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In this paper an extension is given to the original CPM problem first solved by KELLEY
and WALKER (1959) later by FULKERZOX (1961) to the Precedence Diagram network
(PDM). The following precedence relationships are allowed between activities: Start-to-
Start-t (SSt), Finish-to-Start-t (FSi), Start-to-Finish-t. (§Ft), Finish-to-Finish-t (FFt}
The solution of the problem is based on retwork flows theory.
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In this paper we give an algorithm to the problem to minimize the project

cost in precedence diagrammimg network plan.

The introduction and solution of the CPM/cost problem first ap-
peared in KELLEX and WALKER's pap (KELLEY & WALKER, 1959).

The result of KELLEY’s work is an algomuhm based on the primal dual
algorithm of linear programming. The solution of the problem by flow al-
gorithm (KELLEY, 1961) can be found in FULKERSON’s paper (FULKERSON,
1961).

The earlier versions of precedence diagramming appeared in the work
of Roy (Rov, 1958) and FONDAHL (FONDAHL, 1961). Their concepts
gained further notice by J. D. CRAIG in the users manual of IBM 1440
Project Control System (IBM 1964).

When we developed our method we used KELLEY (KELLEY , 1961)
and FULKERSON’s (FULKERSON, 1961) results.

In our paper we assume that the reader is at home in network flows
the element and the basics problems of network theory such as digraph,
maximum flow minimum cut problem, shortest and longest path through
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232 M. HAIDU

a network, etc. We have no possibilities to discuss these in this present
paper.

2. The Model and the Solution of the Problem

An [N, A] directed graph is given. The graph can only have one source
and sink, and there must be a path from source (s) to sink (¢) through all
¢ € N. There can be more arrows between any two nodes, loops are not
allowed. The nodes represent activities. The duration of the i** activity let
be 7;. The activities are carried out continuously in time, splitting is not
allowed. The arrows serve to describe the technological and organizational
relations between activities.

Between any two activities the following precedence relations are
allowed: Start-to-Start-zi; (SSz;;); Finish-to-Start-z;; (FSz;;); Finish-to-
Finish-z;; (FFz;;); Start- tc—Flnlsb-~,J (SF‘zU)

These relations give the minimal allowable distance between the be-

ginning (finishing) of ¢ activity and the beginning (finishing) of j activity.

SSz;;— means that at least z;; or more lag time has to be between the
beginning of 7 and the beginning of j activity.

FSz;;— means that at least zaj or more lag time has to be between the
finishing of 7 and the beginning of j activity.

SFz;;— means that at least z;; or more lag time has to be between the
beginning of 7 and the finishing of j activity.

FF zij= means that at least z;; or more lag time
finishing of ¢ and the finishing of j activity.

We call the above mentioned precedence relations as minimal relations
as z;; stands for the = --11n1“1a1 distance between the distinguished points of

activities. In network planning the so-called maximal precedence relations
are also used but in that case z;; stands for the maximal allowable distance
between the distinguished po*ms of activities. We have mentioned these
types of precedence relations only for the sake of completeness as we extend
the cost optimization problem to the network where the use of maximal
relations is not allowed.

There are given to all activities a lower and higher time bound, the
crash and the normal duration. Their notations a; and b; (a; < b;). Let
be given to the normal duration of all activities a Un; normal cost, which
shows the cost of the activity if its accomplishing duration is b;. Moreover
there is given a c¢; cost factor to all { activities, which shows how much
the associated cost increases when the duration of an activity is decreased
by one day. Knowing all this we can determine the so-called crash cost

v
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corresponding to crash duration:
Cr;=Cn; + Cg(é,’ - ai)‘

Further restriction to ¢; is that it should not be negative that is:
Cr; > Cn; V(i) € N.

