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Solution methods for geometrically nonlinear problems which have 
been formulated using variational principles in conjunction with a dis­
cretization technique such as the finite element method may be classified 
into three levels according to the method of mathematical formulation. 
The most widely used 'first level' formulation is the principle of stationary 
potential energy. The second level of formulation is obtained by expressing 
the condition of equilibrium directly. It can also be obtained by setting the 
first variation of potential energ-y to zero. The third level of formulation 
expresses the condition of incremental equilibrium. It can be obtained by 
setting the second variation of the energy potential to zero. 

In the first scalar approach, when it is possible to establish a total 
potential for the system (e. g. large deformation analysis of elastic materi­
als), the problem can be reduced to the well-known 'direct search' problem, 
namely the unconstrained minimization of a nonlinear function of several 
variables. 

In the second and third vector approaches the equations of motions 
reduced to a system of nonlinear (linear) equations are unknown nodal 
point parameters of the finite element model. 

Most methods us~d today are of incremental type combined with some 
schemes for equilibrium iteration (BATHE and WILSON (1976), BERGAN, 
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HORRIGMOE, KRAKELAND and SOREIDE (1978), WRIGGERS, WAGNER and 
MIEHE (1988) ). 

It is well known that the straightforward load incrementation-itera­
tion tend to break down at extremum and bifurcation points of the solu­
tion path and may be quite unreliable. A large number of 'automatic' or 
'adaptive' solution schemes have been proposed for dealing with stability 
problems with extremum points, instable branches, bifurcations, etc. How­
ever, currently no method is available that can be said to be totally reliable 
for every type of problems, (RIKS (1984), WATSON, KAMAT and REASER 

(1988». . 
The scalar approach has been used for nonlinear structural analysis 

by several investigators. Past experiments using minimization algorithms 
for structural analysis reveal that at least for small scale problems, the 
'direct energy minimization technique' is better suited than the most other 
incremental-iterative techniques for solving highly nonlinear problems. The 
most important result is that for comparable problems on the primary sta­
ble path the 'direct search' is superior to the standard linearized technique 
in terms of CPU time by a factor of 2 (KAMAT, VAN DEN BRINK and WAT­

SON (1980» . However, such techniques are not very popular. Most of the 
applications of the potential energy are used for explaining the behaviour 
near critical points. 

During the past decade signific::lnt. advances have been made in the de­
velopment of algorithms that solve large scale (sparse) non-linear minimiza­
tion problems. Extension of the minimization methods to large problems 
centers on reducing the storage requirements of the second order quasi­
Newton methods or improving the efficiency of the first order conjugate 
gradient techniques (KAMAT, VANDEN BRINK and \7\IATSON (1980». 

In the present study for geometrically non-linear space trusses, the 
direct potential energy minimization technique combined with the robust 
homotopy algorithms and (1983) ) is re-examined and 
the effectiveness of the 
solutions is demonstrated. 

The fundamental problem about the energy minimization is that the 
load response curve of the structure is a composite of stable and unstable 
branches rather than a single-valued function of the load. Using straight­
forward load incrementation with the potential energy of the system as a 
function to be minimized it is possible to locate only the stable equilib­
rium configurations. This problem is connected with the Newton method. 
Although this algorithm is quite efficient, it has obvious iimitation in the 
vicinity of limit points and along unloading branches. 

In a recent paper WATSON, KAMAT and REASER (1985) provide an 
evaluation of the globally convergent quasi-Newton method and the homo-
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topy method with regard to their suitability for solving nonlinear stability 
problems. The algorithm extends a quasi-Newton method utilizing the 
model trust-region strategy to solve a system of nonlinear equations by 
minimizing the F( 'It, 1)* F( 'It, 1) least squares function. This 'quasi energy 
minimization' procedure used in conjunction with deflation and tunneling 
is theoretically useful for locating equilibrium configurations along unstable 
path, but in the practical size applications the use of the method is numer­
ically very complicated. In the proposed hybrid algorithm, the standard 
homotopy method was used the vicinity of limit points. 

Due to the numerical difficulties of tunneling and deflating, in our 
study on the stable primary path the original energy minimization ap­
proach was applied to give accurate starting information to the modified 

In our from the first limit point the mod-
ified method was used. Vie note that in the ongulal 
length based) homotopy method no Newton-type iterations are performed. 
The modified homotopy algorithm to increase the reliability of the predic­
tions may be able to perform 'corrector type' iterations. The modification 
in different context was originally proposed by (1980). 

In this -work, we consider simplified procedures for large deforma­
tion and post-buckling analysis of three-dimensional (geometrically perfect) 
space-truss structures, wherein each of the members is assumed to carry 
only one axial load. Only a conservative system of concentrated loads is 
assumed to act at the nodes of the trusses. The nonlinear behaviour of 
solids will be restricted to elastic deformations which is sufficient for most 
purposes concerning stability problems. The basis for this procedure is the 
principle of stationary potential energy for a ela.stic body. 

In order to capture the effects of changes in global geometry of the 
truss a large displacement model has been adopted in our study, using a 
total Lagrange representation. 

Let's number the nodes of the structure and the elements. In this 
way, two node numbers are ordered to one element number. The first one 
indicates the right, the second one the left side of the truss. The trusses 
jointed to the k-th node can be chosen by the help of the matrix [Cl which 
contains in the k-th row the node numbers of k-th truss. 

