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Abstract 

The phenomena of the real world exist in three dimensional space. The authors in the 
former years performed a research aiming at modelling the undersurface solids, cavities 
and strata. The present paper is the first pu blication concerning the continuation of this 
research. In this new activity, an attempt will be made to model scalar fields of different 
properties under and over the surface of the Earth. 

The modeiling process is influenced by the character of the source data which de­
pends on the conditions of the data acquisition. 

Especially in undersurface models 
- it is very expensive to capture new data; 

there is no possibility to measure in the places of maximum and minimum; 
- the values of arguments as well as of functions are determined with several types of 

uncertainities. 
The methods to be applied should take into account the properties of the source 

data as well as the problems to be solved by the model. 
After sketching the methods to be examined in the future, the method of local 

polynomials worked out by the authors is explained in detail. The gist of this approach is 
to divide the set of nodal points into llff "units", composed by help of Voronoi polyhedrons. 
Each unit represents a polynomial of k-th degree (where k depends on the accuracy of the 
source data). The interpolation of a function value for a point P in the competency of the 
i-th unit's polynomial can be calculated as a weighted average of all the M polynomials 
for the argument xp, yp, zp. The weight is growing when the distance of the unit is 
decreasing. 
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1. Introduction 

As a result of our five year research activity in the fields of modelling 
subsurface solids and strata (in the last case, of course, we did not exclude 
the modelling of the Earth surface itself) (SARKOZY 1989), (S.A.RKOZY 
1990) on the basis of our theoretical contributions we worked out a program 

*l{l'sparch supported by Hungarian National Science Foundation Grant. :-;0.685. 
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system suitable for three dimensional modelling of solids given by scattered 
points, cavities given by quasi-profiles, two and half dimensional modelling 
of strata given by their boundary surface points. 

The initial conditions of our former studies, namely the assumption 
of homogeneity of bodies and strata given by their boundary points can be 
accepted in many practical cases but not generally. One step closer to the 
reality is the case when we suppose that the parameters of the material 
filling up the space are building scalar fields, which can be continuous in 
global sense or only locally. Although these conditions are more general 
than the former ones, even in this new phase of our research we do not aim 
to reach the complete generality, which would be the modelling of vector 
fields instead of scalar ones. 

The demand on modelling of scalar fields is not a new idea in the 
geosciences. As examples we can hint at two classical problems: the de­
termination of potential function of the gravity field of the Earth, or the 
modelling of temperature distribution in the toposphere. These two ex­
amples as methodological counterpoints very well illustrate the limits of 
suitability of scalar models. While the assumption of relative unchange­
ability in relation to the potential function from practical point of view 
is quite acceptable, the consideration of the dynamics of the atmosphere 
is demanded almost by all the problems. Hence the scalar modeillng of 
potential function provides final results for the practice while the scalar 
model of .the temperature is only an element of the vector field demanded 
by the practical tasks. 

2, The Character of the J..VJeV'UC;:;"".lll,"" Process Considered 

Both the undersurface and tODCIS[lhiore models on function values mea-
sured in randomly located points. These points are commonly characterized 
by uncertainities in the locations as well as in the function values. This 
statement is especially true in the case of undersurface models. 

The undersurface data as a rule can be obtained as a result of drl!l:ml~, 
which is a very expensive process and therefore in a lot of cases the models 
should be composed using relatively few input data. 

A meaningful difference should be pointed out between the tasks to be 
solved and the interpolation problem well known and worked out in detail in 
the surveyors' practice: the creation or digital elevation models. The 
quality DEM is built up on the basis of such not regularly (but also not 
randomly) located points, which truly reflect the features of the terrain. 
The surveyors or photogrammeters really see the places of maximum or 
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minimum values of the "function", i. e., the tops of hills, the bottoms of 
valleys etc. and the well measured input data should contain these values. 

'l\!e can encounter a completly different situation in the case of input 
data for the scalar field models in question. The places of extremal values 
of the functions are unvisible, consequently, there is no reason to regard 
the measured maxima and minima as the extremal values of the function. 
With other words there is a certain probability that in the not measured 

we can meet greater or smaller values than the measured maximum 
or -minimum. 

