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Abstract

In this paper, the significance of interpolation of deflection of the vertical by means of tor-
sion balance meesurements is pointed out, fellowed by outlining its fundamentals. There-
after, its practical methods of solution will be presented.
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Introduction

Knowledge of deflection of the vertical is essential in geodesy, relating to
positioning data measurable in Earth’s real gravity field and those com-
putable in some normal gravity field. At the same time, knowledge of de-
flections of the vertical offers an important possibility of the detailed geoid
determination. Feor geoid determination, a dense net of values of deflec-
tion of the vertical is necessary. Astrogeodetic determination of deflection
of the vertical is extremely expensive and tedious, therefore in practice a
sparser net of astronomical stations has to be put up with and this astro-
geodetic net is interpolated by different methods.

Interpolating the values of deflection of the vertical may be made
either by gravimetric interpolation methods involving gravity anomalies,
or — with the knowledge of curvature gradients of potential surfaces of
the gravity field — by using torsion balance measurements. From among
the two methods, practical applicability of the former is rather restricted,
adequate accuracy being conditioned by the availability of detailed gravity
data around the point to be determined at a distance of min. 2000 km.
Besides, the gravimetric interpolation method is excessively computation-
intensive and difficult to be programmed.

All these urge to consider the interpolation of deflection of the verti-
cal based on torsion balance measurements. Under Hungarian conditions,
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in addition to gradient values W., and W.y, also curvature data W,y and
Wa = Wyy — Wze are available with great precision. Since earlier tor-
sion balance measurements were made mainly for geophysical prospecting,
mostly only gravity gradients have been processed. Up to now, gravity cur-
vature values essential in geodesy — rather promising for detailed determi-
nation of deflections of the vertical —~ have been left unprocessed.

Lordnd E6tvos was the first to point out that interpolation of de-
flection of the vertical is possible from torsion balance measurements, and
made also relevant trial computations (EOTvOs, 1906, 1909; SELENYI,
1953). The method of E6tvds was further developed in a simplified form
by Jénos Renner (RENNER 1952, 1956, 1957), without having an oppor-
tunity to safely check the computations. Besides the two Hungarian sci-
entists above, only two members from the staff of the Columbus Univer-
sity USA: J. Badekas and I. Mueller (BADEKAS — MUELLER, 1967), as well
as U. Heineke in Hannover (HEINEKE, 1978) had been concerned with the
subject, — but even their works had still much o be cleared.

After outlining the fundamentals of interpolation of deflection of the
vertical relying on torsion balance measurements, possible practical com-
putation methods will be presented.

Actually, this seems to be the most economical method for interpo-
lating deflections of the vertical, thereby for precise geoid determinations.

Fundamentals of the Interpolation method

fed

us consider distribution of deflections of the vertical in a small area of

[
arth’s surface where torsion balance measurements are available.
Let computations be referred to a Cartesian y tem, having an arbi-
trary point r’g w1t__:1 the examined area as origin. Let +z and +y by the
. .

-

e g

sint to the north and to the east, respectively, and

vertical direction at & so that i’zs positive branch
points downwards. ough these directions vary from point to point, at
any point of a modera te area — of a size at most 0.5° x 0.5° — the same co-
ordinate directions may be taken to a fair approximation, namely the ef-
fect of deviation due to mer'd'an convergence is within the range of relia-
bility of observations (SELENYI, 1953).

Thereby, direction z; at any point 7 of the concerned area is parallel
to the z-axis through point F, and the direction z; to the tangent of
astronomical meridian through point 7, as illustrated by the arbitrary
point F; (actually 1 = 1) in Fig. 1. The z-axis at point P; being parallel to
the vertical a$ origin Fy, presumably, direction of vector g; at point P, does
not coincide with direction z. Ia Flig. 1, vector PV is, in fact, projection
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of vector §; on plane zz, while vector P, H is projection of component g,
of vector g; on the same plane. (There are negligible deviations between
vectors PV and §;, as well as PiH and 7,.)

Fig. 1.

Be © the astronomical latitude of point P, and let A®; symbolize
the angle between directions PiV and z at point P;, so the astronomical
latitude of point P is:

[le]]
[[a]}

+ A®;,

1 fuumd
While, according to Fig. I

—gz1 = g15in A®y,
it is to be written, for a small angle A®;, as:
A®, = -1 (1)
g1
The same train of thought leads for the variation of astronomic longitude

in plane yz to:

AAjcos®y = ——gé"-l-. (2)
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Eguations (1) and (2) yield components N and E of the angle between
geoid normals at points Py and P;. Values A®3 and AA; for Py and some
P, may be determined in a similar way. These may be applied for writing
differences between P; and Pe:

(88880 = ~2e - 02) =3 (52 ) - (F2) | ©

and

where W is the potential of Earth’s real gravity field, while § and & are
mean values of gravity, and astronomical latitude between points P and
P,. By analogy with (1) and (2), (3) and (4) yield components N and E
of the angle included by level surface normals at P and 5.

By introducing notations %Ig = W, and %%/— = Wy, Egs (3) and (4)
may be written as:

88y = A&y =~ (Wey = W) (5)
and

(Ahg — LA1) cos® = =2 (W, — Wiy), (8)
respectively.

Lewvel surfaces of the potential of normal gravity field, normal gravity,
and directions of normal gravity vectors, in this relation, geodetic latitude
and longitude of any point, termed normal geodetic latitude ¢ and normal
geodetic longitude ,A, may be interpreted on the analogy of the Earth’s
real gravity field.

