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Folded plate structures are extensively dealt with in the literature, but there are some
neglected problems the solution of which the design engineer needs. In this paper are
treated: the static behaviour of folded plate structures under partial vertical and un-
der horizontal loads; static analysis of the extreme elements, of triangular plates loaded
perpendicularly to their planes, and of plates subjected to in-plane concentrated forces;
stability analysis of the plaie elements.

Keywords: folded plate structures, plates subjected to perpendicular loads, plates sub-
jected to in-plane loads, stability of plates.
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1. Iniroduction

The classic analysis of folded plates can be found in the literature, see e.g.
(BorN, 1954, 1965). There are, however, some special problems which are
not treated there, although the design engineer would need their solutions.
In this paper we want to deal with some of these problems.

First of all, we have to clarify some notions. We can distinguish
basically two kinds of folded plate structures: those counsisting of long and of
short plate elements. An element is called long if its length is several times
larger than its width (Fig. 1.1); it is called short if these two dimensions
are close to each other (Fig. 1.2). The folded plate structures with long
elements can be subdivided into barrel-vault-like (Fig. I.1a) and periodic
ones (Fig. 1.1b).

We shall treat the following problems:

In the structures with long elements:

— to what extent a partially loaded fold is supported by the unloaded
neighbouring folds?
how the folds can be analysed when subjected to horizontal loads?
what are the internal forces in the extreme plate element due to con-
centrated supports?
how the plate elements can be analysed for buckling?
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n the structures with short elements:
— how large are the bending and twisting moments in the triangular
plates under a load perpendicular o their planes?
— what stresses arise in the triangular or quadrangular element due to
concentrated forces acting in the plane of the plate?
— how the triangular plates can be analysed for buckling?
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nd compression) and shear,

components of the load

e £
resolved into components acting in the plane
which carry them by bending (ca,using tensi
both in their own planes, to t
which lie in the planes of the plai
in the planes of the elements.

In this ‘longitudinal load-bearing’ the
alone, they rather form, together with uﬁc adjacent elements, great thin-

o b.
%)

he individual plates do not act

walled beams which are the load-bearing elements proper in the 1ong1tud1-
nal direction. This acting together is ensured by the so-called edge forces
which are actually shearing forces transmitted from one plate to the other
along the edges {Fig. 2.1}, and whose distribution can be considered, on
a structure simply supported at both ends, with close approximation as
~osine function. Since these edge forces cause elongation also along the

2 f

opposite edge of the element, we can ensure the identical elongation of the
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Fig. 2.1

commen edge of two adjacent elements only if we consider, besides the edge
force acting along the edge investigated, also the edge forces acting along
the two neighbouring edges. We thus obtain the so-called three-edge-forces
eguations, analogous to the three-moment equations of continuous beams.

The structures with long elements can be further characterized by the
fact that the edges of the elements may considerably deflect due to bend-
ing in the plane of the element (above all if the length of the elements is
manifold of their width), and these deflections interact with the primary
bending of the plates (their load-bearing in the transverse direction), be-
cause they appear as deflections of the supports of the continuous plate.
Hence a separate investigation is needed $o decide when it is permissible
to consider the edges as immovable with respect to the transverse bending
of the plate.

if the deflections of the edges 8
be neglected with respect to the tramsverse bending of the plate, then
due to these deflections the support forces of the plate change, which also
modify the loading of the longitudinal beams. Hence, the deflections of
the longitudinal beams and the transverse bending moments of the plate
interact.

Summing up, the internal forces of the folded plate structure are de-
scribed by a system of equations in which the edge forces and the trans-
verse bending moments of the plate {at the supporting edges) appear as
unknowns {BORN, 1954).