All this can be shown on Fig. 1.

cost
Cr
C
Cn

> duration of activity i

a; <7 < b, \’\'/(i) € I, (1)

Let’s denote the beginning of an ¢ activity 7;5 and the finishing of it by
w;p. As splitting of activities is not allowed w;5 determines w;p and vice

r
versa. 1The following conditions can be noted between activities
Tis — Tis 2 Zij Y(i,7) € Aand SS8z;;; (2a)
TiF — TiF 2 Zi; 7(i,j) € Aand FFz;j; (28)
TiF = Tis > Zij V(i,7) € Aand SFz;j; (2¢)
Tjs — TP 2 Zij V(i,7) € Aand FSz;;. (2d)

Eliminating the wp values by using of mp = wg+ 7 equality and introducing
the notations Ti]; and T]{:. the conditions (2a-d) will change as follows:
mi—mitr - 2z V() €A (2)

where 7;, 7; are the beginning of the activities, and

7; If the (4, j) relation runs into the finish of
F i activity which means SF or FF relation.
.l 0 If the (¢, 7) relation runs into the beginning of

j activity which means SS or FS relation.
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7; If the (4,7) relation runs from the end of
F it activity which means a FS or FF relation.
iy = .
" 0 If the (¢,7) relation runs {rom the beginning of
it" activity which means SS or SF relation.
DEFINITION: We call a given precedence relation with respect to a given
activity a finish type relation if the relation runs from or arrives at the end
of the activity. In case of running in the SF and FF relations will be of
finish type, in case of running out relations the FS and FF relations will

be finish type with respect to the given activity.

Knowing the definiticn Tii. can be determined in the following way,
too. If the relation is a finish type one with respect to the activity then
Ti‘f; = 7; otherwise zero.

Let the beginning of the start activity be zero and the finishing of the
last activity be p.

s = 0,
Tt + T = D.

e
>
~

On a network where 7 is not fixed but co:resccnding to (1) can move
between an upper and a
be available. Evidently, ¢!
be between the accor

ower ‘tzfne bou—ld smfe’&i project durations can
“t &Chaeve has
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min( ) {Cn;+ (b; — 7i)ci}) (62)

As Cn; and (bjc;) are constant the above objective funciion is equivalent

to the following:
max< Z(cin)). (6)

i
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Summarizing the point mentioned above, the mathematical model of the
problem is the following:
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T - o= (4)
Prmin S ) Sme: (5)
max <Z(Cz12§> (8)y=(1")

0:; flow going through an (1,j) arrow a finish type
with respect to i node and denote it ‘95 if the (i,]) precedence relation runs
ctut of the finish of activity i, that is the relation is z finish type relation

FSzj; or FFz;y) with respect to ¢
DEFINITION: We call a ¢;; flow going through an (1,j) arrow a finish type
with respect to i node and deneote it fthe prec 1 s
into the finish of nede 7, that is the

E 3] ;

We are to fnd in the network a p;; Sow, the
EN 2

V!
he following ebjective function:

| min {p6 — T zje; + T e — Flbi — T [ei ~ Fillas,
4 e F e i

where F; = :ol[] - Zcp; YieN and (i,j) € A
; .

Thus £} i1s the sém of the finish type flows running out from activity
i decreased by the sum of the finish type flows running into node 1.

The following lemma points out the strict connection between the two
problem.
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LEMMA : If there ezists a w end T policy which satisfies the primal, and a
@ij flow for the dual, then (1) < (27), thai is

Zcm <p® ZZ;]‘«P:]+ Z[Cl Fi]bi— Z[Ci—Fi]a’i

N e>F c<F
Aﬂ A3

and equality holds if and only if the following are satisfied:

if T — T+ ’I'F 'rF > zij then wi; =0 (1°)

if by > T then c; < F; (2°)

if a; < 73 then c 2 K. (3°)
PROOF:

Zc17'1<p® 22119921+Z b — > lei — Fla

c>F c<F'

1f we replace b; and a; by 7i, the value of the dual objective function
will definitely decrease. If we can prove that is greater than or equal to the
primal objective function, the original statement is proved.

C>F e F
As A
o o
= P@ -} Zij%i T [Cz - fz]”z =
4'% 2
JE—— —— T — F — F
=p& — Z ZijQij + } CiTy — E’ ) l> PG ) ‘;01]7"}
A N i J J
A* A
Subtracting the value of 3 ¢;7; from both sides then

Op > 5 zijpi + y_wimi— . whim + O
A A P

If we replace z;; by m; — m; + Tj - 7' i which is greater than or equal to it,
the value of the dual objective functlon will definitely decrease.

