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The different wavelength components of the anomalous gravity field v/ere treated as trend, 
signal and noise parts of this field. Since signal models have been investigated 
extensively by others, therefore the role of deterministic information used in the predic­
tion process was emphasized. In order to improve the reliability of prediction, severai 
trend models were tested on regional and local data sets in the Pannonian Basin. The 
results show that the prediction errors can be significantly reduced by applying simple 
and generalized physical trend models, although it is a laboursome task to produce high 
quality prediction below ±l mgal R.M.S., even if the data point density is high (e.g. 
1 pointjkm2 ) Since the method of Least-Squares Prediction is not an automatic process 
(that is its use requires an a priori analysis of the physical-statistical content of input 
data), beyond the practical results useful information can be gained from the solution to 
a prediction problem about the features of the gravity field. 

Keywords: free-air gravity anomaly, trend determination, topographical and crustal infor­
mation, high quality prediction. 

Introduction 

The determination of the geoid in the error range of a few centimeters 
requires accurate gravity data with a deviation less than ±l mgal. This 
accuracy requirement can be easily fulfilled if the usual precision (±O.Ol 
mgal) of relative gravity measurements is considered. Due to the geophys­
ical assumptions used in the computations of gravity anomalies, however, 
the final reliability of the gravity material processed in geodetic computa­
tions is generally less than ±O.1-O.5 mgal. Obviously, this deviation range 
refers to points where measurements were carried out, so the accuracy de­
creases if a new set of data (e,g. a set of gridded values) is derived from 
the given set of gravity anomalies. The gridding of scattered data is un-

lLarge part of this investigation was supported by National Scientific Research Founda­
tion program 'Global and local geoid investigations' No. 5-204. 
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avoidable if new and very efficient methods, like FFT and Fast Collocation 
are used in the determination of the geoid. Therefore, the investigation 
of interpolation methods used in gravity field prediction is very important 
because of the high accuracy requirements set up for the derived values. 

There are many methods to create a regular grid from scattered data 
and the Least-Squares Prediction (generally called Least-Squares Colloca­
tion) is only one but efficient method among them. Its power lies in its 
analytical approach. A measured or given quantity (e.g . .6.9i) is considered 
as a sum of (1) a deterministic trend AiX, (2) a stochastic signal Si, and 
(3) a random noise ni: 

(1) 

Such a presentation Eq. (1) provides a possibility to connect (1) the trend 
component to the global or regional (but in any case the regular, 'exactly 
computable'), usually long wavelength features of the Earth's gravity field, 
(2) the signal component to its usually medium and high frequency part 
which cannot be modelled deterministic ally and (3) the noise to the errors 
and uncertainties which are present in the given gravity anomalies. In this 
method it is also possible to vary the deterministic and stochastic models 
and their model parameters, that is, to approximate the reality as far as 
the information content and density of data make it possible. 

Since earlier investigations [e.g. KRAIGER, 1988, MORITZ, 1976] ex­
tensively discussed the role of different stochastic models in the process 
of prediction and collocation, therefore the effect of trend removal on the 
accuracy and on the behaviour of the prediction -;,vill be only examined and 
demonstrated by test computations. 

Since the method is widely known [MORITZ, 1980; HEISEANEN and "'J.V"U'" 

1967] the fundamental equations of the prediction are only repeated here. 
In the case of gravity anomalies the predicting equation has the follo-

o r wmg rorm: 
(t.1g - + (2\ 

/ 

where t::.g is a vector of known gravity anomalies around or near the point 
to be predicted, !:::,gp is the predicted value, C ps is the vector of covariances 
between the location of!:::,g sand 1\ gp, C;J is the inverse variance­
covariance matrix of .6.g - s (subscript sn indicates that the signal and 
the noise components are supposed to be uncorrelated, so their autoco­
variances can be simply included in one matrix), A is the shape matrix of 
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the trend model belonging to the locations of ~g - 5, X is the vector of 
model parameters, Ap is the shape vector of the trend model at the compu­
tational point. 

