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The topographic-isostatic potential of the earth’s crust can be computed easily using
average crustal density parameters, a global isostatic model and 2 numerical dataset of
mean continental and oceanic heights. In lack of the detziled data for density, crustal
thickness and isostatic compensation, a least squares estimation is suggested to determine
global horizontal variation of crustal parameters.

These variations can be determined using 2 minimum principle to yield a minimum
variance high frequency residual geoid. The basic mathematical tool for the determina-
tion of such parameter variation functions is the Clebsch—Gordan product-sum conversion
formula of spherical harmonics.

Computer programs were developed based on the above mentioned mathematical
algorithm to determine optimal linear topographic-isostatic crust models (OLTM). Previ-
ous calculations detected significant global density variations inside the crust with respect
to the simple Airy model of uniform crustal parameters. The result would perhaps show
us & better insight into the global isostatic behaviour of the crust.

Keywords: topographic-isostatic model, lateral density variations, spherical harmonics,
isostasy of the earth’s crust.

1. Introduction

The behaviour of our earth’s crust on a global scale is rather difficult to
model. The gravitational potential caused by mass irregularities inside the
crust can only be predicted using various crustal density models. On the
other side the gravitational potential of the earth’s crust is included in the
total gravity potential, which is well-measured on a global scale.

The disturbing potential due to the density irregularities inside the
earth’s crust is termed shortly topographic-isostatic potential. It can only
be evaluated through certain global topographic-isostatic models.

The importance of such models is at least twofold.

!The National Scientific Research Fund gave financial support to the research discussed in
this paper (contract No. 5 - 204).
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1) They can be used to reduce measured gravity signal so as to make
residual gravity field as smooth as possible for prediction purposes.

2) Such models allow us to remove the disturbing effect of the crust and
they produce a clearer overall insight into the effect of deeper mass
irregularities.

The conventional simple Airy—Heiskanen isostatic model was first in-
vestigated. RUMMEL et. al. (1988) developed a very efficient FFT-based —
(Fast Fourier Transform) — technique for the computation of this model’s
topographic-isostatic potential. In the first part of this report their method
will be described and the results of our calculations with this model will
be presented.

In the second part of this report the detailed study of so-called opti-
mal linear topographic-isostatic models (OLTM) will follow. In these mod-
els a minimum criterion is introduced to determine a topographic-isostatic
model. This model physically is an opiimum Airy-type model with lateral
variations in density, crust thickness and isostasy. It gives the best possible
agreement between topographic-isostatic potential and the earth’s disturb-
ing potential. Finally, some resulis and conclusions will be considered for
simple and optimal Airy-type topographic-isostatic models.

2. Alry Topographic-Iscstatic Model

The Airy model supposes that the light crust matter of density p.r floats
on the more heavy material of the upper mantle of density pm. Each crust
‘column’ is in an equilibrium state. This requires for ccean columns the
anti-root thickness d° for ocean depth A*: and root thickness d for land
elevations h to exist. (Fig. 1).

From the equilibrium equations

root-thickness: d=foy , (1a)
Ap
anti-root thickness: g = fe _Pugps (1b)
Lp

where Ap = pm — per and py is the ocean water density.
If the factor

ch=1, i h>0 and c=1-2%,
Per

is introduced then the Egs. (1a, b) can be unified in one equation

bt o
=n

h <0

Per
d=—h=2"%k 2
bk (
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Fig. 1. Airy isostatic model

where
1 !
h=cph .

Here h is often termed as eguivalent topographic height, and k is the com-
pensation factor.

For a flat earth (i. e. plane approzimation), the compensation factor
k is constant and equal to

k=hy=—Lo (3)
Pm — Per

For a spherical earth k will be slightly modified and it can be computed
from the mass balance principle of isostasy. It will become dependent on
both A and D. (SUNKEL, 1986):

Y[ (E )

where R denotes mean earth radius (approximately 6371 km).

Even if this simple Airy model is not accepted as which reflects the
real behaviour of the earth’s crust, it will be quite useful to investigate it
first as computationally simple and straightforward.
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3. Spherical Harmonic Analysis of the Topographic-Isostatic
Potential of the Simple Airy Model

The simple Airy topographic-isostatic potential, T*"™ is defined as the
potential generated by mass irregularities with respect to an ideal homoge-
neous crust (with density pcr and uniform thickness D lying on a homoge-
neous mantle with density o). If §p denotes mass irregularities according
to the Airy model the topographic-isostatic potential of the volume density
distribution §p will be

TPy =6 [[[ 17 Qs(Qa(@), (5)
J

where G Newton's gravitational constant,
P, Q) spatial distance of P and Q,
dv volume element.