Relationships similar to (5) and (8) may be written between the var-
ious of the gravity field direction in normal gravity field, that is, of normal
geodetic co-ordinates n¢ and A of points P, and P, and the derivatives
conform to potential of the normal gravity field (normal potential):

1
Dnips — App1 = -z (Uzz - Uzl) (7)
Y
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(An)\Q - An}\l) COS(;B == (Uyo Uyl) 3 (8)

where U is the normal potential, and ¥ is uhe mean value of normal gravity
between points P, and Ps.

Inside a limited area of size 0.5° by 0.5°, approximations of ¥ = § and
= ,® = » are permissible — and so are single values § and @ valid for
all the area rather than between two newghbouﬂ'\g points alone (BADEKAS
and MUELLER, 1967), to be indicated simply by g and ¢.

Let us subtract Egs (5) and (7), as well as (6) and (8) from each other:

D 90

(A8 — Lnps) = (A%1 = Anpi)]g=
= ( ;’Vzl) -+ \U;;:, - UZl) 9 (9}

[(Ahgy — Ands) — (AA1 — Apdi)]gcesp =
=—(Wy, =Wy ) + (Uy, = Uyy). (10)

By definition, differences (9) and (10) between astronomic and normal
geodetic latitudes and longitudes yield differences of components £ and 7
of deflection of the vertical between points P; and Po:

(o -&)g=— Wz, — Way) + Uz, — Uzy), (11
(m2 —m)g =~ Wy, — Wy ) + Uy, — Uy,) . (12)

Introducing notations

D1 = & — &,
Anpi=m2—m
and
AW =W -U (13)
leads to equations:
gA&Zl = —AW:L‘Q + AW:BU (14)

gAna = —AW,, + AW,,. (15)
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Remind that in classic geodesy, deflection of the vertical is frequently in-
terpreted as:

g‘:@—'@:
n= (A—"\)COS(Pa

where @ and A are astronomic co-ordinates, while ¢ and A are geodetic
(ellipsoidal) co-ordinates of point. :

By physically interpreting the ellipsoid, serving as reference surface,
as one level surface of the normal gravity field, then ellipsoidal and normal
geodetic co-ordinates are related as:

Q@ =np — R, (16)
)\ = n)\, (17)

where # is the difference of directions of the normal gravity field between
point P on the earth surface and the ellipsoid surface along the normal
plumb line at point P. In (16) and (17), normal plumb line being a plane
curve lying in the normal meridian plane of point P has been reckoned with.

For an altitude A of point P over the ellipsoid, applying curvature of
the plumb line of normal gravity field:

B

P h-R- sin 20, (18)
where [ is the dynamical flattening of normal gravity field, and R is the
Barth’s radius (MAGNITZKI and BROVAR, 1964).

By differentiating (18), it is obvious that in the mentioned 0.5° x 0.5°
area, variation of & is practically negligible. Hence, (11) and (12) are also
valid for the classical geodetic interpretation deflection of the vertical.

Thus, in the following, when interpreting of deflection of the vertical
it is needless to distinguish between the two conceptions, permitting to use
the concept of deflection of the vertical in both interpretations.

Components of deflections of the vertical — more closely, their values
multiplied by g, that is, horizontal components — seemed to be determined
by first derivatives of the potential. While torsion balance measurements
yield second derivatives

o _o'w oW W
WA~'—a?2-~*é§ and Wzy—é—%’.
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n
A A
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Fig. 2.

Thus, the computation problem is essentially an integration to be solved

by approximation.
To this aim, first the co-ordinate transformation in F%g. 2 will be per-
formed, a.ccordmg to matrix equation

n| __ | cosaiz sinoig ||z
s| | —sineaig coseain| |y

Accordingly:

. oW _OWdz  OW oy _
Wn = B = Ba Bn —(ﬁg—- Wy cosag + Wysin aig,

oW BW Oz OW 8y

W, = P = B2 s - _531—55 = —Wp sin a1z + Wy cos a2,

while second derivatives are:

(19)

2 2 2 2
%»:Z %Vf cos”® eryg + 33;3 sin® evyp + —-—ga:?jl/ sin 2e12,
oW _ oW o*w W
BT T B sin? 12 + By S5 cos’ o2 + 75— 528y sin 2cr2 (20)

and

W o'W a*'w W
3’nas 3 3 cos2oz12+ 3312 e =5 sin 2¢19.
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This latter Wy = g% seems to result from torsion balance measurements,
with the knowledge of azimuth «jg of the direction connecting the two
points examined.

Now, by integrating the left-hand side of (20) between limits n; and

ng:

fow, - (3 (5
onds Os /o Os
ny

) = ng - WS]_ . (21)
1

If points P, and P; are close enough to let variation of second derivative Wi
be considered as linear, then integral (21) may be computed by trapezoid
integral approximation formula:

Tew . _i[(ew) (o'W (ns = ) =
onds 2 |\6nds) " \Bnds) |V VT

= é[(Wns)l + (Wns)g] 712, (22>

where ni9 = ns — n1 is the distance between points P, and 7.
On the other hand, by applying transformation (18), integral (21)
yields:

Wey — Wey = = (Wy, — Wy, )sinays + (W, — Wy, ) cos s, 23
2 1 2 1 Wy 3!

