of the two basic energy principles, we have to consider them in 
the general function space of all the state variables, namely, in the Hu­
Washizu space (KURUTZ, 1987). By taking the saddle surface character 
of the Hu- Washizu functional into consideration, the minimum property 
of the potential energy and the maximum character of the complementary 
energy are to be used in the correct way. Thus, for the internal comple­
mentary energy the negative and for the external one the positive signs are 
used. 

By applying the principle of the complementary energy, both the 
external and the internal energies have to be expressed in term of the 
preliminarily chosen generalized statical coordinates p. This ensures the 
equilibrium required to the complementary energy as subsidiary condition. 
However, for the equilibrium conditions, we need the structural deflections. 

Since, for the complementary energy, we do not know the compati­
bility relations in advance, we can only use the necessary geometrical pa­
rameters being independent of each other. So we decide to consider the 
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deflected structure with the displacement components u, without knowing 
any relation among them. 

Thus, by taking the equilibrium conditions 0" = O"(r) and r = rep, u) 
into account, any stress functions O"i(r(p, u)) are no more scalar. 
Consequently, for the variation of the compound function 7rin (p, u) = 
7rin(O" (r(p, u))) we obtain 

= -e (0") DO" = _eT (p, u) OP 

in which 

are the reduced strains, which in matrix form are 

in which the matrices are the following 

H( -) {h ( -)} ori(p, u) H(-) p, U = ij p, U = 0 = U , 
Pj 

thus, G = const, since O"(r) is always linear in r, that is O"(r) = Gr, 
moreover, H(u) = const since r is always linear in p, that is r = H(u)p. 
Finally 

Further, we need the second order increment of the internal complementary 
energy, too 
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= - ~6eT (p, 6p, ii) 6p 

since the second derivatives of the linear functions u(r) and rep, ii) are 
zero. In matrix: form 

from which the first variations of the reduced strains e(p, ii) can be ob­
tained 

~ T( ~ _) {~( ~ _)} oei(p, ii) ~ ue p, up, u = uei p,up, U = 0 UPj 
Pj 

in which we can discover the structural compliance modulus 

In contrast to the second variation of the internal potential which contains 
the second variation of the strains, we can observe that the second variation 
of the internal complementary energy does not contain the effect of the 
second variation of the stresses, since it is always equal to zero. This fact 
concerns the staticallinearity, the lack of symmetry of the two basic energy 
principles. 

Let us consider now the external complementary energy 1r;z(r) = 
JLVT r related to a single displacement type rigid load v = JLVO, where JL is 
the load parameter. 

By applying now the chosen force coordinates p and the equilib­
rium transformation r = r(p, ii), for the first variation of 1r;z(r, ii) = 
1r:z(r(p, ii» = JLv6r(P, ii) we obtain 

~ * o1r;z(r) ork(p, ii) ~ T r: QT( -) r: 
u1r ez = 0 ~ UPi = JLVo ur = p, u up 

rk UPi 

in which 

QT( _) _ QT( _) _ {Qi ( _)} _ o1r;z(r) ork(p, ii) _ p, u - JL 0 p, U - JL 0 p, U - -
6rk °Pi 

= JLV~ork(p, ii) = QT 
°Pi 

are the reduced external displacement loads being independent of the force 
parameters p, due to the staticallinearity. 
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For qualifying the stability, we generally need the second order in­
crement of the external energy, too. However, in the case of the com­
plementary energy, due to the always valid statical linearity, we find the 
second variation of ?r;;z; to be zero, not only in term of r but in term of the 
generalized force coordinates p, too: 

~2 * 1 T( -) ~ u ?re:z: = 2! 8Q p,8p,u up = 0 

since Q is independent of p, so 8Q = o. Namely, the first variation of the 
reduced displacement loads Q is always zero. 

In contrast to the existing second variation of the external poten­
tial, we can state that the second variation of the external complementary 
energy vanishes. 

