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Abstract 

The paper presents three modifications of the j\.itken accelerator for or irr,oguia;riy 
convergent sequences. The first proposal, based on backward extension of a sequence, 
is particularly useful if a small number of regular sequence terms is known. The ne..1Ct 
two procedures integral exponential and hyperbolic - can be applied to sequences with 
irregular or disturbed convergence. Numerical examples show essential error reduction of 
the limit of sequences under consideration. 

Keywords: Aitken method, sequences, convergence. 

First proposals of procedures accelerating convergence of sequences are 
described to A. C.AITKEN [1] who calculated the approximate Jjrnit aA 

of a sequence Sn (converging to the exact limit a) with the help of the 
exponential curve: 

The limit aA can here be easily calculated from three consecutive sequence 
terms Yk == y(k) = Ski k = n -l,n,n+ 1: 

2 
Yn-lYn+l - Yn 

aA = 
Yn-l - 2Yn + Yn+l 

(2) 

This procedure has been generalized by D. Shanks [5] to the multiple non­
linear transformation: 

Yn,l = Sni 
I 2 

Yn-l,mYn+l,m T Yn,m 
Yn,m+l = 

Yn-l,m - 2Yn,m + Yn+l,m 
(3) 

In the system (3) the sequences for greater m converge for most cases faster 
than the basic sequence Sn. 
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Recently greater interest on this problem has been focused, because 
the majority of numerical results is given in the form of certain sequences. 
Many various procedures accelerating convergence of sequences have been 
formul::l.ted. They are gathered and discussed in detail by C. BREZINSKI 

[2-4] and J. WIMP [6]. 
The present paper proposes certain general modifications of the algo­

rithms mentioned above. They can be applied to several terms of a regular, 
slowly convergent or even divergent sequence (Sec. 2) and to a sequence 
with disturbances (Sec. 3). 

2. Backward Extension of Sequences 

The transformation (3) or any multiple procedure leads to a system which 
is generally called 'Shanks triangle' (Fig. 1) [5), In each column of this 
triangle the finite sequences have smaller number of terms. According to 
D. Shanks, for N terms of the given sequence (N being an odd number) 

the term YM,M (M = Nil) gives the best approximation of the sequence 
limit. Our first proposal consists in filling the right upper part of the 
system (the shaded area in Fig. 1) and regarding the term Yl,N as better 
approximation of the limit than YM,M. The calculation of Yl,N (N being 
here not necessarily odd) is possible after hypothetical 'backward' extension 
of the given sequence in the following way. 

Each sequence can be treated as a sequence of partial sums of a certain 
series (series of differences between the consecutive sequence terms). Hence, 
taking as an example the series: 

n 

8n = Lak, 
k=l 

we can calculate the terms vrith smaller indices the subtraction: 

and extending this procedure to negative indices we obtain: 

81 = aI, 
80 = al - a1 = 0, 

8-1 =0- ao = -ao, 
8-2 = -ao - al. 

(4) 

(5) 

(6) 
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S-5 = Y-51 

S -4 = Y-41 

S-3 = Y-31 

S-2 = Y-21 

S-l = Y-l1 

So = YOl 

SI = Yll 

S2=Y21 Y22 

S 3 = Y31 

SI, = Y41 Y42 

Ss = YS1 
investigated area 

. . 

. {,s~~imation of the 
\/ ~~~Ording to Shanks 

1////\' 
V Shanks triangle 

timi! 

Fig. 1. Shanks triangle 
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Negative terms can be formed in various ways, however, observation of 
typical algebraic series for n :5 0 suggested certain rules of their derivation. 
Table 1 presents four most characteristic types of backward extensions of 
the series. In the first two of them we observe symmetry or antisymmetry 
of the sequence (with respect to the index n = 1/2). In the next two - the 
characteristic value of the zero term: ao = 0 or ao = ±oo can be noticedj 
the remaining terms may then be formed in an arbitrary way as they do 
not affect the final approximation of the limit Yl,N' With the help of the 
Shanks formula (3) we can now build the triangles of convergence for all 
the types of backward extensions (Table 2). 

Comparing character of convergence of the given sequence and the se­
quence of partial sums of the exemplary series (Table 1) we assume the par­
ticular type of the backward extension. This comparison gives as a rule not 
a unique answer, however, satisfactory results can be obtained by applica­
tion of different schemes. Small discrepancies between Yl,N calculated with 
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Table 1 
Typical schemes of backward extensions 

BE Schemes Exemplory series 
backward extension- r-classical series 

definition ( type) l/: X )( l/: X Symboll Ok Sk 
)" 

So S2 S-2 S-l :::>1 

BE1 
0 0 = - 0 1 So= 0 I {2k~1)3 ~ ~ /0 ~ ~~ S_n = Sn 28 

qn = - °n+1 27 27 

BE2 
00= 0 1 So= 0 ~ 1 ~ ~ Vo /, ?/ 

S_n = - Sn ~ (2k-l)1 .ill Q n = °n+1 9 9 

0 0= or~~ So= 0 ~ ~V/ v: ~ BE3 I qn - orbitc S.n = or:~ -C><) -e><> 0 
I 

0 0 =0.!,SO=S.1=O ~ ~V/' v:~ BElt I {Zkk_ 1)3 27 0 I] 0 
Qn - orbitr.lS.n_1- orbitr. 1 £ 