This fact should be underlined because of our conclusion which can be 
drawn from it: s71ch interpolation methods which determine the interpolated 

weighted average of the measured valnes can not be used 
t:fl¥rlRt:]U11 in the tasks we have io solve. 

y 

Fig. 1. 

Fig. 1 illustrates our statement for the one-dimensional case. If the in­
terpolated function value in point Xi, computed by some kind of average 
building, is denoted by rh then Yi :::; Yi-l, Yi:::; Yi+l because of the na­
ture of the average. If we fit a polynomial to the nodal points we get 
Yi > Yi-l = Yi+l . In our opinion, the scalar fields built up by the natural 
processes in most cases coincide with the latter approximation. 

Let us once again dwell on the interpolation methods using average 
building. In the case of known extremal function values some of those 
can give excellent results, for example, the method of 'stolen territories' 
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(GOLD 1991). This method is based on the building of Voronoi polygons 
(polyhedrons in the three-dimensional case) around the nodal points. If 
we want to interpolate the function value of a new point, we should con­
struct its Voronoi polygon based on the connection of the new point with 
the old neighbouring ones. The new polygon cuts out territories from the 
original polygons belonging to the nodal points which were connected vvith 
the new point. The weights related to these nodal point heights are the 
"stolen" or cut out territories. From geometrical point of view the method 
of Voronoi cells is suitable for 3D modelling, too. However, in this case 
it is also true that the use of VOTonoi cells for interpolation by means of 
simple weighted averages can give good results only in the case when we 
know the extremal values of the function. Similar remarks can be made 
on the kriging (STEIN ER, 1990), the probably most popular interpolation 
method in geostatistics. Our misgivings in relation of averages by missing 
extrema henceforward stay in force and would be diminished only if the 
possibility of unlimited densification of the measured points could be eas­
ily realizable. But in the field of undersurface investigations there exists 
an opposing situation: the drillings are very expensive and the modelling 
should be effectively fulfilled on the basis of incomplete information. In 
such circumstances we can not accept the kriging as a universal tool for 
undersurface modelling. 

For a part of the problems considered (e.g. for spreading of con­
taminating concentrations in undersurface spaces) we can find physical­
mathematical models which describe under certain conditions for a con­
stant time the iso-surfaces of the phenomenon in question. The finding of 
such laws (if they exist) can significantly improve the quality of interpola­
t' vIon. 

All physical points situated under or over the surface of the Earth 
are (places) of an infinite number of scalar fields. A lot of 
practical tasks demand the analysis of interaction of several fields. Our 
methods should be suitable for fulfilling the quantitative analysis of these 
interactions. For example we can consider the task of oil investigation. 
The decision about the location and volume of the oil should be based 
on the comparision and correlation of the fields of porosity, permeability, 
temperature, pressure etc. 

The common analysis of several fields at the same time should call 
our attention to the uncertainties in each model and their influences on the 
result. 

'Vile can distinguish global fields (as that of the temperature) and local 
fields (as .that of the sulphur concentration of a coal bed). In the case of 
local fields assuming that the samples are spread over the object, first of 
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3. The l\!Iethods to be Applied 

After the determination of natural (in local case) or artificial (in global 
case) boundaries the interpolation of the function describing the scalar field 
can take place. 

In the computational mathematics we can find three principal meth-
ods of interpolation (DANILINA 1988): 

interpolation by polynomials, 
interpolation by trigonometric functions, 
interpolation by exponential functions. 
As the general solution our choice fell on the interpolation by poly-

nomials, paying of the polynomials and the 
of the nodal will return later to the 

explanati9n of this method . 
Our further aim is to use the series composed from exponential func­

tions for modelling of physical phenomena. We can suppose that the nat­
ural circumstances produce bias in the boundary conditions which in turn 
produces local distortions in the shape of phenomenon in relation to the 
modelling function. In such cases the modelling process can be performed 
in two steps: first we describe the global model by "regular" functions, 
secondly the discrepances by superposing proper series. 

The great challenge of interpolation by functions is in the reduction of 
the number of parameters to be stored. Although if we take anomalies into 
consideration the demand in storage places can grow significantly, in many 
cases we can find tasks of lower resolution which are satisfactorily modelled 
by the properly parametrized original interpolating function. At the same 
time it is unquestionable that the compilation of an expert system with a 
great number of interpolating functions is a very hard work. 