The same train of thought yields a similar expression for potential U of
normal gravity field:

Usy = Usy = = (Uzy — Uz, ) sineig + (Uy, — Uy, ) cos s, (24)
Subtracting (23) from (24) yields variation A@13 of horizontal force com-
ponent between points P, and P in direction n. By taking (23) into con-

sideration, and introducing notation
b

gA®12 = Go (25)

the following is yielded:

G2 = (—AWz, + AWy, ) sinagg — (m AWy, + AW, ) cos e,
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after substituting (14) and (15):

Gi2 = gAéa sin og — gAng cosana,

or by introducing notation

G
Tyy = 12

o

equation

719 = Ao sinayg — Amgy cosan (26)
is yielded.
The left-hand side of (28) may be computed by using (22). When
using notation (13):

Tig = - [(AWhns ) + (8Whas)s) PR (27)
with AWy, to be computed from (20):
LAWas = AWa sin 2agg + AWy cos 2e2, (28)

where AWp = Wa — Up and AWzy = Way — Uzy. Remind that Wy and
Wzy are gradients obtainable from torsion balance measurements, while
U and Ugy are gradients of the normal gravity field, referred to, e.g. the
Hayford ellipsoid, in EStvds units (HEINEKE, 1978):

Ua = 10.26cos’ o, (292)
Usy=0. (29b)

Now, by substituting (28) into (27):

T2 = %g-?- (AWA, + AWy, )sin 2019+
+ (AWay, + AWay, ) cos 2013 (30)

which, compared to (28), yields the basic equation wanted, relating the
variation of components of deflection of the vertical between two points to
gradients from torsion balance measurements:

Aéyosinayy — Agipcosagy = (31)
= 7;—393 (AWa, + AWa,)sin2a13 + (AWay, + AWay, ) cos 2012)
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This is a very important relationship between gradients from torsion bal-
ance measurements, and deflections of the vertical.

Being given a third point P; forming a triangle with P; and Ps, leads
to further two relationships

Ty = Aé3gsin cgs — Anag cos s (32)

and

Ti3 = Aészysinez — Ansi cos s (33)

as in (26).

Proceeding along the triangle formed by Py, P, and Ps, variation of
components of deflection of the vertical must be zero, permitting to write
further two relationships in addition to the already deduced ones (26), (32)
and (33); that is:

Dby 4+ Abag + Aéiz =0 (34)
and
Anoy + Ansg + Ans = 0. (35)

Thus, for any s'mslv triangle, there are six unknowns: Ay, Afse, Aéys,
Lino1, Anzg, Ams; for them five, mutually independent equations: (26),
(32), (83), (34), (35) may be written. Unambiguous sclution to the problem
requires further information.

Now have 2 look at the interpolation chain of n points in Fig. 4. The
n points form a chain of n — 2 triangles with 2n — 3 i:r gle sides, each
having two unknown components of deflection of the vertical along sides —

ﬁe:zce, for all of the network, there is 2 total of 4 — 8 unknowns. While for
the n — 2 triangles, 2n — 3 equations of the (26) type, and 2n — 4 ones of the
(34) and (35) types may be written, hence for the 4n — 6 unknowns there
are 4n — 7 equations in all. For an unambiguous solution to the problem, a
further information (equation) — independent of those above - is required.

For instance, in case of a chain of interpolation seen in Fig. &, if
values of components &1, &, or 71, 7. of deflections of the vertical at the
two extreme points are known, it may be written

n—1
S A& =6— 6 (36)

i=1

or
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3
[
I

Lnig1i =1a — M. (37)

i ]

-

<

So that a total of 4n — 6 equations may be written for the 4n — 6 unknowns,
permitting unambiguous determination of all unknown differences A€ and
An between components of deflection of the vertical,

2. Practical Solutions of Interpolation

In those above, fundamentals of interpolation of deflection of the vertical
applying torsion balance measurements were considered. Interpolation can
be solved by means of various practical computation methods. Every prac-
tical solution relies on the fundamentals presented above, but the different
computation methods are not equivalent — mainly as to reliability of their
respective results. Let us have a look at the practically possible solutions.

Practical solutions belong to two groups. In one variations, A€, Ay of
components of deflection of the vertical are taken as unknowns, while the
other group, components £, i of the deflection of the vertical at the points
are the required unknowns. In the first case — when differences between
the components of the deflection of the vertical between points are taken
as unknowns — there are three possibilities of solution:

— inverting the complete coefficient matrix assembled of coefficients
of the 4n — 6 equations produced by applying (26), (34), (35), (36), (87)
type equations, that is, determining 4n — 6 unknown values of differences
A€ and A7 of deflection of the vertical,

— taking the group of the coeficient matrix above referring only to
the absolutely necessary 2n — 2 unknowns into consideration,
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— determining unknowns A¢, Apn step by step (by successive
elimination).

2.1. Traditional Solution Method

The solution method considered as traditional is due to Loridnd Eo6tvos
(E6TVOs, 1906, 1909; SELENYI, 1953). In this method, in the interpola-
tion nets, the differences of deflections of the vertical between neighbouring
points are considered as unknowns, writing for the unknowns A€ and Ay
equations of types (26), (34), (35); as well as (36), or (37). Now, for arbi-
trary interpolation net (or chain) of n points, 4n — 6 unknown values of dif-
ferences A¢ and A7 of the deflections of the vertical are to be determined.
In the preceding item, it was shown that for an unambiguous determination
of unknown values A¢ and A7, the same components of deflections of the
vertical hence either £ or 7 values at two arbitrary points of the interpola-
tion net (possibly, at end points) are needed. Since in most of the cases, it
is not sufficient to know differences A¢, An between neighbouring points,
but the very €, 77 values at every point are needed, it is insufficient to know
one component of the deflection of the vertical at two points of the net,
but also the value of the other component at some point should be known.
In other words, if the very &, 77 values at points of the interpolation net are
to be determined, then, in addition to torsion balance measurements, two
known (astrogeodetic) points are needed, with the knowledge of both £ and
7 values in one of them, and either the € or the % value in the other. Practi-
cally, both & and # values in the two known asirogeodesic points are avail-
able, thus, there is an excess of data, the problem is redundant. In this case,
the most probable value of the unknowns is determined by adjusiment.

