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Abstrac

[

Denoting the third nonlinear term with zp in the Equation (6), let us set up the linear

observation equation (10). After having completed the adjustment we compute the neces-

sary radius r on the base of equation (16). Relationship of the reliability of the adjusted

radius Qrr (23) and of the adjusted points Qyz (28) of the circle are given, too. To

prove the correciness of the algorithm worked out a programme has been compiled for’
the microcomputer PTA 4000+16 (SHARP 1500A) [Enclosure 1]. In the enclosure 2 some

examples are presented.

Keywords: adjusting circle, linear observation equation, least square method.

Introduction

At setting out and measuring of circular sectioned objects observation equa-
tions are calculated. The observation equation is definitely determined by
the z¢ and yg coordinates of the centre and the radius ». The computation
1s carried out according to the theorem of the least squares, by means of the
method of adjustment of observation equations (group II). Adjusted values
of the parameters zg, yo and r are usually determined in two steps. First
a matching (zo), (y0) and (7) approximate values are calculated, then the
non-linear observation equations f(zo,yo,7) are developed at these values.
After having the mentioned preliminary steps carried out, the adjustment
follows by means of calculating the changes dzg, dyo and dr. Final values
are obtained by summing up the results of the first and second steps [7] :

zo = (z0) + dazo;
yo = (vo) + dyo;
r=(r)+dr.

By means of the method introduced in this article the solution can be
obtained in one step. As linear observation equations are used, neither
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the approximate values nor their changes should be determined, since the
parameters of the adjusting circle can be obtained directly from the ad-

justment.
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Notation

coordinates of the centre of the adjusting circle

radius of the adjusting circle
auxiliary unknown (for substituting the radius)

coordinates of the measured points

correction belonging to the respective points
reduced correction

coefficient matrix of the correction equation system
(form matrix)

vector of the constant terms

coefficient matrix of the normal equation

standard deviation of unit of weight

standard deviation of unit of weight

computed from the reduced corrections
number of redundant observations

standard deviation of the adjusted parameters
weight-coefficient matrix of the parameters
weight-coefficient of the adjusting radius
connecting weight-coefficients

reliability of the adjusted centre
reliability of the adjusted contour
function-matrix

functor of the function of radius

coordinates of an individual point of the contour

T asas
ollows — from mathemat

s a special case of the curve of second order
cal

handbooks [6, 1}:

(1)
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22 +y'+ Az +By+C=0 (2)

and
2+ ¢’ +2mz+2ny+q=0. (3)

Egquations (2) and (3) are the same basically, the only difference is the
notation.

For coordinates z and y both equations are of second order, so the
equation of the circle is that of second order.

From point of view of the parameters to be determined, the two equa-
tions are differing. Fg. (1) is a second degree one for parameters zg, Yo and
r, while Egq. (2) is a first degree one for parameters 4, B and C.

In both cases the parameters are independent from each other, they
are equal in number, and parameters of the two equations can be unam-
biguous [6].

Parameters of Eg. (1) are having a direct geometric meaning, so this
is utilised as an observation equation in geodetic applications [7].

Parameters of the second equation have no direct geometric meaning,
but they can be directly utilised as observation equation without develop-
ment.

In the following we will introduce a method to formulate an observa-
tion equation, corresponding to Egq. (2} from Eq. (1).

It is presumed that measurement of all the points (or coordinates)
can be considered of equal reliability. It is known that the adjusting circle
of a group of points is a circle having a minimal value of the sum of square
of distances v measured between the circle and individual points [7]. Since
these distances are radial ones, they can be regarded as corrections of the
radius obtained from the adjustment:

e

2 2 2
ri=(r—vi) = (zi —z0)" + (v: — v0)”, (5)
where 7 = radius of the adjusting circle
v = correction belonging to individual points
z;,y; = measured coordinates of the points

After having raised to the second power, then disregarding v2, the
adjustment equation will be after rearrangement:

1 2 2 2 1y 2 2
TV = ZiTo + YiYo — 3 <$6 + Yy — ‘7"> -5 (33{ + yi') : (6)

Introducing the reduced correction

vh = rv; (7)

i
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the auxiliary unknown

—

z0= -5 (e +9 - %), (®)

[Nl

and constant term )
1i=-§ <$z2+yz2> ; (9)
the observation equation can be written by the following formula
v =z + yiyo + 20 + 1. (10)

Dimension of the original correction v; is a unit of length, whilst of the
reduced correction v} is a unit of length on the second power.