The mean square error of the prediction m~ is given by Eq. (3) ac­
cording to the error propagation law 

2 C C T C-1C mp = 0 - ps an ps, (3) 

where Co is the variance of the signal and the other symbols been 
already explained. 

Theoretically, the autocovariance of gravity anomalies separated 
distance r are given by ( 4), if homogeneity and isotropy are assumed 

where 7' = (4) 

This expected value can be cOrrlputed on the sphere by the triple 
integral of (5) 

2.. .. 2 .. 

Iv.f{D.giD.gj} = 0

1
2 f J Jf D.g(iJiAi)·D.g(iJjAj)simJdiJdAda. (5) 

oTt J 
A=O{}=OCC=O 

[MORITZ, 1972J 
A spherical harmonic expansion of Eq. (5) derived by TSCHERNING 

and RAPP (1974) is usually used for the global case. Although there is 
a possibility to use the global ACF in local computations [LACHAPELLE, 
1975J for local purposes some plane approximations of Eq. (5) described 
in textbooks and many papers [MORITZ, 1980; JORDAN, 1972; KASPER, 
1971J are usually more suitable due to the convenience and the higher 
computational speed. 

The Role of Trend Removal in the Least~§quares Prediction 

There are two reasons why deterministic information should be removed 
from the given set of data. (1) From the modification Eq. (6) of Eq. (3), 
the scaling factor of the estimated error variance of a predicted gravity 
anomaly is variance (Co) of the input data; and (2) according to the theory 
of the method, stochastic processes having 0 mean value can be predicted, 
therefore any trend being present in the data violates this theoretical con­
dition 

(6) 
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Fortunately, a proper trend removal usually resulting in 0 mean residuals 
(so Eq. (7) holds) decreases the variance of residuals according to Eq. (8) 
and improves their statistical conditions as well 

(7) 

(8) 

Although especially in the case of free-air gravity anomalies, a series of data 
reduction is often needed to reach satisfactory results because this kind of 
gravity anomalies contains all the information and effects which is present 
in the Earth's gravity field. Therefore, a large variety of trend removals 
is possible because the anomalies are physically (that is deterministically) 
interpretable due to their physical origin. 

It will be shown that geological-geophysical data involved in the pro­
cess of prediction may reduce signh~cantiy prediction errors even if their 
density and geometrical distribution is poor. Obviously, these auxiliary 
data should be independent from gravity data and gravity measurements 
at least in a regional sense. 

Data Sets Used Test 

One regional and four local real data sets v.[ere available to carry out the 
compu tations. 

The regional data set consists of 509 measured points 
of the 1 si and 2nd order national gravity network 1959 [RENNER, 1959]. 
The distribution of the gravity stations is nearly homogeneous (c.f. 1) 
and covers whole The network refers to the Potsdam Gll'aility 

thus there is aflpI'm~:mla1Gely a, e:rav:itv values. 
The point density of the network is 1 point j 180 anomalies 
used in this study were computed by applying the Gravity Formula 1967, 
because the reference surface for Hungary is the 

The local data sets are parts of the very dense gravity database of 
the Eotvos Lonind Geophysical Institute with an average density of 1.3 
pointsjkm2

• The point distribution is not homogeneous due to the nature 
of the landwide gravity survey methods. The gravity stations are placed 
along lines which are usually parallel with the road system of the country 
(c.f. Fig. 2). These data sets refer to the IGSN71 datum point. 
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Trend Models 

Five different trend models were selected for test computations. 

The Mean Gravity Anomaly as a Trend Model for the Prediction 

Subtraction of the area! mean from the data is the simplest way to 'center' 
the gravity anomalies (i.e. the trend is assumed to be constant in (9) 

= for every i (9) 

where i = 1, 2, ... , np. 