TA™(P) is harmonic outside a sphere and its spherical harmonic ex-
pansion is surely convergent outside the sphere enclosing total mass of the
earth. Outside of this sphere the following series expansion is valid for I7:

1Pg) =Y. 9 P cos wra) (6)
L ,rn--l(P\" n( Yra),
n=0
where 7 magnitude of radius vector,
Ypo  angular distance of P and @,
P, Legendre polynomial of degree n.

If Unm, ¥V am denote fully normalized spherical harmonics of degree n and
: r )

(B0 e T[22

(n 4+ m)! | sinmAs

where Op polar distance,

Ap longitude,
bi; Kronecker’s delta,
n=20,1,2,...;m=0, 1,

In the above expression the Pn;,(t) associated Legendre functions of degree
n and order m are defined by the following equation:

1 m grm
2”n'( ) din+m

an(t) = ( 2 - 1)71 . (8)
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The P,(cos?pg) function can be decomposed into the sum

st Y [Tam(Pam(@) + Tam(PYVan(@)] - (9)

m=0

P (COS_ Yrq) =

Inserting the expression (9) into the integral (5) will yield the following 3D
spherical harmonic representation of the topographic-isostatic potential of
the Airy model:

Q
18

rfv II'v(P)

\

f&r\
> Z <upm \,OSmAP‘%‘Snm smm/\p>

}‘3
il

X Pam(cos®5p), (18)

where M  total mass of the sarth,
P normalized Legendre functicn, defined as

bl

(n — m)i

(n+ m)!
—Alry

and b—fz}, S,m are normalized spherical harmonic coefficients of the topo-
graphic-isostatic potential of the simple Airy model with uniform crustal
parameters. The summation in Eg. (10) begins at n =1 because there is
no mass surplus or deficit in this compensation model.

Pam(t) = \ 21-6=0(2n 4+ 1) Prm(t), (11)

4, Computation of the Spherical Harmonic Coefficients of the
Simple Alry Topographic-Isostatic Potential

In the following discussion we summarize the formulae necessary for the
computation. The detailed derivation and discussion of the above formulae
can be found in the papers of SUNKEL (1986) and RUMMEL et al. (1988).
Firstly we split up the topographic-isostatic potential into the follow-
ing two parts:
Aty _ pl(t) + 70 ,

where T® denotes disturbing potential of topographic and () disturbing
potential of isostatic masses. The spherical harmonic coefficients of 7®
are then -

(1) n+3
S8 ) = e = ()
{5(” }“ p 2n+l)(n+3)dr )/ " 1+ 7 !
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{7 e@, (12)
where 7 = 4:;%3 mean earth density (5514kgm™3),
Jf ... do  denotes integration over the unit sphere.

The spherical harmonic coefficients of T for the simple Airy model will
be expressed by the integral expression

—(C) ‘ 3Pcr 1
ggj p (2n+1)(n+3)

(-8)" g [ |0+ 220)" | (T e

(13)
When a second order approzimation is accepted for the computation of the
spherical harmonic coefficients of T Ay

Com VL _ [T ) . [T
{gi};) } = { S(t) + gggi , (14)

one gets the second order approximation formula for the computation of
spherical harmonic coe‘ﬁmen’ﬁs of the simple Airy model’'s topographic-
isostatic potential. The result is

[ 5;’1‘32:"} _ 3 pe
\ T [T 2n+1) 7

’ Ul—( =) Lr// o (T2 aol@)

-2 (B2 ) () (i@ eee)
(15)

The numerical FFT-based technique developed by CoLOoMBO (1981) is an
extremely efficient tool for the fast computation of integrals of the type

1
= |[ #@ee@
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on the sphere. The expression (15) is well-suited for the application of
O. Colombo’s method, and its application to the computation of Airy
topographic-isostatic potential is well established (see RUMMEL et al,,
1988).

Let us introduce the following 2D (surface) spherical harmonic coef-
ficients of the equivalent topography:

{fom} = £ [[ "2 T D} i@, (162)

n+2 pcr/R DN\ {mcnm\ n=0,1,... .
+ 1- . (17
2 { Ap\ R ) \hQSnmJ m=0,1,... ("

Now the practical computation of the potential coefficients of isostatically
reduced topographic potential of the simple Airy model is straightforward.