The above observation equation is linear for parameters zg, yo and
zg.

Carrying out the Adjustmment

Coefficient matrix of the observation equation system A (form matrix) and
vector of the constant terms I will have the following form:

o Yo 20
(z1 y1 1]
zz y2 1
A= : , 11
’ Z; y; 1 ( )
Zn Yn 1]
e 2, 2
L1 Y
)
Lo Y2
=] 5 (12)
Ty TY;
L 2% + 2 ]

The following equation system will result from it by means of the adjust-
ment of the observation equations:

ret ey Lol [wm] |2 1Y) |
Sy Yyt Lyl | w -—5[2 . yz) =0, (13)

Yz Yy nll=
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where n = number of measured points.

Measurements of individual points are regarded having the same
weight, the unit of weight.

After changing over to a coordinate system of centre of gravity the
coefficient matrix of the normal equation can be formulated by following
way {using z, ¥ notation):

Zo Yo 20

Yzy 0
>y’
G 0 n

since the sum of = and y coordinates relative to the centre of gravity equals
zero. Therefore the normal equation system of three unknowns will fall
apart to a system of two unknowns and a system of one unknown. After
having the system of equations solved, the adjusted parameters can be
obtained in the following form:

3’
N=|Y>ay

o

(14)

o Ty’ e (e +4%) - Tay Ty (2 +4?)
° 2 (S To? - (Tow)?) ’
Ya? Ty (a? +9%) - Doy Tz (22 +47)
Yo = s
2(T2Te? - (Daw))
zo=;i;%y—2. (15)

Radius of the adjusting circle can be computed by the following equation:

r=1/zi+yE + 2z. (16)

Reduced correction can be determined from the following equation:
vi=Ax+1;, (17)

i. e. they can be obtained from the following equations:

1 / 1
vi = <$0 - §Cci> +vi (yo - §yi> +z0. (18)

Original correction can be obtained, based on formulae (7) as follows:
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Determination of Data of Reliability

Sum of squares of the corrections can be determined from the corrections
obtained by Egq. (19), or by the generally known supplementary normal
equations. In the latter case the sum of squares of reduced corrections will
be obtained, which should be divided by r2.

Number of redundant observations can be determined by

since one correction was computed for each of the points, and the number
of the parameters is three.

Standard error of weight can be determined from the original v' cor-
rections as well, by means of the following equations:

e — Zvv__l_ Soviv!
A
mpy = ,/Z;I‘H = rmy. (21)

For deducing the standard error of parameters, the inverse of the coefficient
matrix of normal equation system N belonging to coordinates of centre of
gravity should be written, which is the weight-coefficient matrix of the
parameters:

ry® -—Tay 0
Qz:c sz 0 %t De’c{)
Qryz: = | Qzy Quy 0 = | =) zy Szt ol (22)
0 0 Q.. Det Det .
0 0 el
n J

where
Det=3 a3 v* - (T av)’ .

Weight-coefficient of the adjusting radius, as weight-coefficient of a function
can be determined by means of the principle of error propagation. The
vector f© can be obtained as the partial derivative Eq. (14) according to
zo; Yo and zp.

=2 % 1]
T T T
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Weight-coefficient of the radius:

Qrr = f Qzy-f = — (fBOsz + 2330310er + yOny + Q- ) (23)

Standard error of the adjusted parameters could be computed from the
values of weight-coefficient and by means of the previously determined mg
values as follows:

mzo = m/() VASEPS mMyo = m{)\/ ny; myr = mi)\/@“—r_ (2/*)

C)

onnecting coeflicients between z¢ and rg, and between yo and 7y can also
be determined by the general principle of error
the following function-matrix:

ITo

propagation by means of

Py

1 0 0
-0 1 0
B o oy 1

T T T

From the Q:yr = E"‘TQI,J;F matrix product it is obtained directly:
Zo Yo
er = —T—Q:z + ?er

and

T N
Qyr = ?Oer + E/;ngy . (25)

Reliability of the adjusted centre at a § arbitrary direction:

Qoo = Quz cos8” + Quysin 6 cos6 + Quysin’ s, (26)

which is the equation of the curve of nadir of the centre.