Before using this model one should and prove the station­
arity of gravity data [KAULA, 19591 because the subtraction of the mean 
value of gravity anomalies distorts the global spectrum of the gravity field 
[SCHWARZ and LACHAPELLE, 1980], and it influences the form of ACF ac­
cOl'ding to the Wiener-Khinchin Theorem. 

For three parts of Hungary the fundamental statistical parameters 
are listed in Table 1. The parts were selected from the RGN I-IT data set 
according to the topographical conditions (c.f. Fig. la). 

Table 1 
Fundamental statistical parameters of free-air gravity anomalies and elevations 

area point mean anomaly variance mean elev. S. D. 
number [mgal] [mgaJ2

] [m] [m] 
DUD<l.ntul 212 +30.5 179 +159 ±59 
Alrold 185 +26.5 46 +103 ±22 
EKR 84 +29.7 158 +169 ±85 

TOTAL 509 +28.4 124 +138 ±60 

Since there are no large differences in the values of parameters and 
both gravity field and topography can be classified smooth [PRIOVOLOS] 

1988], we used the mean free-air anomaly as a trend model. The constant 
trend is usually, a too rough approximation and this fact is reflected in the 
relatively high value of 0 0 =124 mgal2 on the total area. 
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Fig. 1. a - point distribution of gravity stations in HGN I-II data set and areas (named 
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Fig. 2. a, c, e, g - point distributions of local data sets 024, 034, 136, 185, respectively; 
b, d, C, h - Contour lines of Free-air gravity ltnomalies of local data sets 024, 
034, 136, 185, respectively; contour int.: 2.5 mgal 
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4. a - .Contour map sketch of the Moho discontinuity below Hungary. Contour 
int.:· 1 km; h - Contour map of the pre-Terthtry basement below Hungary. 
Contour int.: 500 m 
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Table 2 
Parameters of the elevation dependence of free-air gravity anomalies versus the location 

of data sets 

area point mean Bouguer anomaly Bouguer coeff. density 
code number 'a' [mgal] 'b' [mgaILm] 'e.' [kgLm3

] 

024 440 +6.6 +0.0953 2274 
034 520 +9.1 +0.1206 2878 
136 400 +16.1 +0.0999 2384 
185 440 +3.4 +0.0801 1911 

HGN I-II 509 ±12.99* ±0.1122 2677 
* - value refers to the Potsdam Gravity System 

Linear Correlation between the Free-air Gravity Anomalies 
and the Point Elevations as a Trend Model for the Prediction 

By examining the correlation between point elevations and the correspond­
ing free-air anomalies in Fig. 3, the parameters of a linear trend can be 
determined either by linear regression or by collocation itself [SUNKEL 
1977]. The application of linear regression computation (a special case 
of Least-Squares Adjustment) is more simple than the collocation because 
of the great number of measurements. The collocation takes, however, into 
account the statistical behaviour of the signal by its autocovariances in 
Eq. (3), therefore the trend parameters can be better estimated 

(10) 

Following the usual formalism, the linear correlation can be described by 
Eg. (11) 

where 

1:.,/'1) 
a 
b 
hp 
I:.,a(p) 
~B 

(11) 

- the free-air anomaly at point p 
- the regional/local mean Bouguer anomaly 
- the so called Bouguer coefficient 
- the point elevation at p 

- the Bouguer anomaly at point p, 

so the parameter vector has only two elements in Eq. (12), and the Bouguer 
anomaly is considered a.s a sum of a signal and noise components 

xT = {ab}. (12) 

In Table 2, the parameters of linear trends can be seen as a function of the 
data set locations. 
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If we· consider the approximately + 14 mgal bias in the regional data 
set HGN I-II (i. e. we subtract it from 'a' in Table II) almost zero (slightly 
negative) regional Bouguer anomaly is obtained. It means that the crustal 
structure below Hungary reflects statistically 'random' features without 
significant regional density anomalies causing deterministic deviations, al­
though locally, sometimes very significant deviations from the zero mean 
Bouguer anomaly can be observed. From the parameter 'b' the average 
density 75 of topographical masses can be computed by Eq. (13) where k is 
the gravitational constant 

75= 
b 

(13) 

Regionally it also shows 'normal' physical conditions, however, locally the 
densllty vanes 1911-2878 kg/m3 (c. f. Table 2.). 