27 27 

the help of various types of backward extensions make the final result more 
reliable. Table 3 shows essential gains of the backward extensions proposed: 
BE4 gives the final error reduced 6 times, whereas BE2 - over 20 times. 
The structure of the triangles can have various forms depending on the 
scheme of the transformation (not necessarily (3) which is used in Table 2). 
For example, analogical triangles based on so called () -transformation [2] 
were also successfuily applied in the authors' investigations. 

All the numerical results obtained by the authors confirm that the 
application of the full triangle schemes to a small number of terms of any 
regular sequence considerably reduces the final error of calculations. On 
the other hand, for larger n the procedure can be less effective. 

3. Integral Procedures 

In regular sequences the relation between their terms are also regular and 
the approximate limit can be obtained relatively exactly with the help of 
several seque~ce terms. However, in many engineering investigations the 
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Table 2 
Shanks transformation applied to various BE schemes. 
The results regarded as the best are shown in frames 

~ 1 2 3 4 
!=== 

-3 Y31 

-2 Y21 Y22 
,,- -1 Y" Y,2 Y,3 
W 0 I 0 Yr - Yl1 Y03 I Y04 CO 02-2 

i- 1 Y
" 

Y'2 V. I 
2 Y21 Yn I 

3 I Y31 

-4 -Y~l 

-31 -Y31 I -Y32 

-2 -Y21 I -Y22 -Y23 

N -1 -Yl1 -Y,2 -Y'3 -Y
'4 

W 
0 0 i CO <>0 <>0 o<l -

L,j13 = Y221J14 = Y23 i- 1 Y'l Y,2 

2 Y2i Y22 Y23 ./ 

3 Y31 Yn 
4 YI,I 

-21 0<) <>0 <>0 C><) 

-1 0<) <>0 <>0 C><) 

M 
0 0 Y02 = Y,1 Y03 = Y12 104 = Y13 W 

!1l 1 Y,,/' Y,2 Yn 
/' -f-

2 Y21 Y22 

3 Y31 

-4 ~41 

-3 Y..31 Y-32 

-2 Y-21 Y- 22 Y-23 
.....j'" 

-1 0 0 0 0 W 
CO 0 0 0 0 I 0 
f- 1 I Y" Yn Yn ~ 

2 I Y21 Yn 
3 I Y31 I 
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Table 3 
T(BE4) (upper results) and T(BE2) (lower results) applied to the series 

n ( l)k-l 
Sn = I: ~ with the limit L = In 2 = 0.69314718 

k=l 

1 2 3 4 5 6 

0 0 0 0 0 
O.OOcaJOOO = 00 00 = 00 

0.7017543'9 0.EB271066 0.693230~k. 0.69315332, ')(,. 
1. CXX:OOOOO 0.66660067 

~12;'t8 %. -O.62Qe°,{,o .0. 11'3&' .O.0Q8Q 

0.70000cro Q69259259 0.69321937 0.69314902 
'+42.7 %. -.58.X>c~ '9.687%" .0.6001 %0 .0.10'\ 1 "',,"co .CooZ7 %. 

0.69322970 0.69315331 
0.5000cxx:0 0.70000000 0,69259259 40.11Q',-OQ 'O.OOS8%. 

0.69321937 0.69314902 
-279.7 %" t 9.007 %0 -05001%0 .j.Q.1041 0/0<> "'0.0021 t>fc.,. 

0.83333333 O.EE()L, 7619 0.69327731 0.69314013 
+202.2. 0;'. -5.5S5°k .0.1977 0).,0 -0.0\02700 

0.58333333 0.694444£'4 0.69310576 
- \58.4 '700 +1.672%0 -o.osqe°A,.,. 

0.70333333 10_69242424 
-100.1 ob, -1.043°;'" 

0.61666667 
_\10.3 0 / 00 

regularity of the results is considerably disturbed. It is visible not only 
for experimental data but also in more complicated numerical algorithms 
where regularity vanishes because of simplifications in the calculational 
process. 

In such cases the application in Eg. (2) of the sequence terms rela­
tively distant one from another is one of possible ways of estimation of the 
sequence limit [8, 9] (the formula (2) is valid also for any equidistant se­
quence terms). However, the limit obtained in this way considerably de­
pends on the choice of these terms, especially in the cases of significant sin­
gle disturbances. Such random choice of the control points (nodes) involves 
also unavoidable loss of information contained in the remaining terms of 
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y 

Pig. 2. Increments of the exponential function 1':4 = AAX + BA + CA exp( -!SAX) 

the sequence. The present section proposes certain integral procedures us­
ing groups of the sequence terms instead of the single terms. The process of 
integration (summation) applied here smooths the disturbances mentioned 
above. 