By means of well-known methods, both the minor axis and the major
axis as well the alientation of the error ellipsoid can be computed [2, 4].

Reliability of adjusted contour Qi is not uniform over the points
of the circle, as a matter of fact it is corresponding to the rehablhty of
correction v belonging to an arbitrarily chosen é direction.

Therefore the vector £7 important to the deduction can be obtained

from Eq. (10) after divided by r:

(F=[% % 2] | oen
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Carrying out the multiplication fTszzf = Qx

. .
Qrr = 2 (miQu + 2$kka:y + yzny + sz) ' (28)

where
Ty = T¢ + 7 cosdy and Yi = Yo + Tsin &

are coordinates of a point of the curve.

Maximum and minimum of it depends on the position of the measured
points. Generally two minima can be formed, since the investigation of
extreme values leads to an equation of fourth power.

Description of the Program

For carrying out the computation, program was written to computer HT
PTA 4000416 (SHARP PC 1500A) in BASIC.

The 18 options secured by 6 reserve-keys were utilised to form nine
Hungarian letters with accent in writing. By means of utilising these pos-
sibilities, both the presentation and printing the data could be carried out
in accordance with Hungarian ortography. The computer presents — over
the input data and computed quantities — the adjustment circle and its
reliability relations as well. The curve corresponding to the nadir of the
adjusted centre and the adjusted circle are drawn in dashed line. QOuter
and inner error circle, error curves 7 +my and 7 — m,. corresponding to the
standard error are alsc drawn. For the sake of better realisation, the radial
corrections are represented at a different scale.

Table 1 contains the list of program.

Examples

Four computations are shown (7Zable 2). At case 1 there are four symmet-
rically positioned points having the same absolute correcting values with
the same sign in pairs. Due to the symmetrical positioning, the nadir
curve of the centre, the inner and outer error curves are concentric with
the adjusting circle.

In the second case three points were chosen relatively close to each
other, so the ellipse of error is extremely deformed and the nadir curves
were transformed to almost a circle. Standard errors of cylindrical points
close to the polnts are small, but opposite to the points this value has
grown more 300-times. In case of three points, the number of redundant
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Table 1

:"C" REM COMPUTA

TION OF THE AD
JUSTING CIRCLE

:REM PROGRAMMER

DR. SZABOLCS
CSEPREGI,
ISTVAN KADAR,
ERIK PAPP

:REM LIST OF CO

ORDINATES
“F":CLS: INPUT
"HUMBER OF POI
HTS=";N:DIM
K{N+9,2)}

FOR I=1 TO N
‘HALIT 6J§ =STRS
I:PRINT"POINT

HUMBER (" J8;")=";:

WAIT: INPUT
K(I,8)

5eCLSWAIT a:

6z

&

o

75:

8a:

895:

les:

185:

lie:

128:

SPRINTUY (" 48
Y=t WALT:
INPUT K(1,1)
CLS:WAIT o :
PRINT"X{"; J&;
")="HAIT:
INPUT K(I1,2):
HEXT I

:REM PRINT OF

COORDINATES.

t"N"CSIZE 2:TAB

6:LPRINT"LIST
OF":TAB 4:

LPRINT "COCRDI
NATES

CSIZE 1:LPRINT
"POINT NHUMBER
Y-COORDINATE":
LPRINT

TAB 28:LPRINT
" X-COORDINATE"
:LF 3:CSIZE 2:
FOR I-1 TO N

CUSING" #sug™:

LPRINT K(I,8);
SUSING” +880#4

YA Y TUN
BEE BeaT

LPRINT K(I,1}):
TAB 4 LPRINT K
(1,2):LPRINT:
NEXT 1

REM COMPUTATION
OF COORDINATES
FOR THE CENTRE
OF GRAVITY
"S"YS=g : XS=g:
FOR I=! TO N: Y5
=YS+K{[,1):XS=
RS+K(1,2): NEXT
1:YS=YS/N: XS=X
S/N