In practice, solution to the adjusiment problem is made by using the
least squares method.

2.2. Reducing the Number of Unknowns AE, L&n

Computing interpolation chains by the method in item 2.1 involves much

of needless excess work, a drawback both for accuracy and economy of the

method. In case of the conventional computation method, excess work con-

sists in inverting, for a chain of n peints, all coefficient matrices belong-

ing to the 4n — 6 unknowns, although for an unambiguous solution to the

" problem only 2n — 2 unknowns are needed. For a high n value, this may
significantly reduce accuracy of the interpolated A, An values.

To reduce the number of unknowns, let us compose the system of

4n — 6 unknowns into two groups. One of the groups contains only the
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necessary unknowns (for instance, for the chain in Fig. 8, only the A¢, Agy
values for sides P, Po, Py P3, P3Py, P4 Ps, ... the other group will contain the
needless unknowns (e.g. A€, A for the remaining sides P P3, Py P, P3P,
...). The other group of unknowns is omitted in the following, and only
coefficient matrix of the system constructed of equations for the needed
unknowns is to be inverted. This latter is merely of size (2n—2) X (2n—2),
hence much less than that of size (4n—6) X (4n—6) in the conventional case.

Now let us see what necessary equations are sufficient to be written.

Let us consider Fig. & again! Equations (28), (32), (33) yield for the
first triangle (P o P3), eliminating unknowns Aésy and Ansi:

Afgrsinany — Angicosony = Ty, (38)
A3 sin oy — Angg cos oy = Tog, (39)

— A& sinaa + Angy cosazi—
— Afsgsinag; + Anzgcosasr = T (40)

while for each of the other triangles further two equations result:

Airospisineoyi jig — Anjag i coseyrire = Tig1 v (41)
and
— Afip1isin oo + Ay i COS Qg i—
= Aiy2i+1 80 Qipn i + AN v cOSitai = Tias, (42)
where 1 = 2,3,4,...,n — 2.

These make up 2n — 3 equations with 2n — 2 unknowns A€ and L.
For an unambiguous solution to the problem, in conformity with our pre-
vious statements, further information (equation) is needed to obtain from
(known) deflections of the vertical at points of the interpolation net. Pre-
vided &, m1 and &g, nn values are given at two arbitrary points of the in-
terpolation chain (possibly at end points), then, in addition to (38), (39),
(40), as well as (41), and (42), also conditional equations (36), (37) may
be written, and the most probable values of unknowns A€, An may be de-
termined (by adjustment).

2.8. Interpolation by Successtve Elimination

Determining unknowns A£, An by successive eliminations rather than by
inverting coefficient matrix of the unknowns offers practical advantages.
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To present essentials of the step-wise determination, let us consider
again the interpolation chain in Fig. 8. Irrelevant unknowns (components
AE, An of deflection of the vertical for sides P, P, Po Py, P3Ps, PP, ...)
will be omitted, only those for sides Py Py, P2 P3, P3Ps, PoP;, ... are to be
determined.

Let us determine first the unknowns for the first side P P of triangle
P, By P, starting from the trivial relationship:

Abgn=v=aru+by, (43)
where
a1 =1 and b; = 0. (44)
By writing Fq. (43) into (26), and expressing the Anjo value:
3 P g 1
a1 sin @iy by sin a1 — 739
Ame = U+
COS 12 COS 12
or concisely:
Ay = cru 4+ d, (45)
where
a1 8in o9
Cp
cos a1
and
. . /m
b1 sin -1
cos 2
Let us determine further unknowns for the next P FP; side of iriangle
Py P P;. By eliminating unknowns Aési, and Angi from (28), (32), (33),
(34) and (35) for triangle P4 P, P3 and introducing notation:
. N v —1
@ = (sin a3 cos g1 — sin o1 cos 3 (47)

vields for unknowns Aészy and Anss:

Ag3y = (Thz cosazr + T3 cos aag+
-+ A& sin cvz1 cos oz — Ay cos gl cos g )Q

and
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Anze = (Tozsin 31 + T31 sin a3+
- Aézl sin 031 8in g3 — &’:’,‘21 cos 31 8in &23)@.

Substituting (43) and (45):

Aéss = [(a1 sin g1 cos g3 — €1 €Os 31 COS Q93 ) U+
4 T3 cosauzr -+ T31 cosaugs+

- by sin 31 coscugg — di cos 31 cos 93]

and

Angg = [(G1 sin ov31 sin orgg — €1 CoSv31 sin &'23)@,“
- Thg sin aiz1 -- D31 sin cgg+
+ b1 sin a31 sin cig — di cos i3y sin 3],

Léze = asu + by, (48)
Ansg = cou + do, (49)

where

as = (a1 sin a3 cos g3 — €1 cOs 31 €os 23)Q,
by = (bl 8in (31 €0S cuag — di COS (31 COS (¥oz -t
+ Th3 cos 31 + T31 cos a3) @, (50)
¢y = (@1 sin 31 sin g3 — ¢1 €os 31 sin cu3) @,
dy = (b1 sin «v31 sin o93 — di €OS (v31 Sin a3+
+ T3 sin az1 + T3 sin 93) Q. (51)

Coeflicients a; and ¢; seem to depend exclusively on the net geometry,
while coefficients b; and d; on the net geometry and on the second potential
derivatives depending on the gradient of the level suriace.