Subtracting the linear trends from the corresponding free-air grav­
ity anomalies the variance of residual (i.e. Bouguer) anomalies decreased 
sometimes dramatically (c.f. Table 3). Therefore smaller prediction er­
rors were expected than in the case of the area-mean trend. However, the 
application of elevationdependence is not a simple task, because a high 
resolution Digital Terrain Model (DTM) is required for the prediction of 
free-air gravity anomalies on the investigated area to restore this elevation 
dependent linear trend at the computational point. 

Table 3 
Statistical parameters of residual gravity anomalies 

area constant trend linear trend 

code mean variance mean variance 

[mgalj [mgaI2
] [mgal] [mgal2 j 

024 0.0* 78.2 -0.05 60.7 
034 0.0* 27.4 -0.03 9.6 
136 0.0* 99.8 +0.04 60.2 
185 0.0" 93.3 -0.00 15.3 

HGN I-II 0.0'" 124.5 -0.02 78.9 

* - values are zero by definition 

Crustal Structure a$ Trend Model for the Prediction 

Naturally, a fine and detailed 3D geological-topographic model of the inves­
tigated area could significantly reduce the variance of the signal, as it was 
pointed out by aothers [e.g. GEIGER et al., 1990], however more simple 
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generalized connections can also be used between gravity anomalies and 
the crustal structure, as it will be shown. Due to the availability of the 
Moho discontinuity and basement topography data on the area of Hungary, 
their relation to the Bouguer anomaly field was determined. Depth data 
were obtained from POSGAY et al. (1981) in case of the Moho 'surface', 
and from the basement (pre-Tertiary) contour map of Hungary edited by 
Kilenyi and Rumpler in 1984 (c.f. Fig. 4). The residual Bouguer anomalies 
were computed from the HGN I-II data set by Eq. (12) with parameters 
of Table 2. It has been assumed that the geometry of significant layers in 
the crust and the structure of the gravity field correlates well at least in 
regional sense. 

In the comparison of Moho 'topography' and Bouguer anomaly a. rel­
ative independency or even a slight negative correlation was observed in 
Fig. 6a caused by a local group of points from the hilly district of Trans­
danubia, where the Moho discontinuity reaches a depth of 37-38 km steeply 
falling down from the average depth of 27 km in spite of the significant pos­
itive Bouguer anomalies (c.f. Figs. 4a-5a). This result shows that: 

the effect of Mob.o topography is very small on the residual Bouguer 
anomalies, hence the Moho structure cannot be used in gravity field 
prediction as trend model, 
the slight negative correlation refers to significant density irregular-

in the upper crust, since in the isostatic model positive 
correlation is supposed between a Bouguer gravity anomalies and the 
geometry discontinuity, 

and agrees with MESKO (1988). 
6b the correlation between the basement and the 

residual Bouguer anomaly is plotted. As a non-linear correlation 
can be seen due to the significant of sediments which appears 
in the Pannonian Basin [BIELIK, 1991]. We a heurlStic inverse 

which could be fitted the 

ra.nge 

.!jcmE~ue;r anomaly the regional 
is the depth of the basement at p 

model para.:m€:te:rs have the follovnng values after the adjustment: 

A = 112.7 ± 61.6 mgal km2 

d = 2.7 ± 0.6 km 

!1g1'ed = -6.7 ± 1.3 mgal 
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where A is the scaling factor of Eq (14), d is some shift-parameter of the 
model and D..gred is the average value of gravity anomalies reduced by the 
depth-dependent term of Eq. (14). 