REM REDUCED NO
RMAL EQUATION
XX=p5: XY=15: YY=2
: XD=g: YD=a: D2=2
FOR I=1 TO N:X=
K(1,2)-XS:Y=K(
I,1)-YS: XX=XX+
XPX: XY=XY+X°Y:
YY=YY+Y®Y: T=X®
X+Y9Y

:CLS

133:

135:

16a:

17e

18a:

185:

19s:

288:

21e:

22a:

23a:

24ga:

245:

25a:

XD=XD+X*T: YD=Y
D+Y®T: D2=D2+T°
T: NEXT I:D=(XX
+YY)/2: XD=XD/2
:YD=YD/2: D2=D2
/4

REM SOLUTION OF
THE REDUCED
HORMAL EQUATION

: DET=XX°YY-XY°X

Y: AA=YY/DET: BB
=XX/DET: AB=-XY
/DET:CC=1/N

: XO=AA°KD+AB°YD

:YO=AB°XD+BB°Y
D:Z20=CC*D:R=
SQR(X0"X0+Y0*®
Y0+2°20)
RR=(X0*X0%AA+2
TXOTYOAB+YQ®Y
0®*BB+CC)/R/R

: Y¥=D2-RD®X0~YD

*Y0-D*28:HO=. 5
5:1F N-3LET 40
=8QR (VV/(N-3})
HXO=MO®SQR Ah:
MYO=MO"SQR EB:
MR=MO®SQR RR
REM PRINTING
OF THE RESULTS
TAB 3:LPRINT
"DATA OF THE":
LPRINT"ADJUST
ING CIRCLE":

CSIZE 1 :LPRINT
"PARAMETEZR
VALUE({m)
“:LPRINT

TAB 12:LPRINT
"STANDARD DEVI
ATION (mm}”:
CSIZE 2:LPRINT
USING"+4a88as
24 445" LPRINT
“Xo= ";XO+XS:
TAB 5:LPRINT ¥
X®1eos: H=LEN
STRS INT (MX°1
eaa}:GOSUB 493:
LPRINT

USING" +k#8884s
#&. S8 LPRINT
"Yo= ";YO+YS:
TAB 5:LPRINT M
Y®igea: H=LEN
STRS IN (MY®°1
sa3) : GOSUB 49a:
LPRINT

USING" +84#848
#4248 LPRINT
" R=";R:TAB S
:LPRINT MR®1g
o0: H=LEN STRS
INT (MR®leea):
GOSUB 498:
LPRINT
LPRINT "
CSIZE 1 TAB 4:
LPRINT "REFERE
NCE STANDARD
DEVIATION":
CSIZE 2

263:

265:

27s:

315:

2
5

35a:

3éa:

37a:

38g:

3%a:
395:

4zo:

:LPRINT "

LPRINT USING
TERBRRGEE. Do
“:1LPRINT "mo=
" ;MO: H=LEN
STRS INT MO:
GOSUB 49z

REM CALCULATIO
N OF RESIDUALS
“VULF 1 GLPRINT
" RESIDUALS
(mm)" : LPRINT®

~ment : PYV=g

:FOR I=1 TO N:

GOSUB 548

:S§="v("+STRS K

(I,8)+")="

S8= " "+S8:GOTO
29¢

LPRINT §%;:

USING "+i#egs.
#&87 LPRINT V*
o33 PYV=PVV+V
®YV:NEXT I:
CSIZE 1:LPRINT
SUM
OF THE RESID
UALS SQUARES™:
CSIZE 2:LPRINT
:GOSUB 55a:
LPRINT * wv

= ";:LPFRINT PV
Ve 1E6

REM COHPUTATION
OF THE ACCUR
ACY OF THE CIR
CLE POINTS

:"K"CLS : INPUT

“NUMBER OF CIR
CLE POINTS="; M
LF 2:5=1

: E=36p/M: CSIZE

1:LPRINT “ RE

455: "X"LPRINT "ADJ
USTING CIRCLE
“:LF 8

415:COLOR 2:GRAPH
:GLCURSOR (158
,8) :SORGN 1 X=
©3: Y=9:
GLCURSOR (X, Y)
:S$=SIN 18:C=
C0S 15: FOR I=1
10 36:2=X°C-Y®

S
423: Y=X?S+YC: X=2Z:

LINE -(X.Y),8,
2:NEXT I:COLCR
I=1 TO H:GGSUB
545

:IF LEN S§<8 LET 435:Y={(K(I,i}-¥S~Y

0)*F-5:X=(K(1
2)-XS~X0)°F~-4:
G=SOR (REX+Y®Y
) /683 H=V*X/G

445: X=V*Y/G:

GRCURSOR (Y+K,
X+H):LPRINT “o
“:NEXT 1:J=1:Z
=165:K=18

45z:C=1:5=5:G0SUB

Ses: GOSUBS3a:
GLCURSCOR (Y,X)
:FOR I=X TQ 362
STEP K:C=C08 I
:S=SIH I

46z: GOSUBSe3:

Z0SUBS3s: LINE
-(Y,X},9,3:
HEXT I IF J=1
LET J=-1:GOTO
453

47e: IF J=-1 LET J=2

: Z=p:K=28:COTO
450

48g: TEXT :LF 15:

END

LIABILITY OF THE493:GRAPH :

CIRCLE POINTS":
LF 2

= LPRINT "BEARING

STANDARD
DEVIATION(m=m) "
:1CSIZE 2
LPRINT

FOR I=3 TO M-1:
EE=E®*1:C=CO0S E
E:S=SIN EE:
GOSUB Sog
S§="("+STRS EE
+7)="

IF LEN SS<8SLET
S8=" "+88: GOTU
37s

LPRINT S§;:
USING "+8u88%.
#84"  LPRINT QV
:H=LEN STR$
INT QV:GOSUB
492

NEXT I:LF 3
REM ILLUSTRATI
ON FOR THE ADJ
USTING CIRCLE
“X"LPRINT *
ILLUSTRATION":
LPRINT *

FOR THE"

GLCURSOR (144~
H®12, 14):
LPRINT "-":
GLCURSOR (@, 20
}:TEXT :LPRINT
:RETURN

522:Q1=(X0°C®AA+KO

SSTAB+YQCCUAB+
YO®S®*BB)°2/R

518:Q2=CPC2AA+2%8"

C®AB+5°S®BB: Q=
Q2:IF J<2LET Q
=Q1+Q2+RR

52¢:QV=MO"SQR Q°1s

23 RETURN

532:Q=QV/18: Y=(2+

JPQV)®S: X=(2+]
°QV}*C: RETURN

548: V={{K(I,2)-XS)

°X0+(K(I,1)-YS
)2Y0+20- ((K(I,
1)-Y$) 2+(K(I,
2)-X5)"2)/2)/R
:RETURN

55: GRAPH:

GLCURSOR (43,9
}:ROTATE 3
:LPRINT “M":
GLCURSOR (41,2
}: TEXT :RETURN
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Table 2
LIST oF LIST oF LIST oF LIST oF
CDORDIHATES COCADINATES COCADIHATES COORDIHATES
POINT MUMBER Y-CODRDINATE POINT MREIR  Y-COORDINATE POINT MUMBER  Y-COORDIHATE POIKT MUMBER Y-COCRDINATE
X-COORDINATE X-COURDIHATE X-COORDIHATE X-COURDINATE
1 +100. 050 1 ~12.186 1 -17.365 12 +23.200
+0.000 +99.254 +98.481 *59. 400
2z +0.000 2 +0.000 2 -8.716 56 +25.100
+99.950 ) 100.009 +99.619 +58. 200
3 -100. 050 3 +12.186 3 +0.000 3% +27.600
+9.000 +99.254 +100. 000 454,800
a ~0.000 DATA OF THE & +8.716 456 127.000
-39.950 ADJUSTING CIRCLE +99.619 +48. 100
BATA OF THE s +17.365 555 +18.500
ADSUSTING CIRCLE STANDARD DEVIATICH +58.481 *44.100
PARAMETER VALUE (m) Xo= +0.097 DATA OF THE DATA GF THE
STANDARD DEVIATICH (sa) 282,087 ADJUSTING CIRCLE ADJUSTING CIRCLE
Xo= +0.000 Yor +0.000 PAAAMETER YALLE (a) PARAMETER VALUE (=)
270.781 22.501 STAKDARD DEVIATIGN (s} STAKDARD DEVIATION
Yoe +0.CO0 A= +99.502 Xo= ~0.035 Xo= 652.033
:73.710 +81.679 223.632 229.967
R= 4100.000  memmmmemmmem s Yo= -0.008 Yo= +20.601
250,024 REFEREINCE STANDARD DEVIATICH £1.221 £54.025
come-- mo= £0.050 A= +169.034 ft= +8.046
REFERERCE STANDARD BEVIATIGH 423.453 £33.8%0