The static behaviour of the folded plate structure becomes so com-
plicated, as a rule, only in the case of barrel-vault-like structures, because
the long plate elements cannot form a (more or less) unique cross-section
without edge forces. Furthermore, the planes of the adjacent plates mostly
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subtend & small angle, so that they cannot hold the edge immovable. Hence,
for simplifying the analysis, criteria have been established many years ago,
whose fulfilment ensures that the edges can be considered as immovable,
i.e. the plates can be analysed as continuous beams on fixed supports, and
in the three-edge-forces equations only the edge forces appear as unknowns.
Thus, no interaction takes places between plate bending moments and edge
forces. _
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More detailed conditions originate with Griining (BCGRN, 1954), which state
that (Fig. 2.2b) if

4

£2 8
?g 651a<ptan<p,4,
then the edges can be considered as immovable; and if

2 . st
) > 120sinp tan (pzz,

then the structure can be treated as an ordinary beam with a unique cross-
section which does not deform, i.e. in which the distribution of the bending
stresses is linear.

Finally, if ¢/s lies between the two above limits, the deflection of the
edges has to be taken into account when computing the transverse bending
moments of the plate.

In the latter case we may solve the problem by iteration: in the first
step we determine the bending moments and support forces of the plate,
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assuming immovable edges; from these we compute the in-plane forces and
edge forces of the plates and their edge deflections; then the influence of
these deflections on the transverse bending moments of the plate and the
pertinent support forces, etc. Since the transverse bending moments of the
plate do not vary in the 10110’1'6 dinal direction {except for the vicinity of the
end diaphragms), but the edge deflections do, for simplicity it is advisable
to assume 2/3 of the maximum edge defiection as a constant value along
the whole edge.

This iteration has not only the advantage to avoid the direct solu-
tion of the large equation system, but it is also visual: we can follow the
magnitudes of the different effects, and we can also see when the iteration
DIOCPQUT‘ can be s’mancd So in ce uain cases we may allow that the edge

ac*ﬁ;mg in the pianes of bhe plates can be de'zerm.ined f m Mqu;hbrm equa-
tions only. Hence we only have to solve the thres-edge-forces eguations.
he membrane theory is thus & simple, consistent system of assumption
it has, however, & serious disadvantage: it t reliably describe ‘rhe
static behaviour o'§ any folded plate structure, since i:i-e r.c. plates are
i continuous in the transverse direction. Hence ”iz:s theory is
PUrr , however,
very useful, since it is the edge for ces wh-ca ensure the connection betwsen
i 1 i

¢ ‘effective wid t’n , replmcm the unloaded folds, will
also be determined in Sect. 2.2 by using the :pe*nbra,ne theory.
The static behaviour of the periodic folded plate structures {Fig. 1.15)
is much simpler than that of he barrel-vault-like omnes, since in the main
load-bearing (under & load uniformly distributed in the {ransverse direc-
tion) no such edge forces arise which should be determined in the above
described way, and their edges deflect identically. (In the structure with
2 triangular cross-section no edge forces develop at all, and in that with a
trapezoidal cross-section the arising edge forces can be determined by the
elementary strength of materials). This very simple state of stresses will be
disturbed only by the fact that the structure is finite in the transverse di-
rection: here the homogeneity of the structure ceases to exist, and the edge
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forces caused by this fact should be computed as described above. Practi-
cally, however, we can content ourselves with guessing the internal forces
(KOLLAR, 1993). These ‘edge disturbances’ rapidly die out with increasing
distance from the edges, see in Sect. 2.2.

KovAcs (1978) investigated in detail the propagation of edge dis-
turbances on the folded plate structure with triangular cross-section, and
presented the results in diagrams.

In the foregoing we assumed that the folded plate structures underge
only bending in the longitudinal direction. There are, however, structures
which undergo bending and compression (Fig. £2.8). In these cases the
aforementioned principles have to be completed by the dimensioning for
compression.

23a

2.3b

2.2. The ‘Effective Width’ Represented by the Unloaded Folds

If only one fold will be filled by snow or industrial dust (Fig. 2.4a), then
the neighbouring, unloaded folds help the loaded one in carrying the load,
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mainly by the edge forces arising between them. Essentially the same phe-

nomenon takes place if one (e.g. the extreme) fold is supported (Fig. 2.4b):
we then investigate how this disturbance propagates.