Egs. (43), (45), (48) and (49) may be written in turn for all triangles
of the chain in Fig. 3. In general, for the i{-th triangle:
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Aéiygiv1 = aip1u + bigq, (52)
Anitz,i+1 = Cig1% + diga (53)

leading to a single-parameter system of equations where all unknowns are
functions of parameter u.

Like before, to determine parameter u, also here further information
is required. Provided that the values of components £ and 7 of deflection of
the vertical at two extreme points of the net are known, it may be written:

Abpr = Z a;u + z b; (54)

i=1
and

n—1 n-—1
Anp = z v+ Z d;. (55)
i=1 i=1

Value of parameter v may be determined from either (54) or (55). Substi-
tuting this u value into (52) and (53) permits to easily determine unknown
A¢, An values of differences of deflection of the vertical between all neces-
sary pairs of points.

Simultanecusly by writing (54) and (55) the most probable » value
will be obtained by adjustment. To this aim, e.g. the Badekas & Mueller
adjustment model suits due to its simplicity (BADEKAS and MUELLER,
1967).

In conformity with the principle of this adjustment model, [; and =;
values with

Fl;, 2:) =0
\¥213 ~¢ e
are to be found, where {; and z; are the adjusted ~'"17..65 of observed mag-
117 udes, and of the required parameters, respeciively. By expanding func-
on f and keeping only first-order terms,

5]
Flloiymos) + 8lf awl

where v; are the corrections of observed magnitudes ly;, while éz; are the
variations cf preliminary values zg;; that is:

I; = lg; + s,

z; = zg; + 0%,
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In matrix form:

F+Lv+Ax =0,

where
df of
= [fllg:, zo; L= ~= 3.
F = [f(loi, z0:)] s {3;5] and A [8&5]
With this model applied to the problem — that is, to (54) and (55):
n~1
A=| T L=1, J
L jz=1 ; o
n—1 T
2 Z);‘ - gnl
S i=1
E — n—1 i 2
Z a; — Mni

zeroing the preliminary zg; value (here zy; = ). By denoting variances of
Tb and £d by pd, and pl,, weight matrix P, and its inverted P! become:

N :

D | ?—1={#Eb 0 :!

- 0 |’ 0 pdg
Fxq

Let us form now matrix product § = L*P 'L (L* being transposed of L),
then its inverted S

1
2 —
S:’:‘uzb (2)], sl = Hay ° .
0 pog 0 =
=d
With the above notations, the solution in general form is:

z=-(A'ST'A) T A*STIF,

in the actual case:

w= i=1 i=] 1=1

n—1 2 9 n—1 2 9
(Te) et (Te)

=

n—1 n~1 9 n—1 n—1 2
5o (o) sbat T (T dim o) b
=
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or by denoting solutions of (54) and (55) by u¢ and uy, respectively:

n—1 2 2 n—1 2 2
(21 a:‘) Woque + <Z1 Ci) ESpUn
=

=

n—1 2 _ n—1 2
(5e) B+ (E=)

i=1

(56)

Resubstituting this » value into (54) and (55), £ and 7 values computed
with values of Ta, Z¢, b, Xd will generally deviate from the difference of
compeoenents of deflection of the vertical given between extreme points. The
resulting misclosures are considered with opposite signs as corrections and
distributed between terms of the given sums £b and Zd, according to their
variances, where covariances of ferms b; and d; are assumed to be negligible.

2.4. Direct Compuiation of Componenis £, 5

The practical solutions above are more or less advantageous to be applied
to interpolation chains (e.g. that in Fig. 9) with known values of deflection
of the vertical at the beginning and end points. Application of the same
solution methods may involve unpredictable computational difficulties if
interpolation is not made aJO'wg a chain but for points of an arbitrary,
extensive triangulation network. Although writing intermediary equations
of the (26), (32), (33) type repzesen‘ss no problem, but it is rather intricate
to generate constraining condition equations (34), (35) by a computer. If
moreover, the net includes more than two astrogeodetic points with given ¢,
7 values, then computer generation of the consiraining condition equations
is rather problematic; during processing, the computer program may get
into an infinite cycle. To clear and solve similar problems, graph theory
considerations are needed (TAKATSY, 1985).

Al the se a}:ﬂsuhxeb *n.a,y be overcome bjy‘ cons éem ng £, ?7 vaﬁ;es of

‘tha,:l d1ue1"eﬂces AE, A"y be‘meen the yomts Ac“ordmﬁ , let us transform
(26)-type relationships by substituting:

A& =& — &5,
Anij = 1: — 7

Tij = & sinayj + j cosay; — & sinay; — 75 cos ;. (57)



INTERPOLATION OF DEFLECTION 155

This significantly reduces the number of unknowns, namely, there will be
two unknowns for each point rather than per side. (In an arbitrary net-
work, there are much less of points than of sides, since according to the
classic principle of triangulation, every new point joins the existing network
by two sides. For a homogeneous triangulation network, the side/point ra-
tio may be higher than two.) Another of its advantages is that there is no
requirement for writing constraining conditions (34), (35) for the triangles,
they being contained in the established observation equations. For an in-
% molamo‘w ﬂeu with m astrogecdetic points with known values of deflec-

of 1 with the relevant comstraints the number of unknowns
may be further redt_ced, with an additional size reduction of the normal

with more of astr ogeodemc points than needed for an unambiguous solution,
where components of deflection of the vertical are known, and the £, 5
values are determined by adJusvn_ 15, Relation between torsion balance
measurements W, and Wiy and unknown €, 5 values of the deflection of
the vertical is cbtained from (57):