In Fig. 7e the shape of the empirical ACF of the reduced anomalies 
shows improvement (compare it to Figs. 70.-%) due to the vanishing of the 
slight oscillatory feature. The correlation length did not change consider­
ably. The variance of reduced gravity anomalies is 57.8 mgal2

, which is less 
by 27 p.c. than the variance of Bouguer anomalies computed by the linear 
trend. This variance is still relatively high, because the total decrease of 
variance (Co = 124 mgal2) is only ::;-j 50 p.c. This result implies that: 

- when excluding the constant and very long wavelength terms (ap­
prox. ,\ > 1000 km), the main part (::;-j 85 p.c.) of gravity anomaly 
field comes from the upper 7 km of the Earth crust and from the 
topography 

- almost 50 p.c. of the power of gravity field (,\ < 1000 km) comes from 
local and shallow density variations causing very short wavelength 
(approx. ,\ < 100 km) anomalies in Fig. 5b 
due to the lack of a detailed density model (no further signal reduc­
tion is possible) the residuals can be considered as realizations of a 
stochastic process although this is not a theoretical statement. 

The OSU89b Gravity Field as a Trend Model jor the Prediction 

Since the present maximum degree and order of Global Geopotential Mod­
els (GGM) approaches 100 km resolution in wavelength, therefore their 
use as a reference-trend field seems to be obvious in gravity field predic­
tion. ADAM'S paper (1990) has shown that gravity field computed up to 
n, m = 360 from the coefficients of OSU89b GGM fits sufficiently to the 
regional features of the free-air gravity field in 
this trend from the free-air gravity anomalies, the variance of residuals 
decreased from 124 to 72 mga12

, which is almost equal to the variance of 
Bouguer gravity anomalies. The shape of the empirical ACF on Fig. 7d, 
however, shows some systematic features because of its oscillatory lobes. 
The estimated wavelength (or the average wavelength) of the dominant 
period (or periods PAPP, 1992]) induced by the trend removal is approxi­
mately 110 km, which corresponds to ::;-j lOon the sphere of the Earth. This 
is exactly equal to the wavelength referring to the maximum degree and 
order of the used model, so it may indicate some spectral problems. It is 
supposed that the power beyond the Nyquist frequency (iN) is folded over 
into the close frequencies below iN, therefore the high degree coefficients 
of the OSU model are distorted (overestimated) in magnitude and this dis-
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tortion results in false periodicity of the model gravity field which is not 
present in the real gravity field. This folding effect is a consequence of the 
sampling theorem [BRIGHAM, 19741. For the computation of OSU89b co­
efficients, the gravity anomalies were averaged on 0.50 

X 0.50 blocks (RAPp 
and PAVLIS, 1990), so the sampling density D. was 0.50

• Thus from Eq. (15) 
the wavelength AN of the Nyquist frequency is exactly 10 

. 

(15) 

Obviously, there can be other dominant wavelengths in the processed 
data set, but in this case, when the ID and 2D autocovariance functions of 
the Free-air, Bouguer, reduced Bouguer and residual Free-air (D.9FA -

D.gOSU89b) anomalies in Sa-Sd respectively, are considered 
and these have no waNelertgths slg;mhc,an,[;ly diJfeling 
from AN. 

Four sections in various directions (c.f. Fig. Bd) were created from the 
ACF of residual Free-air anomalies (c.f. Fig. 9). Two periods are really 

significant in the data. One of the dominant wavelengths (Ar ~ 1.10 ~ 120 
km) is slightly longer than AN, and the other one (A2 ~ 0.80 ~ 90 km) is 
slightly shorter than that. 

These disadvantageous oscillations negatively influence the quality of 
prediction as it will be demonstrated in the discussion of practical results. 
Therefore, according to the recommendations by Rapp and PAVLIS (1990) 
every individual case in which GGM-s are planned to be used a-s reference 
gravity field should be examined carefully. 