Whatever approach will be chosen for the modelling of scalar fields, 
in most of the practical tasks there is a demand to interpolate the model 
values in the nodes of a regulaJ; grid. While in the case of interpolation 
by functions the grid system is only a temporary one, making the use 
of different application programs possible, in the case of interpolation by 
polynomials the grid structure can play the role of storage structure, too. 

For engineering purposes the visualization of the models is especially 
important. The perspective display of the iso-surfaces built up by points 
of equal function values and the bodies bounded by these surfaces can be 
of significant interest. 

Our scalar models can be used also for modelling dynamic phenomena 
if we have measured function values related to different points of time. In 
these cases we should display the "moving" surfaces and by their help the 
trend of the process. 
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The uncertainities in modelling the bodies bounded by iso-surfaces 
appear especially significantly when similar bodies origined from other 
scalar fields intersect. For determination of uncertainities in the result­
ing section we plan to use the tools of the fuzzy sets' theory. 

4. Approaching our First Method 

The values Ui of the space scalar function f (r) are given in the points 
ri (i =1, 2, ... , M). Our task is the approximate determination of the 
f(r) function values in the not measured points r. Let us designate the 
approximating function in general as fAt 

f(r) ~ hvf(r, a), aE (1) 

where the parameters a are traced back to the known data Ui, :ri. In the 
books on computational mathematics e.g. (DANILINA 1988, DEMIDOViCH 

1987) we can find a lot of methods of different properties for the one 
dimensional case. can easily generalize most of these methods for the 
three-dimensional case, however, most of them will not work effectively 
enough. The solution of multidimensional problems is much more difficult 
because Cif the extended sizes, they can produce storage shortages even in 
the process of computations. The effective methods are based as a rule 
on the special properties of the task (e.g. the given points have a regular 
spatial arrangement, the type of the function f(r) is known, etc.). 

When choosing our method of approximation we should consider the 
errors in the given function values. In several cases, as mentioned earlier, 
the location vectors ri can be affected by errors, too. These facts indi­
cate that the choice of a smoothing approximation is more advantageous 
in most of the cases th3..n that of an one. The smoothing 
function which only approximates the measured values of the field is more 
advantageous even if the latters are errorless but taken too sparsely in re­
lation to the changeability of the function. In such cases the smoothing 
expresses better the main characteristics of the field than the interpolation 
does. 

"Ve should decide whether a global or a local method will be more 
appropriate for the first experiment (do not confuse the notions gio bal and 
local methods with global and local fields). The global methods have the 
advantag~s of handling the task as a whole. The global approximating 
functions provide the continuity, unbrokenness and proper smoothness for 
the entire model space. However, these methods have the drawback that 
they demand the solution of very large systems which can cause several 
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numerical and computational problems, furthermore without the knowl­
edge of the characteristic features of the field it is very difficult to select 
the proper, most effective basic functions for the approximating expression 
(DETREKCli 1991). In the case of local methods we have to solve a lot of 
small tasks which is very easy to do even if we consider a high level of ac­
curacy. The problems occur by the linkage of the elementary models, it is 
not so easy to assure the continuity and the unbrokenness. These methods 
do not yield a proper smoothness in many cases. 

By proper combination of local and global methods we can get pro­
cedures of rather nice behaviour. As an example iNe can rerer to the well­
known method of splines which can be used both for smoothing and for 

The use of splines located ~L'-'U-'CO. even if the 
sizes are large, is very efficient but in the case of scattered points one can 
race significant computational difficulties. 

The locally independent interpolating methods (STEINER 1990) are 
very simple and can easily be used when the nodal points are located in 
a regular grid. The main computational advantage of these methods is 
the small number of input data in model building and interpolation. The 
criteria of continuity, unbrokenness or the continuity of second derivCl~tives 
can be realized by the selection of a proper weighting function. In case of 
irregularly located nodal points the method is difficult to use. 

Also in the case of spatial scattered nodal points one can build up a 
usable method by means or estimation on the basis of local models. 

For each point 1'i in wich the value Ui of the in general unknown 
function f(1') is given we can construct a Gi(1') approximating function 
which is properly near to the original function in the neighbourhood of the 
point. The function should be defined everywhere over the global model 
and give good approximation at least for the neighbouring points. 