2.ba
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in order to clarify this Dhenemenon we will study the magnitude of the
edge forces on the unloaded part of the structure.

As mentioned earlier, the three-edge-forces equations are analogous
to the three-moment equations of the continuous beams. Hence let us
consider such a beam with equal spans on fixed supports, infinitely long in
one direction, and let us investigate the magnitudes of the bending moments
@fc the supports due to an external moment 347 applied 8% the left support;
i.e. let us clarify how the influence of A/; dies out.

_=.__=Mi‘ Ell Mm Eir Mrn_____ .
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Fig. 2.5.
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The three-moment equation of an unloaded beam runs (Fig. 2.5):

I (s L .
1 e ] m —_— M. = U. 1
ErMi TNt EL-)M + g4 =0 (1)

Here the subscripts [, m and r denote left, middle and right, respectively.
First let the bending stifiness EJ of the beam be constant, its spans
be of equal length I, see Fig. 2.6a. In this case the moment }M; decreases
identically in each span to the a-fold of its value (Ja| < 1). Thus the
three-moment equation becomes:
—f—(M +4aM; + o’ M) =0 (2a)
EI 1 i 1] =4 &

i.e.

1+4a+a® =0, (2b)
which yields, taking into account the requirement that |o] < 1:

a=-0.21. 3)
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Lt us now assume that only every second span together with the bending
migidity is identical (Fig. 2.6b). The decrease along the spans /; is then oy,
along the spans Iz it is 3. The three-moment equations can be written for
the supports 1-2-3 and 2-3-4:

i g )
— | My + == M3 =0, 4
L M1+2<E.Z + EIZ) 2+ 75, M 0 (4a)
iz I I i o
75 M2+ 25, + 5 )Mo + g Me = 0 (4b)
Introducing the notation
b &
= = = 5
"TELEL 5
znd making use of the fact that
Ms = a1 M, (62)
Mz = agMs, (6b)
ﬁ@;. = &1%3, (66)
the two Fgs {4a,b) become
14+ 2(1+9)jo1 +acaas =0, (T2}
gea + 2{n + Laog + -cz:fc:g =4 (7b)
Their solution is, considering the requirement |o;| < Lt

4 3
/1 149
= | —— e G ah
o2 = (- +2— ) (8b)
Heg. 9= 2.0, then on = —0.19, ag = —0.34, their average value (or more

exactly, the value of /@1cy ) is thus very close to —0.27, see Eg. (3).
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We can draw the conclusion that on continuous beams according to
Figs. 2.5 and 2.6 the moment applied at the first support decreases at the
third support to less than 10% of its original value.

Liet us apply these results to the edge forces of the folded plate, using
the membrane theory (i.e. assuming hinges along the edges).

The three-edge-forces equations of the unloaded folded plate have the
following form (cf. Fig. 2.7):

rrkE 4

g, 2.7,

Hence the quantity EI/! characterizing the bending stiffness of the beam
is substituted for by the area of the plate element, cf. also Eg. (1). Thus,
on the folded plate with triangular cross-section according to Fig. 2.7a, the
edge force decreases along one element to its —0.27-fold, while on the folded
plate with trapezoidal cross-section (Fig. 2.7b) it decreases according to the
expressions (8). It should be remarked that if we choose, on the latter type
of structure, the thickness of the plates in such a way that the product
ts be equal on both plates, then the role of the plates in decreasing the
edge forces becomes identical, and these forces decrease to their —0.27-fold
along each plate.

From all these follows that the influence of a partially loaded or a
supported fold extends practically to two adjacent plate elements only.