The Process of Prediction and 

As a first step, a Hirvonen-type analytical plane ACF Eg. (16) was chosen 
as based on earlier investigations (e.g. KRAIGER, 1988). In the selected 
ACF model, Co is the variance of gravity anomalies, Band p influence the 
curvature and correlation length parameters, rij is the distance between 
two point gravity anomalies D.gi and D.gj [MORITZ, 1980]. 

1 
C(rij) = Co (1- B2

rrj
)p' where p = 0.5. (16) 

Parameters Co and B of the ACF were fitted to the empirically determined 
ID ACF-s of the different sets of gravity anomalies. As a second step all 
the point gravity anomaly data were predicted to themselves, so in this 
way point errors could have been computed by Eq. (17) for every gravity 
station. Naturally, the actual computation point 

C, _ A ~mown _ A predicted 
UI - I-l.gz 1-l.9i , (17) 
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where prediction was performed, was closed out from the set of available 
data which represented the possibly known points in the prediction. This 
method was used in order to 

avoid the reduction of the number of available points by selecting 
certain check points from the data sets, 
to increase the number of samples for the determination of statistical 
parameters, 
to avoid a modification of the point distribution and geometry; to let 
all the advantageous and disadvantageous effects act on the process 
of prediction (e.g. points along the edge of the area). 
Since an earlier investigation [PAPP, 1992] has shown that the statis­

tical distribution of the prediction errors is not a Gaussian (normal) but a 
systematically Laplacean, therefore the M. A. D. (Mean Absolute Devia­
tion, Eq. (18) of residuals bi are summarized in Table 4 as a function of the 
considered area 

1"'::'" -
O"M.A.D. = - . L 10, - 01 

n i=l 
(18) 

and the trend model applied in the process of prediction. In (18), "5 
is the median and n is the number of point prediction errors derived by 
Eq. (17). 

Table 4 
M. A. D. values of prediction residuals in [mgal] 

area trend models 

code 1 2 3 4 

024 ±1.2 ±0.5 
034 ±1.2 ±O.5 
136 ±O.S ±O.4 
185 ±1.0 ±0.5 

HGN I-II ±4.9 ±4.0 ±3.5 ±5.3 

trend models: .1. areal mean of free-air gravity anomalies 
2. elevation-dependence of free-air gravity anomalies 
3. basement depth-dependence of Bouguer gravity anomalies 
4. OSU89b model gravity field 

From Table 4 ,the positive effect of proper trend removal is obvious 
although M. A. D. numbers given for the local data sets 024, 034, 136, 
185 are smaller approximately by 30 p.c. than the realistic numbers of 
deviations, for geometrical reasons [PAPP, 1992]. 
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The efficiency of Least-Squares prediction of gravity anomalies was demon­
strated by practical examples. High quality prediction can be obtained by 
this method if a careful a priori investigation of the physical-statistical 
content of data is performed and a series of data reduction is applied to de­
crease signal variance and improve statistical conditions. The accuracy of 
prediction heavily depends on the resolution of the used trend model as well 
as on the geometrical distribution of point gravity anomalies. Therefore, 
it is a difficult task to produce high quality prediction (0' < ±l mgal) even 
if the point density is extremely high (~ 1 pointjkm2) because the point 
distribution is the and there are large 

gaps between the gaps can be efficiently 
by applying some additional deterministic information, therefore it is rec­
ommended to use available geodetical and geophysical data in the process 
of prediction which have physical relation to the anomalous gravity field. 
The relatio;n can be formulated by simple and generalized, rather regional 
than global correlation models and these models can be used efficiently in 
the process of prediction. 

The author is grateful to Mr. Zoltan SzabO for providing selected data sets from the 
gravity database of the EOtvOs Lorand Geophysical Institute. 
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