In a random point l' we can compute the approximating values rrom 
each local function 

(i=1,2, ... ,M). (2) 

The values Ui,,' approximate the value of j(1') in different measure. The 
accuracy of the approximation depends on the distance or the point r from 
the central point 1'i of the runction G;(1'). 

We can consider the Ui,r values the estimations of the function value 
f(1') by the local model G; and therefore they are random variables. The 
distribution of these variables is unknown, but some of their statistical 
characteristics (e.g. dispersion) can be estimated. The dispersion can be 
estimated on the basis of the discrepances at the point 1'j 

(3) 
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If w.e know the probability characteristics of the values Ui,Tl out of 
them (their number is M) we can compute the estimate of the mathematical 
expectation of the function value f(r), denoted by Ur, using some method 
of estimation. In the simplest case this estimate can be expressed by means 
of weighted average building: 

M 
'" S' • U' f..J 1 l)r 

i=l Ur = --'---­Ai 
L: Si 
i=l 

where the Si weights are computed from the ui,r dispersions 

-2 
Si = ui,r . 

(4) 

(5) 

Of course instead of the estimate (4) we can also use other methods 
of estimation; for example the robust estimation can be used. 

4.1 The Local Modelling 

For the construction of local models the usual methods of function 
approximation can be applied. The simplest is the use of polynomials with 
three unknowns: 

n n-i n-i-j 
Df ) i j ,1: 

.!. n \ x, y, z = aijJ: . x . y . z . (6) 
£=0 j=O k=O 

the use of third polynomials seems to be 
they have twenty coefficients, that means at least the same number of 
nodal points should be available for their computation. 

To determine the function Gi(r) approximating in the neighbourhood 
of point ri, the necessary number of nodal points should be selected from 
the same region. The simplest way of selection is the choice of a proper 
distance or that of coordinate-intervals. In this case we should consider 
the equal. distribution of nodal points taken into account. We can get an 
improved but much more complicated method of selection using the neigh­
bouring and second neighbouring nodal points indicated by the Voronoi 
polyhedrons (Bo\VYER 1981). 

We usually apply smoothing methods for determining approximating 
funtions , but possibly we can enforce the fulfillment of the Ui = Gi(ri) 
condition in the point ri. The coefficients of the function Gi should be 
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computed by some kind of adjustment, mostly by method of least squares. 
In the adjustment by choice we can use weights, which depend on the 
distances. 

The iocally approximating Gi(r) function approximates the fer) well 
inside the region determined by the nodal points used. Outside this region 
the error of approximation grows. By polynomial approach the error of 
approximation in the extrapolation region grows rapidly and tends to the 
infinity. 

4.2 Computation I hsner.';w,ns and 

After the construction of the functions vIe can the bij dis-
crepances and the respective distances according to (3). If we divide the 
greatest distance into intervals, we can estimate the 0"2 dispersion square 
related to the average of distances in one interval: 

f{ 
2 1 2 

O"d = ;: T7 vi, 
.n. £=1 

(7) 

where K is the number of distances in the particular interval. If we draw 
the graph of the d, 0"2 pairs we can get the average dispersion of the Ui,r 

values estimated by the Gi(l') functions in terms of the distance. 
In general, the O"~( d) function can be well estimated by the expression 

a,b,c;:: 0, (8) 

where O"m is the dispersion of the known function values in the nodal 
points, the parameters a,b,c can be computed from the related pairs d, O"J. 
If by the construction of local models we prescribe the equality Gi(l') = Ui 

in the point ri then c = 0. 
It sometimes occurs that in different directions we get different dis­

persions. In such cases we should introduce a new distance notion instead 
of the Euclidian one according to the following expression: 

(9) 

In this case the elements of the matrix D should be determined together 
with the remaining parameters. Now, we can eliminate the use of distance 
intervals and we can estimate the dispersion from the discrepances bij and 
Dji belonging to the distances djj = dJ'j: 

2 1 2 2 
O"dij = 2(bij+bji)' (10) 
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If the spatial distribution of the l'i nodal points is highly unequal, then 
instead of a global d(d) function, we may apply separate dispersion func­
tions O-[d (d) for each local model. 