Knowing the law of decrease of the edge forces we can determine an
‘effective width’ for the folded plate, which statically replaces the unloaded
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folds with respect to their supporting effect on the loaded one. By defini-
tion, an edge force acting on the effective width causes a constant stress o
in its whole cross-section. To ensure static equivalency it is thus necessary
that this stress o1 be equal to that caused by the edge force at its own point
of application on the folded plate structure (Fig. 2.8a,b). Actually, the ef-
fective width should be depicted as in Fig. 2.8c to show that a constant
stress arises along its whole width.

a.
untoaded part ¢ loaded fold I unloaded part
b d
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| . :
Fig. 2.8

Let us examine a fold consisting of two plates (Fig. 2.9a), as a cut-out
part of a large structure, acted upon along one of its edges by an edge force
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T, and let us determine the stress arising at the loaded edge. Since along
the opposite edge of the loaded element the —0.27-fold of the edge force
acts, the plate element is loaded by the two edge forces shown in Fig. 2.96b.
These cause at the loaded left edge a stress

_ T4027T (T -0277)%
o ts ()
[

T
= 3.46— 1
3 61&5’ (10)

g1

while at the opposite edge the —0.27-fold of this value arises.
If we want that the uniform stress T/(¢s”) inside the effective width

s* be equal to o1, the equation
— = 3.46— 11
;= 3.46 (1)
must hold, which yields for the effective width the value
s" = 0.29s, (12)

sez Fig. 2.9c. Substituting this effective width for the unloaded folds ac-
cording to Fig. 2.8b, we obtain a visual picture of their supporting effect.
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2.8.Analysis of the Folds for Horizontal Loads

In folded plate structures containing steep plate elements the partial load
may bend the structure in the horizontal plane {Fig. 2.18s). The wind
causes a similar effect if the folds horizontally support the side wall
(Fig. 2.10b). The structure then acts essentially in the same way as under
vertical load: the plate elements carry the load as large beams on the span
L. If the horizontal deflection of the edges cannot be neglected, the plate
elements will act as transverse frames and transmit the horizontal icad to
the other folds. In (KOLLAR, 1974) we find an approximate method to
determine the internal forces due to this type of load, the assumptions of
which are the fcllowing:

On the one hand, the inclined elements of the folded pi
can be considered steep enough to neglect the vertical deflections of f‘m@é‘f
dges; on the other hand, the horizontal clements are narrow enougk to
prevent the rotation of the edges of the inclined elements. Hence the strue-

ure deforms as shown in Fig. 2.71: the horizontal plates with 2 section
effective width) of the inclined ones constitute U-shaped beams which are
connected by springs formed by the bending stiffness of the inclined plates.
So the structure can be modelled as depicted in Fig. 2.7 the horizontally
bent beams are connected by distributed springs.
The method of analysis can be shortly summarised as foliows:
The horizontal load p, uniformly distributed along the span I, is
expanded into a Fourier series, of which we consider — for the time being —
only the first term (n = 1):

[0

/‘\c% b

big AY

i /——-'r {1323
pisin{ 7z) {13=;
where the load amplitude p; is given by the expression
4
p1= —p. {13n}
T

The ‘spring constant’ ¢ of the inclined plates, referred to unit length, is
equal to the stiffness against displacement of an inclined beam buil$-in 2%
both ends:

12E Lyiate ;

°= s (142)
where B
t

Elplate - '—"—_—12(1 — l/2) s (iéb}

see Fig. 2.11, and v is Poisson’s ratio.
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The effective width of the inclined elements can be assumed, taking
into account what has been said in Sect. 2.2, approximately as 0.25 times
¢ plate width s. The bending stiffness in the horizoatal plane of th
beams’ with U shaped cross-section will be denoted by K.
he spring force r; between the beams k and & -+ 1 given by the
difference of deflections = of the two beams. Omztbmg the multiplicator

=8

&
i

o
g
v
m
[is}

o nd, the deflection of a beam is caused by the difference o
the spring forces. Introducing the parameter