Let us denote the un deformed length of the j-th truss member by Cj 
and let (Cij)i=1,2,3, be the projections of undeformed length Cj onto the 
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co-ordinate axes. The length of the member after deformation is given by, 

, 3 } 1 
L'(u) = {'\:""'(C" +r U.; _I U .. )2 2 ] L..- ],t ]. ]: , 

i=1 
(1) 

where C'Uji)i=1,2,3 and eUjdi=1,2,3 are the displacements at the right and 
left nodes of the j-th element. The displacements of the k-th node are 
denoted by (Uki)i=1,2,3 without upper index. 

The potential energy of the structure for linear elastic material is 
given by 

IT - 1 ~ (Lj(u) - Cj)2 ~ ~ 
- "2 L.J EjAj CJ' - L..- L..-PkiUki, 

j=l k=l~l 

(2) 

where n is the number of elements, m is the number of nodes, Ej is the 
modulus of elasticity and is the cross sectional area of the j-th element, 
and (Pki)i=1,2,3 denotes the components of the external load acting on the 
k-th node. 

The vectors of displacements and applied loads are 

(3) 

( 4) 

The principle of stationary potential energy gives the following explicit 
equilibrium equations: 

j 

Lj(u) - Cj (Cj,i +7' Uji _I Uji) 

Cj Lj(u) 
=0, 

n 

= 

i = 1,2,3, k = 1, ... , rn, 

where r Uji and IUji denote the i-th component of the displacements belong­
ing to the j-th row as well as first and second columns of the matrix [C], 
respectively. 

In this method we assume that the equilibrium equations (KAMAT 

and WATSON (1987)) have the form: 

F(U,A)=O, (6) 
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where u, Fare q vectors and .>t is a scalar (load intensity factor). Assuming 
that there are no bifurcation points, the zero set ofF(u,.>t) is a smooth curve 
9 which does not intersect itself or other zeros ofF(u,.>t) in the generic case, 
and along which 

DF(u,.>t) = [DuF(u, .>t), DAF(u,.>t)J (7) 

has rank q. The exceptional cases are where I intersects itself or has 
bifurcation points. 

The smooth curve 9 can be parameterized a scalar t, 
so, 

A(t)) = 0 

id,mtically in t, and the initial Y:ll lle problem 

(t), A(t» DAF(u,(t), A)(t»l{ t} = 0, 

u(O) =u.o, A(O) = 0 

(8) 

(9) 

(10) 

has precisely I as its trajectory (where the dot denotes differentiation with 
respect to t). In this approach the derivative (it,~) is specified only implic­
itly, and special techniques are required to solve the initial value problem. 

Note that the initial value problem defines 

y(t)={t} (11) 

up to a scaling factor, which is defined by the choice of t. For example let's 
choose the parameter as follows: 

y*(t)y(t) = 1, (12) 

and if t = y(l;:) (the k-th component of y) then 

E!ky(t) = 1, (13) 

where E!k is the kth unit vector (modified homotopy method). 
The a.lgorithm requires computa.tion of the kernel of matrix DF. This 

can be easily and efficiently done for small dense matrices, but the la.rge 
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Fig. 1. 

sparse Jacobian matrix of structural mechanics presents special difficulties. 
For more details on the solution methods see WATSON, KAMAT and REASER 
(1985), KAMAT and WATSON (1983). Reliable routines for this problem are 
developed by KUBICEK (1976) and WATSON - FENNER (1980). A routine 
for modified homotopy approach was presented by ABBOTT (1980). 
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-2.6217 

Fig. 2. 

The most important characteristic of the Abbott method is that fol­
lowing a prediction used by HALL and WATT (1978), the equations 

(14) 

can be solved with the predicted Y~~l as initial estimate. 
We choose t to be one of the components of y, Yk say. 
Having set ti+l = (y,Ji+1, the Jacobian of (14) is made up of q of 

the column of DF (the kth being omitted). The index k is chosen so as 
to make the resulting equations well conditioned. With this choice of t, 
(14) can be solved to arbitrary accuracy and subsequent prediction can be 
accurate to the order of the predictor formula employed. With this change 
a reduction in the number of functions and Jacobian evaluation of about 
20 % and often better can be expected. 
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~tun1erical Itesults 

The proposed hybrid method was validated on the snap-through response 
of a hexagonal truss structure, the data for which are shown in Fig. 1. In 
this paper the computation of the primary path is stopped after the first 
two limit points. These points are associated with a local snap-through of 
the upper dome, see Fig. 2. 

The hybrid algorithm begins as a quasi-Newton algorithm with an 
assumed or specified load step. The 'jump' of the minimization was taken 
to be an indication of the existence of a critical point in the vicinity. The 
modified homotopy method was therefore initiated. For the smooth tran­
sition from the direct minimization to the modified homotopy method, the 
last eight points were stored in every step. Because of its good stability 
properties we have chosen the Adams-Bashforth predictor for the predic­
tion of y(ti+1) from the past values of y and y. Using the predicted point 
as initial iterate, the new points were computed with the modified Newton 
methods. For computing the kernel of DF matrix the QR transformation 
was used. The limit points can be calculated very accurately by the homo­
topy method with no difficulty. In the example exact Hessian and Jacobian 
were used. 
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