5. Stability of Equilibrium by Using the Variational 
Principle of the Potential Energy 

By introducing the tangentially equivalent elastic structure, the inelastic 
pro blems can be solved in small loading steps by a series of quasi-elastic 
analyses. Consequently, for the stability analysis of inelastic structures, 
the infinitesimal increment of the potential energy is needed (BAZANT and 
CEDOLIN, 1991, Chap. 10). 

5.1 Equilibrium Paths of Load Controlled Structures 

Con1'lidering the related tangentially equivalent elastic structure of a nonlin­
early non elastic one, for the equilibrium at q::; qo, the first order infinitesi­
mal increment of the total potential must vanish. By taking the previously 
detailed first order increments of the internal and external potential into 
account, for the condition of equilibrium, we have 

6?r ::; fI' (q) 8q - '\Pij (q) 8q ::; 0, q = qo . 

If the variation 8q of the generalized coordinates q are arbitrary, the scalar 
expression leads to a system of equations 

f(q) - '\Po(q) = 0 

which reads in matrix form 

q= qo 
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related to the linear comparison solid including the tangent modulus Kt. 
For a global analysis, related to the total domain of possible deflections, 
the instantaneous tangent modulus Kt(e) is needed. 

The set of unknowns (q, >.) of the total potential consists of two parts: 
the displacements q and the load parameter >.. The equilibrium state q(>.) 
is the kinematical state of the structure by which the structure is in ,equi­
librium at the load level >.. The equilibrium paths >.( q) are equilibrium 
load-deflection functions, load functions in term of the equilibrium posi­
tions q. The equilibrium path is the geometrical place of the equilib~ium 
states (THOMPSON - HUNT, 1974). 

In most cases of practical interests, the equilibrium conditions are 
highly nonlinear in q. Matrices B (q) and M( q) generally consist of trigono­
metrical or other transcendent functions of q, so the equilibrium paths can 
hardly be obtained in a closed form. Thus, for the numerical handling of 
the equilibrium conditions approximations are needed. Generally, for the 
material functions, polygonal approximations are needed, so the problem, 
by using nonsmooth analysis can be solved (see KURUTZ, 1989, 1993, 1994). 

5.2 Stability of Equilibrium Paths of Load Controlled Structures. 
The Function of the Structural Tangential Stiffness Matrix 

By using the tangentially equivalent elastic structure, the stability of equi­
librium can be decided on the basis of the tangential stiffness matrix of the 
structure, obtained by the second order increment of the total potential 
(BAZANT and CEDOLIN, 1991, Chap. 10), namely 

2 1.;r 1 TIT 
6 11"= 26I~(q,6q)6q- 26P (q,6q,>')6q= 26q K(q,>')6q. 

Here the matrix 

q= qo 

is the well-known tangential stiffness matrix, namely the Hesse matrix of 
the potential at the equilibrium state q = qo. Thus, the condition of the 
stability can be decided on the basis of the tangential stiffness matrix: for 
stability it has to be positive definite. 

By using the expressions detailed above, and by substituting the func­
tions of the smooth equilibrium paths >.(q) into K(q, >'), the function of 
the tangential stiffness matrix for qualifying the equilibrium paths can be 
obtained 
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K(q) = MT (q) Kt(e(u(q))) M(q) + BT (q) uT (e (U(q))) B(u(q))B(q)+ 

+AT (U(q)) UT (e(u(q)))U(q) - A(q)F5U(q). 

The stability of equilibrium paths and all the influencing effects can 
be studied by analysing the above terms of the tangential stiffness matrix. 

6. Stability of Compatibility by Using the Variational 
Principle of the Complementary Energy 

Similarly to the introduction of the complementary energy, which was a 
mathematical fiction, we introduce the stability analysis of geometrical 
states of structures, based on the complementary energy. 

6.1 Compatibility Paths of Displacement Controlled Structures 

The term 'compatibility path' was introduced by TARNAI in (TARNAI, 
1990), related to finite mechanisms. Analogy between the bifurcation of 
equilibrium and compatibility paths was detailed in his thesis, for struc­
tures consisting of rigid elements. 

In this paper, for the stability analysis of compatibility, solid structure 
is supposed. 