FR—
- T &,
01 = —*;;;:4*“, (16)
T4
characterising the stiffness of & beam, the deflections of the beams k and
k 4+ 1 become:
TL_1—T -
wp = S E Tk (172)
01
and
ThE — 7’k+1
Vpp] = 0, (17b)

01
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Introducing (17a,b) into (15), we arrive at the following homogeneous linear
difference equation for the spring force 7:

<
&
Phe1— (24 )+ 71 =0 (18)
c
Assuming the solution in the form
PE=CO,

tion:

and introducing it into (18), we obtain the characteristic equa

(p1 < pa). (19b)

(20)

k=0 o = D1,
E=m: rmn=0

From these we determine the integration constants €1 and O, and the
solution (20) takes the final form:

G o
P2

yielding the maximum value of the spring force k&, varying according to a
sine curve along the span L.

The beams are loaded by the differences of the spring forces acting at
their both sides. It is the first beam which carries the greatest share of the
load

(p1 —71) Sin(%f”«)s (22)

so that the total load p1 acting on the first beam decreases to (p1 — 71).
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Fig. 2. 18

been taken from (TIMOSHENKO and GERE, 1961), (VAINBERG, 1967) and
(AMBROZY, 1984).

Al there results refer to plates under bending or compression con-
stant along their length. However, folded plate structures undergo, as a
rule, a (parabolically) variable bending moment. Thus if we consider the
maximum bending moment as constant along the entire length, we commit
an error to the benefit of safety.
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~

I the plate element undergoes at the same time bending and com-

pression, we can use the Dunkerley formula, see e.g. in (KOLLAR, 1891),
the result of which lies on the safe side:

,,L({end 1 77,<1:ompr 1 .
bend T compr — (27)
Ricr Picr 7
with v as the safety factor
After buckling the plate structure has an increasing load-bearing ca-
pacity in the elastic range, see e.g. in (KOLLAR, 1981). ﬁowever, the
plasticizing of the maierial and the cracking of the concrete cause a reduc
tion of the stiffnesses, resulting sooner or later in a decreasing load-bearing
capacity.

Overall buckling of the whole structure occurs if its cross-sections
deform (flatten). This comes about first of all if no diaphragms (ties)
are provided at the supports. In the case of barrel-vault-like structures
this generally does not happen, since diaphragms are needed to keep the
shape of the cross-section anyway. Periodic folded plate structures, how-
ever, can be built without diaphragms (or ties). The folds can thus ‘slide
apart’ (Fig. 2.17), the structure flattens due to bending and snaps through
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(Fig. 2.18). The critical bending moment causing snapping has been cal-
culated by KEREK (1981), assuming that the cross-sections are ‘flat’. We
present the value of the critical bending moment referred to the width of one
fold, for V and sine wave formed cross-sections and constant wall thickness,
in Fig. 2.19. The numerical values of the sine wave formed cross-section
can be considered as valid for the trapezoidal cross-section as well.

After snapping the structure has a decreasing post-buckling load-
bearing capacity even in the elastic range, see (KOLLAR, 1973, 1991). Com
sequently, we should choose a higher safety factor than for plate buckl
with increasing load-bearing capacity.

We have to mention two further modes of buckling, the critical loads
of which have not yet been determined. The first iz &
structure by Hatliening, as described above, but with
apart (Fig. 2.20). This may occur only in structur
elements, where the middle part of the structure sl
This deformation is made possible by the shearing d:
elements in their own planes.

...
m

5

Fig. 2. 20

The second mode of instability is the buckling in the horizontal plane
of the upper, U-shaped part of the trapezoidal folded plate structure
(Fig. 2.21). This is possible only if the width of the ‘U sections’ is small,
and the inclined plate elements provide only a weak lateral support.
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All we can say about these two buckling modes is that they may occur only
in structures of extreme geometry.