[((Wﬁ -~ /\) -%-(%@fA — ) )S;‘.Q2Cfléj+
+ ((Wey — Usy)i + (Way — Usy) ;) cos 2015] (58)

where Up and Uzy being normal values of gradients. The question arises
what data are to be considered as measurement resulés for adjustment: the
real torsion balance measurements Wy and Wiy, or Tj; values from (58)7
Since no simple functional relationship (observation equation) with a mea-
surement result on one side, and unknowns on the other side of an equa-
tion can be written, computation ought to be made under conditions of
adjustment of direct measurements, rather than with measured unknowns
(according to adjustment group V') — this is, however, excessively demand-
ing for computation, requiring excessive storage capacity. Hence concern-
ing measurements, two approximations will be applied: on the one hand,
components of deflection of the vertical measured at astrogeodetic points
are left uncorrected — thus, they are input to adjustment as cons‘ﬁrai*nts,
— on the other hand, magnitudes T}; on the left hand side of fundamen-
tal equation (57) are considered as fictitious measurements and corrected.
Thereby observation equation (57) becomes:

Z.

Tij + vij; = & sin oy + mj cos agj — & sin ey — 71; cos oy (59)
permitting computation under conditions given by adjusting indirect mea-
surements between unknowns (adjustment group IV).



156 L. VOLGYES!

The first approximation is possible since reliability of the components
of deflection of the vertical determined from astrogeodetic measurements
exceeds that of the interpolated values considerably (a principle applied
also to geodetic basic networks). Validity of the second approximation will
be reconsidered in connection with the problem of weighting.

For every triangle side of the interpolated net, observation equation
relying on (59):

vi; = & sin ey + 1 cosay; — & sinayy — 15 cos oy + T3 (60)

may be written. In matrix form:

v = A x 4+ 1,
(m1) (m2n)(2n,1) (m,1)
where A is the coefficient matrix of observation equations, x is the vector
containing unknowns £ and 7, 1 is the vector of constant terms; m is the
of sides in the interpolation net; and m is the number of points.
on-zero terms in an arbitrary row ¢ of matrix A are:

[...sineyj, cosayj,. .., —sinag;, — cosayj, ... |, (81)

while vector elements of constant term I are the Tj; values.
Constraint values of deflection of the vertical fixed at astrogeodetic
points modify the structure of observation equations. Be

¢ e = given, k=1,2,...,m1,

N = Mpe = given, L=1,2 , M2,
given values of deflection of the vertical. Subst z‘su’cing them into observation
equations (80) reduces the number of unknowns, modz-‘f‘mg coeﬁczem ma-
trix A and constant term vector 1 of observatmn eguations. If, for instance,
in (59), & = & = given, then the corresponding row (61) of matrix A is

[...sinayj,cosayf,..., —cosayj,...]

the changed constant ferm bemg T%; + &ic sin cyj; that is columns of &; and
of coefficients of &; are missing from vector x, and matrix A, respectively,
while corresponding terms of constant term vector 1 are changed by a value
icsinc;;. In an interpolation net, at certain points, £ values, at other
poinis 7 values may be given. However, at the same astrogeodetlc point,
both £ and 7 values are usually known. In this case, coefficient matrix A,
vector %, and constant term vector 1 of cbservation equations are further
modified, as described above.
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Adjustment raises also the problem of weighting. Earlier, the approx-
imation comprised — rather than direct torsion balance measurements —
starting from fictive measurements produced from them. Fictive measure-
ments may oaly be applied, however, if certain conditions are met. The
most important condition is the deducibility of covariance matrix of fictive
measurements from the law of error propagation, requiring, however, & re-
lation yielding fictive measurement results, — in the actual case, Fg . (58).
Among quantities on the right-hand side of (58), torsion balance measure-
ments Wa and T’sz may be considered as wrong. They are about equally

reliable (£ 1 E), furthermore, they may be considered as mutually inde-
pendent quantities, thus, their weighting coeflicient matrix Q‘WW will be
a unit matrix. With the knowledge of Gy, weighting coefiicient matrix
Qpr of fictive measurements T}; (after DETE EK@I, 1991) is:
= P 0w P = F

Qrr=F QuwF=FF
Sy = B belng & unit matrix. Elements of an arbitrary row ¢ of matrix
B oare

G, (k). (), (e ), (o), (s
8WL\‘ 1 8‘7‘/7/_\_/2 e (91/-‘/& n ’ 5%713/ 1 5Vf3y)2 e &ny n )

For the foll wing considerations, let us produce rows f] and £ of matrix
F* (referring to sides between points P — Py and P; — P, respectively):
f] = [n12 K (sin 2019, sin 2¢12,0,0,...,0,
cos 212, cos 2a19,0,0,. .., 0)]
and
5 = [n13 K (sin 23, 0,sin 20413, 0,0,. . ., 0,
cos 2a13, 0, cos 2ce13, 0, O, 00

where K = 1/4g is constant. Using f], variance of T value referring to side
— Py is:

m? = n%2K2(2 sin® 2a13 + 2 cos” 2a12) = 2K n,,

while f] and £ yield covariance of T values for sides P, — P and P; — Ps:

cov = n12n13K2(sin 20119 sin 2013 + cos 219 cos 2c13).
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Thus, fictive measurements may be stated to be correlated, and the weight-
ing coefficient matrix contains covariance elements at the junction point
of the two sides. If needed, the weighting matrix may be produced by in-
verting this weighting coefficient matrix. Practically, however, two approx-
imations are possible: either fictive measurements T" are considered to be
mutually independent, so weighting matrix is a diagonal matrix; or fictive
measurements are weighted in inverted quadratic relation to the distance.