F F
©p > Z(WJ — )i + T( T =T e+ Y ek =Y ehn+ o,
A
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®p > ) (m; — mi)pij + O =
" .

= mupi + »_ Tepej + O =

A A
=(p—7)0+ 06w
Sp > p©
With this the ineguality of the lemma is proved, and equilibrium exists if
and only if suffecting
;> 5, then b = 75
;< F; then a; = T
7 F
. é_‘).,.’ AT b e TP e P E o P
(@]z>@ IIgn Zij T T T Tis;
Reversing this,
- e E L F - . 59y
i = T ~+ i T Th >Zz:, then i = g £)
4 b o
b;>T; then ¢; < I (2 }
» O
a; <T; then c; > F. (3 }

These are exactly the equilibrium conditions stated in the lemma. An
important consequence of this thecrem will be presented as follows:

THEOREM: (weak form of equilibrium)

If there exists a w; and 7; policy which satisfies the primal problem to a
given p project duration and a @;; flow on the network and also the value
of the primal objective function (17) is equal to (27) the objective function
of the dual problem, which means (1%)=(2%), then the solutions of both
problems are optimal.

PROOF: (in an indirect way)
Let’s denote the value of the primal objective function (1%) by P and that
of the dual by D.

Let’s assume that P = D, but there exists & P* solution where P* >
P. In this case P* > P = D, but this is 2 contradiction according to the
lemma.

Let’s assume that P = D, but there exists a better dual solution D*,
where D* < D. In this case D* < D = P but this is a contradiction
according to the lemma. In this way the theorem is proved.

THEOREM (duality theorem)

According to a given p duration time (ppmin < p < pp) there is a o, 7 and
 policy, where the values of the objective functions are equal, that is
optimal. (pp is the project duration calculated with the normal duration

of the activities.)
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The proof of the theorem is constructive, that is it gives the algorithm,
too.

PROOF:
As starting trivial solution let 7; system be the time policy derived from
7; = b; values and let ¢;; = 0 on all arrows.

This is an optimal solution as the values of the primal and dual ob-
jective functions are equal, ¥ ¢;b;. The project duration corresponding to

77 =Db;isp =m+ 7. We4denote this project duration p, as we have
calculated it from the normal duration of activities.

If we know a w, 7, and @ optimal system corresponding to any p
then we can give a p*, 7", 7" and ®*, which satisfies the lemma that is also
optimal and p* < p.

This statement says that if there exists an optimal solution to a p
project duration, we can move on to an optimal solution which corresponds
to a smaller project duration. As we know the optimal solution correspond-
ing to a pp project duration we can give the optimal solution to all project
durations, where p < pp.

We comprehend this through a two-step construction.

In the first step we increase o flow to »” so that the duality conditions
formulated in the lemma continue to be true, that is the solution is still
optimal.

In the second step we decrease p project duration in a way that the
duality conditions remain fulfilled, that is the solution is still optimal.

First step:
Let’s exami tain arrow or de which duality conditi
Let’s examine on a certain arrow or on a node which duality conditions can
be accomplished in what kind of combination? The ‘4’ indicates that the
duality condition is accomplished, the ‘=’ indicates that it is not.
Depending on which conditions are accomplied on a certain arrow
or node we can get some information on the ¢;; flow passing through on
arrows, and some information cn F; passing through on nodes. These tell us
what the values of p;; and F; should be in case the conditions are satisfied.
This information can be found in the fourth column. We have classed the
arrows and the nodes in the fifth column (A1 — A2), (N1 — N4) considering

the ¢;; and F; values passing through them.

Equilibrium conditions Flow Classing  &;; Kji
1° 2° 3° information of arr.

+ not defined wij =0 Al 0 0
- on the wi; 20 A2 oG £ij

arrows
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1° 2° 3° F Classing Kigis Kipig
information of nodes

defined + - F; > ¢ N1 o F;— ey

only - 4+ F; <¢ N2 e; — F; co

on the + + Fi=¢ N3 G ¢

arrows — — F:no limit N4 o o

In the first step the flow has to be increased so that the solution remains
optimal that is the duality conditions are accomplished to all arrows. If
we increase the flows in a way that the arrows remain in the same arrow
classes and the activities remain in the same node classes, the solution will
be still optimal.