We can compute the weights from the dispersions by the following 
expression: 

(11) 

4·3 Compilation of the Global Model 

On the basis of local models we can compute the different values of Ui,r in 
any space point l' and for each of them determine the dispersion and the 
weight by means of formulas (8) and (11). The series 

(i=l,2, ... ,M) ( 12) 

can be considered as indirect observations of different accuracy for the 
quantity f(r). Consequently, the mathematical expectation ur and its 
dispersion Ij v. can be determined by some method of parameter estimation. 
In general the correlation of the quantities Ui,r can be neglected. The 
simplest method for estimation of ur is the weighted average 

UT = (13) 

which corresponds to the estimation by the least squares method. Among 
the quantities Ui.r values with large errors can occur though they have 
small weights in general, nevertheless it can be reasonable to apply robust 
estimation methods (HAMPEL 1986). 

The models Gi(r) located far from the point r have only a very small 
influence on the value of (13) which can be neglected introducing a distance 
of influence T interpreted as (9). The local models which are further as 
T should not be taken into account in the estimation of UT' This fact 
increases the efficiency of the computations. 

The global approximating function h,J(r) compiled using our method 
is continuous and unbroken over the complete region of definition, in the 
case of using a proper estimation method (e.g. (13)) the second derivatives 
are also continuous and the approximating function is smooth enough. 



JrODELLING OF SCALAR FIELDS 197 

4.4 Numerical Illustration 

For illustration we have chosen a very simple one-dimensional example. 
Let us consider the function sin x as unknown in respect of the task to be 
solved. The measurements will be substituted by values of sin x computed 
in 25 points, randomly selected in the interval (0, 10). The computed 
function values are considered as errorless and the method will be used for 
interpolation. 

For local models 'Ne have determined third-order polynomials in the 
way that besides the the neighbouring four points have been in­
volved into the computations. On the basis of these five points we have 
calculated four coefficients for each polynomial means of least squares 
method Wc:lg'ht,S reClPJro<:al to the distances. This Vl<:lg;111:ll1g results 
in the fitting in the local model Gi(X) at the point while in the neigh­
bouring points the "measurements" are approximated by (x). In 
Fig. 2 we display two local models belonging to two neighbouring points. 
It is visible that moving away from the nodal points the local model can 
produce significant discrepances. 

8X 

Fig. 2. 

The variances in terms of distances have been computed by formula (10) 
and the coefficients a and b of formula (8) have been determined by means 
of least squares. Fig. 3 shows the suitability of the chosen weighting func­
tion rather well. 

The global model and the 25 nodal points have been shown in Fig. 4. 
The average accuracy of the estimated 125 (x) values was characterized 

by the dispersion computed from the differences 125 (x) - sin x taken over 
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Fig. 3. 

4· 

the whole interval in 0.1 The result is 

(j hs = 0,0068. 

Because of the unequal distribution of nodal points the largest errors origin 
around x = 7 where the nodal points are far from each other. compared 
our results with the interpolation by splines constructed at the same nodal 
points. In average our method gives a slightly better result than the spline 
interpolation, but in the case of few nodal points our results are much 
better (see Fig, 5). 

Similarly to the global method, the dispersion of the spline function 
has been computed: 

0' spline = 0.0308, 
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!f\y 

Fig. 5. 

which is more than four times larger than the dispersion of the global 
method. 

Of course from this small example we cannot draw decisive con du­
sions, but we can state the usability of the method, which can be applied 
first of all for construction of grids with adequate density. 

5. Conclusions 

The numerical experiment shows that our method, the global model build­
ing from local ones is suitable for the realization of 3 D modelling. 

On the basis of our first experiences we have found that further in­
vestigations are necessary to answer the following questions: 

a) what other kind of approximating functions (in addition to the poly­
nomials ) can be used efficiently for the local modelling; 

b) whether there is a reason to apply weights by fitting the local functions 
to the nodes, if the answer is yes what kind of weights should be taken 
into account; 

c) how does the distance of influence depend on the type of the local 
functions, on the weighting functions applied for the global approxi­
mation and on the characteristics of the scalar field; 

d) what characteristics can the general features of the scalar field de­
scribe and what their influence is on the desirable density of samples? 

Even if we can give only partial answers on these questions our method 
becomes suitable for practical applications. 
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