By assuming independent measurements, the second approximation
results also from inversion, since terms in the main diagonal of the weighting
coefficient matrix are proportional to the square of the side lengths. The ne-
glection is, however, justified, in addition to the simplification of computa-
tion, also by the fact that contradictions are due less to measurement errors
than to functional errors of the computational model (to be discussed later).

53

.§. Interpolation for Corner Points of a Square Net

This interpolation method for an extensive area, developed by Jénos Ren-
957) also requires inversion of all the coefficient

3
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=y /:;U\
&3]
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j\?
et
[<®)
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“03
j—t

to rather simple relationships for components A&, An of de- ection of the
vertical at the mid-peint
Writing tham eﬁuatiOﬂs for e‘v'ery DC)" of the sguare net, each rela-

t
tions per poin Ehe?e are four r’m’cuall v 1:1depx.nde eguations.

4 In his test computations, Renner counsidered the AE, An values as
unknowns, but it is more convenient to take &, 7 values themselves as
unknowns. Now, for eight points P + P surrounding an arbitrary point
of the interpolation net (e.g. Pi in Fig. 4), the following rather simple
equations may be written:
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9 2 £ 3
)—8 gl 1 L%
& 6 55
Fig. 4
112 =72 — M1,
/2 T3 =&+ 03 — 61— 71,
Tia = &4 — &1,
I~ e s
V2 Tis =& — 05 — &+,
Tis = —16 + M1,
V2T = b — 7 + &1 +m,
T18 = "‘&'8 -+ &1’

>
3
I

2 ~&o + e+ &1 — M.

Similarly, also Tj; values on the left-hand side of the equations are simple to
compute, namely, values of trigonometrical functions in T}; cannot be other
than 0 or 1. For any interpolation net of arbitrary size, only these eight
relationships may be written, except in the surrounding of astrogeodetic
points including constraining values &, 7, due to their junction.

2.6. Application of the Mairiz Orthogonalization Method

In any practical solution other than the method of successive elimination,
in applying the conventional adjustment procedure, difficulties in inverting
a rather larger-size matrix may emerge. There are essentially two ways of
adjustment in some problem: either by the usual method of establishing
and solving normal equations, or directly, by the matrix orthogonalization
method.
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Solution of certain adjustment problems by the usual method — es-
tablishing and inverting normal equations — fails a result of expected ac-
curacy, because e.g. the coeflicient matrix of the arising normal equations
is poorly conditioned. So practical solution to adjustment problems is ad-
visably done by the matrix orthogonalization method, avoiding to estab-
lish normal equations, and the required, numerically more stable solution is
directly obtained by applying proper matrix transformations (VOLGYESI,
1975, 1979, 1980).

The quite simple principle of the matrix orthogonalization adjustment
method is illustrated by the hypermatrix transformation

where A is the coefficient matrix of observation equations, 1 is the vector
of constant terms, E is a unit matrix, O is a zero vector, W is a mairix
with orthonormal columns, and G~! is an upper triangular matrix.

To interpret algorithm of transformation (62), let us introduce nota-
tions: a@; is the column 7 of matrix A; w; is the column 7 of matrix W; e;
is the column i of matrix E; and g; is the column ¢ of matrix G™*. With
these notations, matrix transformation (62) comprises the following steps:

aj
’W‘i} €1
L &1 lla1llz
{zﬂ _[=a:]
leilcs L@
az‘I & 7 o ‘%?;:]
= S ch>, W
L&) cprr> L& ]aps (Bt }[gk-
Wl} NES ’
’-"’ - = .
=Y ‘-‘2_<z'>
WZJ _ ;
L & [[willz
1=2,3,...,7; k=1,2,...,1—1

then:
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x]=[o]-zem[2]:

where ||a1]|g and ||wi]|g are Euclidean norms of column vectors a;, and
w;, respectively, while (a;, wy) and (1, wp) are scalar products of column
vectors a; and Wy, and of vectors I and wy, respectively.

Matrix transformation (62) directly yields the wanted unknowns z;
and corrections v; in place of vector x and v, respectively (VOLGVESI, 1979,
1980).

Variances and covariances of unknowns z; are comprised in weight
coefficient matrix

Uy =CHET, (63)

-1

i —1yx
where (G77)" is transposed of G

3. The Reliability of Interpolation

Different practical solution methods of interpolation dc not yield egually
reliable values of deflection of the vertical. There are several possibilities
to describe reliability, to determine mean errors of interpolated values.

The simplest method yielding the most realistic information on relia-
bility is direct comparison of interpolated values to known values of deflec-
tion of the vertical. This is feasible if there is a relatively dense net of as-
trogeodetic points, and some astrogeodetic points within the interpolation
net may be handled as unknown (control) points, where interpclated val-
ues of deflection of the vertical may be directly compared to astrogeodetic
values. There is another, again simple possibility to check reliability of in-
terpolation methods by creating different interpolation nets (chains) join-
ing at common net points. Interpolated values should be more or less equal
at identical points of different nets — obviously, the rate of deviations, is
characteristic of the reliability of interpolation.