With the help of data on fows we can give the value how much the
flow on a certain arrow can be increased or decreased.The sixth and sev-
enth columns show the capacities which have come about as a result of
this kind of argument. In the nodes the F; values have to be chanced so
that the equilibrium conditions of the lemma remain valid. The suitable
modification of the F} values can be assured by the following technique.

We cut each node into two and transform it into an arrow. One new
node represents the beginning of the activity the other the finishing of it.
We connect these two nodes in both directions by an arrow.

Let (ig,iF) arrow point from the beginning of the activity to the end,
and (ip,is) arrow vice versa. Let the end type relations corresponding to
¢ activity run into/from i node and the rest of the relations into/from ir
point. In this case of flows running into i, not taking in consideration the
flows going through (ip,7s) and (i5,1p) arrows.

On the network thus transformed we can assure by the correct choice
of the capacities of arrows (is,ir) and (is,7r) that the equilibrium condi-
tions in the lemma corresponding to the values of F; remain. The correct
capacities on (ip,i5) and (if, i5) arrows are shown in the sixth and seventh
columns of the table above. The reader can check this easily himseif.

Searching for maximal flow on the transformed network with the
above given capacities we get ¥;; flow. Adding this to the original ¢;;
flow, and getting back to the original network the new flow on the arrows

will be,
9921 = ©ij T z] \3/(2]) € A

During this step the equilibrium conditions of the lemma will be valid,
because we have chosen the capacities so that the arrows and the activities
remain in the same class.

With this step the aim of which was to increase the flow by keeping
the duality conditions, we have come to the second step.
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Second step:

On the transformed network we are to find a 7], 7;,p” < p system corre-
sponding to the increased ¢;; flow where the duality conditions are accom-
plished that is the solution remains optimal. (On the transformed network
7is denotes the early start of the activity and m;r the early end, that is
Tifp — s = Tz-)

In the first step we were looking for a maximal flow. In this case
there exists an (S,T) cut in the transformed network the arrows of which
are saturated. In the cut there can be Al type arrows, and N2, N3 type
activities. In the cut backwards there can be A1, A2 type arrows and N1,
N3 type nodes.

To determine the new 7 potentials we give a § value.

The determination of § value come about in the following way:

P

§ := min{b41,6n2,0n3, 6412, 0425, S n1-0 N30},

in case of arrows in ihe cul:

641 = min {m; — 7 + 7 — 7 — i Y (i,j) € Al (t,7) € (S,T)}
b9 = min {’7', - a; Y (Z) € N2 (‘is,ig) < (S,T)}
bng = min {7 — a : ¥ (i) € N3 (is,ip) €{S5,D)}.

$a1- >0 Y (3,5) € AL Z,7) € (5,T)
5a2e > 0 V) €A () € (8T
bn1e = min{d; — 7 Y ({) € N1 (is.ir7) € (5,T)}
bnze = min{b; — 7 Y (i) € N3 (is,ir) € (8,1)}.

= { e i € 5,
w = ,
N 7?3 - 6 il 2 e T
Thus p will become p” = p—§ and an 1 activity duration can be determined
from the following formula:

The 6 value had been constructed so that the duality conditions on the
arrows continue to be accomplished. Arrows and activities transformed
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into arrows where both nodes fall into S or 7 set of points, the arrows and
nodes remain in the same class.

in the case of relations and activities in the cut the following change
takes place corresponding to the flow.

In the case of Al arrow type decreasing of 7; by 6 4; value the arrow
will become A2 type.

In the case of N2 activity type decreasing of w;p by §py3 value the
NZ type will become N1 type, with value smaller than this it becomes N3
yvpe.(Suppose that the value of x5 comes from this node).

r‘?‘v—@

e decreasing of 7;p by §p3 the N3 type
value smalier tba:z t__‘is it remains in its
own class. {Suppose that the va 'i e of g comes from this node).

< "l'j

s and activities going backwards in the cut the
C

arrow becomes Al type arrow when changed the poten-
6 49- > O value. This means that the so far critical relation with
respect to the activity will no longer be critical.