For the condition of compatibility at the state p = Po, the first ~rder 
increment of the total complementary energy vanishes, namely 

81r* = _eT (p, ti) 8p + P,Q5 (ti) 8p = 0, p = Po 

leading to the system of equations if 8p are arbitrary 

-e(p, ti) + p,Qo(ti) = 0, p=po· 

The classical problem of HILL, the linear comparison solid, can be extended 
to the dual problem, too. Thus, by excluding strain softening the condition 
of compatibility can be written in the form 

_NT (p, ti) e (0' (r(p ti))) + p,HT (p, ti)vo = 0, P=Po 

by applying the expressions detailed above. This relation is the compatibil­
ity equation, resulting the relations among the displacement components 
ti at the statical state p = PO. 
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This equation seems to be formally equal to the dual expression of 
equilibrium condition, however, the staticallinearity makes it different. In 
contrast to equilibrium problems, here the force parameters p appear only 
in the material functions. 

In order to investigate a global analysis related to the domain of 
possible forces p, the instantaneous compliance modulus Ct{O') is ne~ded. 
Thus, polygonal approximation is offered again (see KURUTZ, 1993, 1994). 

The set of unknowns (p, JL) of the total complementary energy consists 
of two parts: the force coordinates p and the load parameter JL. The 
compatibility states p, (JL) are the statical states of the structure by which 
the structure is in compatibility with the given displacement load, at the 
load level JL. The compatibility paths JL(p) are compatible deflection-force 
functions, namely, the rigid load in term of the compatible reaction forces 
p. The compatibility paths are the geometrical place of the compatibility 
states. 

6.2 Stability of Compatibility Paths of Displacement Controlled Structures 
The Function of the Structural Tangential Flexibility Matrix 

By using the concept of tangentially equivalent elastic structure, the stabil­
ity of compatibility can be decided on the basis of the tangential compliance 
matrix of the structure, obtained by the second order increment of the total 
complementary energy: 

2 * 1 T 1 T o 7r = -zoe (p, op) op = -Zop C(p) op 

since Q is constant in p, 50 6Q = O. Thus, due to the statical linearity, 
from the expression 027r* the load parameter JL vanishes. 

In the case of the variational principle of the complementary energy, 
the second variation of the total complementary energy consists of only the 
internal part, so the matrix 

C(p) = {Cij(p)} = 827rin (p) 
OPiOPj 

p =Po· 

Thus, the function of the tangential flexibility matrix, the function of the 
Hesse matrix of the complementary energy is as follows 

C(p) = NT(ii) Ct(O'(r(p, ii))) N(ii) 

leading to the conclusion that the function of the tangential flexibility ma­
trix contains the force parameters only in the term of the material function. 
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Thus, the stability of compatibility depends on the material behaviour, the 
actual compliance moduli Ct(u) only. 

For a global analysis, the instantaneous compliance modulus 
Ct(u(r(p, u))) is needed. These moduli are the inverse of the tangential 
stiffnesses. Since from this analysis the strain softening is excluded, the 
tangential compliance moduli are not allowed to be negative. If the mate-, 
rial becomes infinitely rigid (perfect locking), then the compliance modulus 
becomes zero. This leads to the loss of stability of compatibility. 

In contrast to the stability of equilibrium, where the material soften­
ing can cause stability losing, in the case of the stability of compatibility 
the material hardening leads to the losts of stability. 

Conclusion 

Dual variational principles of stability analyses were introduced. Similarly 
to the stability analysis of equilibrium, stability analysis of compatibility 
can be investigated. Similarly to the concept of the tangent modulus, as a 
basis of the analysis, the concept of compliance modulus was used. 

One dimensional material functions and simple discrete structures 
were used. Path stability analysis was investigated. Similarly to the equi­
librium paths of load controlled structures, compatibility paths of displace­
ment controlled structures can be obtained. 

The stability conclusions can be decided similarly to the classical 
cases. While the stability of equilibrium states and paths is based on the 
function of the structural tangential stiffness matrix, the stability of com­
patibility states and paths is based on the structural tangential flexibility 
matrix. 

Numerical illustrations can be studied in the papers of the author, in 
(KURUTZ 1989, 1993, 1994). 
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