If there is no possibility to directly check interpolated values, then re-
Hability of the interpolated values may also be determined by mathemati-
cal methods, relying on laws of error propagation.

In applying the conventional adjustment method, mean errors of the
interpolated values of deflection of the vertical may be determined by the
method known from the variance-covariance matrix

M) = M%Q(g),
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where p2 is the standard error of unit weight, while Q(;) is the weighting
coefficient matrix of unknown deflections of the vertical (DETREKOI, 1991).
Matrix Q(,) is either simply the inverse N1 of the coefficient matrix of
normal equations, or, in more complex cases, it is simple to compute by
using N 71,

Reliability indices of interpolated values of deflections of the vertical
can also be simply obtained by making the computation by the matrix
orthogonalization method. In this case, weighting coeflicient matrix Q) of
interpolated deflections of the vertical may be computed according to (63).

Compared to the case above, a more detailed consideration will be
given to reliability indices of results obtained by the successive elimination
method. Here, too, our essential problem is to deduce the reliability of
interpolated deflections of the vertical from reliability indices of starting
data.

QOur examinations apply the general law of error propagation.
multivariate functions:

-
[¢]
Ll

u:f(:c,y,z,...)
v=g(e,y,2,...)
v = h(z,y,2,...)
................. J

be given, just as:

quare error) of variable ¢, and ¢;; is the

cij =7l sl

735 is the correlation coefficient between variables ¢ and j. Applying nota-

or ofr  orf
gz 8y Oz
. 99 b9 9g
B = | Oz Jy Oz
oh ok

8

131
L
. =

8z

(F™ is transposed of F), the required variance-covariance matrix
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2
Hy Cuv  Cuw
N — Cvu IJ"U Cvzw

Cwy Cuwy Hy

of magnitudes u, v, w,... is

N=T" MF. (64)

Let us consider values ;,L%,VA, y%y:y and CWa, Weys for torsion balance mesa-
surements, and ygg and #;9!0 for known deflections of the vertical at astro-
geodetic points as being given. Hrrors of distances and azimuths in (30
and (31) computed from co-ordinates of measurement points being negligi-
ble compared to errors of torsion balance measurements (VOLGYESI, 1975,
1978), hence applying those above to the sense:

2
ni2 .2 2 Z 2
pT, = (T) [25111 2012 piw, + 2 cos” 2019 PW., T

+4 sin Zaig cos Zag CT»'.,/A’W____y] ,

v

2
793 .
#%“23 - <§E> {2 sin? 2cv93 M%VA + 2 cos® 20093 [.L%Vsy—%—
-4 sin 2ce93 cos 2auog CWA’WW] ,
n.93M31

CTo3,Ts1 = —(Z—g)~2—~ {sin 2093 sin 2¢031 HZWA-F

-+ cos Qa3 cos 2031 [L%V:y + sin(2c03 + 2a31)CWA,W:,_,} .

From those above, according to (44), (46), (50) and (51), applying notations
in (47):

0,

2
cos? avyp’

2
Kb,

2 —
ﬂ' d1 -

Chydy = 0’
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2 2 2 2 2
Hp, = [cos Q23 Ty, + €OS” a3l KTyt
+ 2 cos a3 COS 31 CTyy Tw, +
<2 2 2 2 2 2
+ sin” 31 cos™ a3 W, + COS” (31 €OS” 23 pd; —

. 2
— 92sin 31 COS Q31 COS (23 Ch, ;dl] Q°,

2 2 2 2 2
Bd, = [sm Q23 1Ty, -+ sin” o3y ;LT23+
+ 2sin a3 sin as1 cr,,, 15, +
2 .2 2 2 .2 2
-+ sin” 31 sin” «gg My, -+ co8” (31 SInT 93 fUd, —

— 2sin g1 cos g1 sin® crog cb, ,dl} QQ,

. 2 . 2
Chyydy = [szn Q23 COS Qg3 Uy, -+ Sin (31 €OS €31 UTy, +
+ (cos ca3 sin c31 + sin a3 cos @u31)CTy, Ty +
. 2 .
-+ sin” 31 sin (93 COS ¥93 ,ugl -+
2 . 2
-+ cos” 31 sin (g3 COS (a3 L, —

. . - 2
— 2sin 31 cos 31 sin g3 cos a3 Cpy 4, | &7

2 2
TN ; L
by T BRI o N L

— 2 2 ! 2 E e
d""}u'dl TﬂdgT"'T#dﬂ_l ‘Cdl,dg [

Thereby one main goal to obtain variances pé,, and pZ; needed for (56)
has been achieved.

At last, let us determine mean errors of values of deflections of the
vertical obtained by successive interpolation. Variance of parameter ¢ from
(54) or {55) is:

2
2 _ Héo + p%

(B
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or
2 2
2 _ Hno t+ U5g

¢ 71;1 2
i=1

depending on what data are known for determining u. According to (52)
and (53), using hitherto results:

2 2 2,2
fl‘i'../.\.fg+1,g = Qipife T ;u'bngs
2 2 2, 2
BAng: T Citllu T KB,
are variances of the differences of deflections of the vertical. In final ac-
count, mean errors of the required components of the deflection of the ver-

tical are:

1
r : <2 1%
: 2 2
e, = T | g0 + (z a*i-c) Hy -+ KSh 3 (65)
L k=1 i
: Y 3
2 b 2 2
Hng = F | pgo + <\ Ck) Eu + 154 (66)
k=1
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