‘c:f'

2,

[‘j"‘ "
=3 0. ]

4

]

gl

¥

s 5,42= can be gzeatev than zero only if there is a critical path
leading to activity j. As there is only flow along critical paths (where 1°
is satisfied) and (J,7) leiamon got into the cut in a way that F; — ¢; value
flew backwards on it, this assumes that there are critical paths leading to j
node which go through nodes other than node ¢. This automatism assures
that by taking é§ value optional large the relation still satisfies the duality
conditions,

In the case of N1 t{ype nodes if we decrease the w;5 value by Oy1-
the activity becomes N2 type, if we decrease it by a smaller value it will
become N3 type. (Suppose that the value of §x1- comes from this node).

In the case of N3 type nodes if we decrease the ;g value by §p3+ the
activity becomes N2 type, if we decrease it by a smaller value it will remain
in its own class. (Suppose that the value of §x3. comes from this node).

These changes in types correspond to the flows and by chosing the
smallest of theese we assure that all the changes satisfy the duality condi-
tions.

Thus we completed step two.

After all this we have to go back to step one and increase the flow again and
than in the second step p project duration can be decreased. These steps
must be alternately repeated until we reach the project duration wanted
or the low becomes infinitely great. In this case there exists an s — ¢ path
along which all the capacities are infinite. This means that arrows on this
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path determine the beginning and the end of the activities, so this is the
longest, so the critical path. The nodes on this path can be of classes N1,
N4, or N2. The duration of the activity in class N1, which is a;, can not be
further decreased. In the case of activities in class N4 the normal and crash
duration are equal a; = b; so this activity can not be decreased either. In
the case of activities in class N2 the duration of the activity is b; so it can
be decreased, but with this the project duration would increase, because
the activity is reversed critical. The length of the critical path can not be
further decreased in case of infinite flows. The importance of this reflection,
that the algorithm comes to an end if the flow is infinitely great, is quite
great because in the case of Precedence Diagramming Method ppmin cannot
be calculated from the crash times, which means that pmin # pe. It can
happen that the two values are the same but the opposite can happen, too.

This algorithm gives us the pm;n project duration on the network two.
This was also an unsolved problem so far.

Thus the theorem is constructively proved.

An important consequence of the theorem is presented hereby.

THEOREM: (strong equilibrium)
If there exists an optimal (P) primal solution and an optimal dual solution
(D) zhen their values are equal.

PROOF: A Grd' g the duality theorem there exists a maximal primal
solution (P*) and a minimal dual solution {D~) which are optimal that
is (P7) = (D ) As (P) and (D) are also optimal so (P) = (P) and
(D*) = (D), but then (P) = (D).

—————\! i l Codes of acit. 1 2 3 4
__iFs2 \ FF3) b, 2 5 8§ 10
I L_i | & 13 2z 4

SF8 L ssa e, 3 3 2 1

e

Fig. 2.
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On the given diagram (Fig. £) we can see a network. In the table the normal
and crash time values are given. There are also given the cost factors (¢;)
corresponding to the activities. The relations between the activities are
shown on the arrows. The small digits in the nodes indicate the codes of
the activities.

We want to find the optimal sclution corresponding 16 Pmin.
Step 0.
The calculation of py project duration corresponding to the normal activity
duration.

It is enough to calculate the earliest start of the activities.

The 7; values stand for the earliest start of the activities. The earliest
finish of activities comes from #;p = 7; + 75

Activity 1 2 3 4
T 0 6 2 6
Dy = Wip = 7 + 7t = 610 = 186.

To start with let’s take the time values 77 = b; and 7 policy calculated from
them and y;; = 0 flow. This is the optimal solution corresponding to py
project duration as the values of the primal and dual objective functions
are the same.

Step 1 (increasing the flows)

Table 1
precedence relations
from () 112 23
activity code 1 2 3 4 to (1) 2 3 3 4 4
classing of nodes classing of
Ni-N4 |2 2 2 2 |arrows Al—A4212 2 1 2 1
old F; values 6 0 0 0 |oldflow ?i; 0 0000
capacity Kigip 3 3 2 1 |capacity Kij oo oo 0 < 0
Kipis |00 50 o0 Kji 0 00 O0CO
max flow  ¥y; 6 1 0 0 1
=Yy 0 0 -1 1|g=w;+¥; 0 1 0 0 1
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Step 2 (decreasing 7, 74, D).