3. Problems of Analysis of Folded Plate Structures
Consisting of Short Elements

8.1, Static Behaviour of Folded Plaie Structures
with Short Elemenis

tructures consisting of short elements (Fig. 1.2) differ from
i ing:

—~ due to the shortness of the eiemems, ‘the edge fofces do not cause
clongation in their opposite edge (since in a deep ‘wall-beam’ ¢

stresses of the loaded edge die out until the opposite edge);

o d

late ciements are supporied mostly by each other, and not by
upports. Dus fo ‘%“;-.46 snormess oz" i:he ele e;.ts "c'beir ed@%s can

- i
’E;sger, ‘ﬁb 'i,ﬁ in-plane "%oad cam? ne t cause in-i i ne aening and

ig onl v that here the plates Qubrc‘cea to 1 -ylane forces are supported Oﬁly
by the vertices, since it is only here where several edges meet, which can
support the vertex. Thus a ‘space grid’ is formed by the edges (together
with some ‘effective width’ of the plates) as bars (Fig. 3.1), and this grid
carries the load to the supports. The analysis of space grids can be found
in (KOLLAR and HEGEDUS, 1985).
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Starting from the corners we draw the bisectrix lines and, if they do not in-
tersect in one single point, we connect the intersection points (Fig. 3.2¢,b).
The geometrical figures thus obtained yield the forces acting on the sides,
together with their distribution.

The forces transmitted from the triangular plates to the vertices, nec-
essary to know the internal forces of the whole struciure (as a space grid),
can also be simply determined. These forces have to be statically equivalent
to the load acting on the plate. The problem can be solved by considering
the plate as a ‘table with three legs’, which can be easily solved by using
equilibrium equations only (Fig. 3.3).

Equilibrium equations:

v M
x X
@ &
i i
(=) o

L

&
g)

As far as the forces loading the g

find that they consist of three parts: t.le co mg}onents of the load lying in
.
b

i the former two force groups are held in ec&ui}io um bv ?he
N .
L

to make one remark.
Since the ‘bar forces’ of the space grid act along the edges, we have {o

divide them between the effective widths of the two adjacent plates. The
basic principle of the division should be the compatibility of deformations
the two adjacent plates should undergo the same compression (elengatlon)
due to the forces acting on them. For simplicity, however, we may divide
these bar forces in half and half, provided the widths and thicknesses of
the two adjacent plates do not differ considerably. The ‘effective width’ of
the plate, valid for this case, will be treated in the next section.

o
g
(0]
o
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8.8. The Stresses Arising in the Plate due io
Concenirated In-plane Forces

In folded plate structures with short elements, concentrated forces act on
the plates along their edges. These forces are mos’dy applied at the corner
points of the elements which behave as ‘discs’ (i.e. plates loaded in thei

M

own planes). Such forces act along the :nanea edges of the structure shown
in Fig. 2./, and & horizontal tension force acts e.g. along the edge AB of
the triangular elem em: @_f&:} Along t%a_e inchned and horizontal edges of
the s % Tt f

The problem is: what stresses are caused inside the disc by these
c T it in another way: wi at 18 the ‘effective width’
of the disc subjected to a concentrated force acting along its edges?

The problem can be solved by the theory of elasticity. Before pre-
senting the results, however, we shall try to give a clear picture of the
phenomenon by simple reasoning. (When in the following we shall speak
of ‘stresses’, we actually mean ‘stresses multiplied by the thickness of the
disc’: n = to).

Let us consider the rectangular disc subjected to two concentrated
forces along one edge (Fig. 8.6). The vertical sections of the disc un-
dergo eccentric compression. The ‘natural’ state of stress of an eccentrically
compressed bar is the linear stress distribution, given by the elementary
strength of materials (Fig. 3.7), since the pertaining strain energy becomes
a minimum as compared with cther (curvilinear) stress distributions. This
linear stress distribution, however, can come about only at a certain dis-
tance from the cross-section where the force acts, since in this cross-section
the stress distribution corresponds to the application of the concentrated
force (Fig. 3.8). According to the principle of Saint-Venant, this distance
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is equal to the height H of the cross-section, because the effect of the con-

centrated force can be composed from two parts, see Fig. 3.9 : load case a)
causes a linear stress distribution in every cross-section of the disc, while
load case b) — being =& force system in equilibrium — causes stresses only

inside = length which is equal to the loaded section, ie. H.