210.004

o=

RESIIIALS (am)

-42. 999
*43.3999
-4%.999
*49.599

RESIDUALS SQUARES

Evv = 42739997

PABILITY OF THE CIRCLE POINTS
BEARIKGSTAKDARD DEVIATION

(o= L85.874
21B6. 645

256.616

£85.64S

286.674

12251= 2585. 645
(2700= 85.616
{215)= 2£6.64S

ILLUSTRATICH
FOR TiZ
ADFUSTING CIRCLE

RESIDUALS ({ea)

vill= +0. 000
viZ}= ~0.000
v{3)= +0._000

St OF TED RESIDUALS SQUARES

Tvv = +0.000
RELIABILITY GF TEE CIRCLE POINTS
BEARINGSTANDARD DEVIATION

(03=
{45})=
{s0)=

20,500
$23.724
*81.730
{135)= £139.738
(18C)= 2163.766
(225)= £139. 728
(272)=  :81.730
i315)= $23.724

ADJUSTING CIRQLE

REFERENCE STANDARD DEVIATION

zo= *0.033 zo® 0,357
RESIDUALS (ma) RESIDUALS (mm}
v(l)= -0.0%6 vitz}= -2.4311
w(2)= +0.226 vi56)= 30,117
v(3i= -0.5338 vi35)= ~46.676
vial= +0.226 VI456)= +27.819
viS)=  -0.056 vE595)= -8, 948

+0.223

RELIABILITY CF THE CIRCLE POINTS
BEARINGSTAMDARD DEVIATION

(o}= 20.233
{35)= 26.75%
180)=  ¢23.485
[135)= 240,174

U180 +47 08¢
[225)= 40,174
(270)= 423 485
{315)= 6. TR

HLLUSTRATICH

ADJUSTING CiRCLE

B2 OF THE RESIHRIALS SQUARER
+3351. 161

vy =

FILITY OF TRE CIRCLE POpn
ADTRT STARDARD DEVIATION

)= 150.811
(45)= 225,645
{80}= 233.462

(135)= £35.885
{180} +38.877
(228)= +63.791
{270}=  +§1.754
{318)= +78.823

ILLUSTRATICH
FOR THE
ADJUSTING CIRCLE
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observation is zero, denominator of Eg. (21) is also zero. The program
utilises an mo=0.05 value.

The third example indicates that increase of number of points yields
an improvement, even if the points are close to each other. Example four
shows a generally positioned, non equally distributed point-arrangement.
There are two maxima (120° and 280°) and two minima (50° and 150°) in
standard error of cylindrical points. Optimal arrangement of points was
examined, but our examples are backing the result of [8], which indicates
that symmetrical positioning is the most advantageous case.

Conclusion

In this paper utilisation of linear observation equations was introduced in
case of adjustment circle. By choosing suitably, it could be reached that the
originally non-linear equation turns to linear one. The geodetic meaning of
the parameters is not requested, computation of the important quantities
— after the adjustment — is enough.

This solution was generally used at the well-known Helmer? transfor-
mation, where a and b transformation parameters are computed instead of
rotating angle and scale.

The solution introduced in this paper is suitable for cases of adjusting
spheres — by means of use of the following auxiliary parameter —

2 2 2 2
s = (7‘ —1‘0—?40—20},

(S A

which gives a solution to determine the deformation of spherical containers.
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