Table 2
arrows from 2 4g
in the cut | to 4 4p
6 values 2 6
6 min 2
code of activity 1 2 3 4
earliest start 0 6 2 6
earliest finish 4 11 8§ 14
act.dur.v; = m;, — Wi 4 5 6 8

W

The new project duration p =1
The costs have increased by 2 units that is by 1 money unit per time

Table 3
precedence relations
from (%) 11 2 2
activity code 12 3 4 to (7) 2 3 3 4 4
classing of nodes classing of
Ni-N4 12 2 2 3arrows Al—-A212 2 1 2 2
old #; values g 0 -1 1jold dow ©i; g 10 0 1
capacity Kigir 3 3 3 0]capacity 75 o oo § o =
Kipis co o o 0 Lh 0 1 ¢ 0 1
max flow ¥y 3 00 3 O
Fi = F;+ %y 3 3 11 go'fj-zg:»ij—i- i 3 10 3 1
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Step 2° (decreasing mi, 71, p)

-]
.
®
)
Q
@
-
[72)
g
®
-,
b
0
]
I
&
]
(o

Table 4
arrows from 1g 4g
in the cut | to Ip 4p
é values 3 4
4 min 3
cade of activity 123 4
earliest siart 6 32 86
earliest finish 18 8 11
act.dur.m; = is 1 5486 3

Table B
precedence relations
from (2) 112 2 38
activity code 1 2 3 4 to (7) 2 3 3 4 4
classing of nodes classing of
NI-N4 |1 2 2 3|arrows Al—A4212 2 1 2 2
old F; values 3 3 -1 1jold flows ¢y 3 1.0 3 1
capacity Kigip |00 0 3 0]capacity Kij x o 0 = 0
Kipis 0 o0 = 0 Kji 3 10 31
max flow 0 0000
new F; flow F} 3 3 -1 1|new flow ¢}; 3 106 3 1

[+
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Step 27 (decreasing =i, 7i,p)

Table 6
aTTows from - 25 4s
in the cut | to 2r 4p
6 values 2 1
§ min 1
code of activity 1 23 4
earliest start 0 326
earliest finish 1 7810
act.dur.ty = 7 — Wi 1 46 4

The new project duration p = 10.
The costs have increased by 4 units, that is 4 cost units per time unit
compared to the previous project duration.

g ] . £
Step 1I"™" (increasing of flow)

Table 7
precedence relations
from (z) 112 2 3
activity code 12 3 4 to (N 2 3 3 4 4
classing of nodes classing of

NI-N4 11 3 2 1 jarrows Al-A212 2 1 2 2
old 7} velues 3 3 -1 1 oldflows gy 310 3 1
capacity Rigip |0 0 3 ocofcapacity Ry oo oo O co O

Ripig 0 0 o0 0 Ky 3 10 3
max flow  W; 0 0 0 =
Fr=F+¥%; £ = pij + Yy 3 00 3 oo

There exists a P(ss — ¢r) path leading from the beginning of the
start node into the finishing of the terminal node, along which the flow can
be increased by an infinitely great value. This means that on the given
network we cannot achieve a project duration smaller then p = 10. This
project duration is smaller in fact than the project duration calculated from
the crash times, the value of which pg = 14 time units.

Thus we have solved the problem.
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To end our paper we must mention that the maximal available project
duration is not equal to the project duration calculated from the normal
times. In this present problem if we consider the third activity with its
crash time and all the rest with their normal time we shall get the max-
imal project duration. The value of this pmaz = 20. As the basis if
the algorithm is that it oves from a trivial optimal solution to an another
optimal solution corresponds to a smaller project duration, and we only
now the optimal solution corresponding to pp, we can not give the optimal
solution corresponding t6 a greater or pmaz project duration.

This has only theoretical importance in fact, as the solution with ¢
smallest cost belongs to the time policy calculated from the normal tim

TP B
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