Any sequence Sn can be treated as a discrete function y(ni) with 
an integer argument. Extension of the argument domain to real numbers 
(y(ni) -+ y(x)) makes possible integration of this function and approxima­
tion of the integral by 

(7) 

resulting from integration of the function (1). 
The constants AA, BA, CA and "'A are to be found by leading the 

curve (7) through four equidistant points Y(ni)i i = 0,1,2,3. The sought 
estimation AA of the sequence limit a is here the tangent of the angle cf; of 
the function asymptote (Fig. 2). 
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The proportions 

= = where i = 0,1,2,3, (8) 

resulting from the properties of the curve (7), valid for equidistant ni lead 
to the quadratic equation: 

where ii = nl - no = n2 - nl = n3 - n2. 
The constants a, (3, / are the increments of the integral of the con­

vergence function: 

nl n2 n3 J y(x)dx, (3 = J y(x )dx, 1= J y(x)dx. (10) 
no n2 

In particular, they can be directly the sums of the respective groups of the 
sequence terms. 

The equation (9) has two real roots: 

(3 
= (11) 

In a general case only the nrst root represents the approximation of the 
sequence limit. However, if simultaneously Cl: -7 (3 and / -7 ,13, also -7 

and the second formula can be practically used. If n = 1 the root 
reduces to the form (2), therefore this expression can be considered as a 

T~caseCl:- # 
means variation of the integral, Le. the lack of the asynlptOGe. 

This relation suggests integral linearity of the sequence which means its 
accurateJ.y - the lack of its limit and antilimit [5]). 

The can also be to U::;Cl1.1i::tt.U.rJ 

converging sequences. This is visible in the pror-)Ol~tl'on.s 
and can have different sign. 

exponential procedures pres,;nt.ed vve can 
introduce procedures based on a curve: 

YH = (LH + 
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In this case the expression: 

2 
YpYr - Ya 

afI = . , 
- Yp - 2yq + Yr 

(13) 

analogical to the form (2) is valid for q2 = pT, where p, q, 'l' are numbers of 
the sequence terms. This relation was often used by the authors for quick 
rough estimation of the limit in the case of hyperbolic type sequences and 
series. 

The integral hyperbolic procedure leads also to a quadratic equation 
with two roots: 

= ~--~------~ ,8 
2n' 

from which the first one should be taken in a case. Similarly to the 
roots (ll) the second one is valid only for 4a = 2(3 = Af (then both roots 
coincide) and the case 4a - 4,8 + I 0 but a A

( - (32 f. 0 means the lack of 
the limit estimate. 

4. In.tegl"ai ProcedUl"es 

The sequence of 24 consecutive partial sums of the series: 

n 

O.9J.~-1 -+ G = 10.0, n = 1,2,3, ... , (15) 
k=l 

disturbed in a random way inside the limits 
a) determined in percentages (±0.05Sn ) b) constant (±O.5) 

was chosen to compare effectiveness of the discrete and integral procedures. 
300 random samples were formed and estimators of a mathematical expec­
tation a300 and a standard deviation 0"300 were calculated. Table 4 shows 
results of the example for: 

1. discrete exponential procedure with maximal possible distances be­
tween the control points (nodes) (n = 2, 13, 24) - Ed 

2. integral exponential procedure (n = 8,16,24) - Ei 

It contains also 10 eX.:treme values obtained in each case mentioned 
above and the number of the results inside the limits (9.5-10.5) accepted as 
admissible. The results show evident superiority of the integral exponential 
procedure proposed. The hyperbolic procedures gave here worse results 
because of the exponential type of the series (15). On the other hand, the 
hyperbolic procedures gave better results for trigonometric series in which 
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Table 4 
Investigation of the limit of the series Sn = I:~=l O.gk-l with local disturbances 

Umits of disturbances + 0,05 Sn -l- 0.5 

Procedures applied Ed E. Ed E. 
l l 

8.9359 9.1818 8.8763 9.1126 

Five minimal 8.9551 9.1940 8.9502 9.1725 

sample values 8.9863 9.324618.9520 9.2019 

19.0010 9.3873 8.9774 9.2491 

19.009] 9.4093 8.9886 9.2841 

Number of results I 
within acceptable 

1
166 245 130 228 

limits ( 9.5~10.5) 

111.6: 10.8419 12,3323 11,2858 

Rve maximal 11.6648 10.8780 12.4759 11,3092 

sample values 111.865'1 10.9418 112.4855 11.3264 

·12.0159 10. 9T~ j12.6759 11.7988 

12 )871 11.0812112.682"/1125644 

Math. expectation 
11).0440 10.0369110.1855 10.0693 

a 300 

Stand. deviation 0.64 72 0.35301°.81981°.4725 
0'300 

the coefficients have a hyperbolic form. This was also observed during 
investigations of the boundary series method [7] in which the solution was 
obtained in the form of certain combinations of trigonometric series. 
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