L -

Fig. 3.6.

It follows from the foregoing that if the height of the disc is not greater
than half its length (H < L/2), then the stress distribution in the middle
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cross-section is linear, and the resultant B of the compressive stresses acis
at a distance (2/9)H from the compressed edge.

If, on the other hand, the height of the disc is greater than its length
(H > L), we can apply Saint-Venant’s principle in the direction of the
height: the force system in equilibrium causing disturbance consists of
the two concentrated forces P, acting on the bottom ‘cross-section’, which
cause stresses only inside a distance equal to L. Hence in the part of the
disc above the height H = L no stresses arise.

The state of stress of a disc with the height H = L, subjected to two
concentrated forces, has been determined by BAy (1938) with the method
of finite differences, subdividing the disc into 545 parts. His results are
shown in Fig. §.10a. The stress distribution of the section A — A can also
be considered valid for the middle cross-section k — k, so the magnitudes
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and situations of the resultanis of the tensile and compressive stresses are
given by Fig. 3.10b.

It is worth while o note that the compressive stresses propagate into
the inside of the disc according to the semicircle of the radius » = H/2.
The resultant B; of the compressive siresses lies closer to the loaded edge

than in the case of a linear stress distribution (Fig. 3.7).
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pply & similar reasoning: the effect of the two
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orces can be replaced by a force system correspos d g to the ‘natural’ one
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If, on the other hand, a square disc is loaded by four concentrated forces
(Fig. 8.12), then the stress distribution cannot become uniform until the
middle cross-section k—k, but remains curved. This distribution is obtained
by adding the diagram of Fig. 8.10a to its mirror image.

The internal forces of the triangular disc (Fig. 3.13a) are, according
to (BAY, 1938), similar to those of the rectangular one, with the difference
that the stress distribution in the middle cross-section can be considered
linear only if tane < 0.5, i.e. & < 26.5°, which means that the height H
of the triangle is not more than one fourth of the basis length L.
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The buckling problems of triangular plates aonstituéhg the folded plate
tructures with short elements are by far not so well clarified as those of
ectangular plates. We found the solution of two cases in the 1 iterature: for
the equilateral and for the rectangular isosceles triangular plate (Fig. 8.14),
see in (TIMOSHENKO and GERE, 1961) and (WITTRICK, 195&) In the figure
we give the critical compressive force of the hinged plates for hydrostatic
compression (ngz = ny = n).

For practical applications it is advantageous to replace the triangular
plate by a rectangular one exhibiting an equivalent stability behaviour. For
this reason we investigated the following problem: if we want to replace
the isosceles triangular plate by a rectangular one having the basis of the
triangle as one side (Fig. 3.15), what height the rectangular plate should
have in order to yield the same critical load for hydrostatic compression as
the triangular one?

W
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Fig. 8. 15,

Assuming hinged edges for both plates we feund that for the two cases
shown in Fig. 3.15a,b the height should be 0.555h and 0.667h respectively.
For flatter triangles we did not find any result, but considering the tendency
of these two cases we may assume that for flatter triangles the height of
the rectangle should be somewhat greater than 0.667h.

All what has been said so far is valid for hydrostatically compressed
plates. We could not set up a comparison for other loading cases. Hence
we recommend to assume a higher safety factor when substituting a rect-
angular plate for the triangular one. The plates exhibit an increasing post-
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buckling load-bearing capacity, see Sect. 2.5, so the reasonings presented
there should be considered.

The overall instability of the folded plate structures with short ele-
ments is the buckling of the space grid consisting of bars along the edges.
This phenomenon can be investigated by a programme based on the second-
order theory, i.e. which analyses the internal forces on the deformed shape.
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