B, Computaticns with the Simple A
Topographic-Iso sLai:m Maodel

The computer programs HARMIN and SSYNTH listed in the report of
CoLoMBO (1981) were adapted to Microsoft FORTRAN and also the

Mized-Radiz FFT algorithm of SINGLETON (1969). These programs were
used to compute the hcnm, hsnm, h2¢nm, h2snm coeflicients from 1° x 1°
mean topographic height dataset (64, 800 mean height for the entire earth).
This dataset was kindly provided by H. SUNKEL on a magnetic tape to usin
1986. These 2D spherical harmonic coefficients in Eg. (16) were then used
to determine the 3D spherical harmonic coeflicients of topographic-isostatic
potential complete up to degree and order 180. The topographic-isostatic
geoid computed with the uniform D = 30km crust thickness can be seen
on Fig. 2.

The following staiistical guantities were then computed to see the agree-
ment between topographic-isostatic potential of the simple Airy model and
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the gravity potential represented by the RAPP (1981) model. If we define

the differences of spherical harmqnic coeficients Cnm, Snm of the observed

A . o . .
gravity potential and C,A:;;y, Sy coefficients of the simple Airy model

topographic-isostatic potential

- = Alry
ACnm = nm CnmJ (10& b)
WA_iry s
‘/A‘Snm = Jnm Snm s
then the first statistical quantity one may define is the rooi mean sgquare
(rms) undulation difference 6N between degrees n: and n»
- no P N ‘% 5
. 2 == T [P =2 N
sN=|R"3 5 (AT +agnm” (19)
L n=n: m=0

o

6g—{7 > (n- >°i(wim+&:§imﬂ . (20)

n=ny m=0

Let us denote by ¢2(T") the signal variance

2Ty =3S (Com m) (21)

m:O

of the observed gravity potential 7', the correlation coefficient by degree, cn
is another measure of potential coefficient fit,

T

Alr Alry
3 (ConCr + SemSon)

a(T) - ol TA)

Cn =

(22)

Finally the average correlation coefficient between degrees n1 and ng is

_ 1
C = m z Cn . (23)

n=n,

Table 1 shows the value of above statistical quantity for D =30km com-
peunsation depth.

The fit between the two potential coefficient sets is rather bad even
in the higher degree range when the greater part of the gravity signal is ex-
pected to be yielded by the topographic-isostatic mass irregularities. This
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comparison clearly shows that this simple Airy model cannot be expected
to reflect the very behaviour of the earth’s crust on a global scale, even if
it is physically more tenable than the Pratt model.

We agree with the following conclusion of the authors of RUMMEL et
al. (1988): ‘Since the isostatic behaviour of the earth is dependent on a
number of factors, and considering that such behaviour varies substantially
from area to area, global models cannot be expected to refliect the full
picture.’

Even the simple Airy model depends on a number of factors, e. g.
crust and mantle density, crust thickness, etc. which may vary from area to
area, so it seems reasonable to allow the changes of these factors. This will
lead us to the study of Airy type global isostatic models with horizontally
varying crustal perameters.

iations of Crustal Parameters
When the compensation is complete, the following approximation is valid-
for the topographic-isostatic potential (see SUNKEL, 1986):

T (P) = 270G D percikh . (24)

This approximation can be derived from the Egs. (10) and (17) by retaining
only the linear term in h in the Eg. (17). Let us allow now the pe, D
parameters to be horizontally variable, 1. e.

pCT(P) = Ecr =+ APCF(P)’ (25)

D(P)=D+ AD(P), (26)

where P, average crust density (2670 kgm™?),
D average crust thickness (e. g. 30km),
then the AT*™ potential change will be linearly dependent on h(P):

ATAY(P) = 220G [Aper (P) + AD(P)] chh(P). (27)

To be more rigorous if we introduce horizontal changes of crustal para-
meters, the following changes will result in the topographic-isostatic po-
tential coeflicients in Eg. (17), if we restrict ourselves to the first-order
term only:

A—C_nm — 3 Pcr R - D n AhCnm
{Ainm}‘@nﬂw - (5F) Hakemy oo
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where the 2D spherical harmonic coefficients Ahcnm, Ahsaym are defined
by the following equation:

(G == [ (F)a@{pngee. o

Here we used the abbreviation 61(Q) for the following parameter funciion

which describes the total affect of
and ecrust thickness. It clearly show
it is impossible to separate the effe
the topographic- isostatic potential.

The effect of compensation disturbances will be examined next. In th
spherical Airy model when the compensation is complete, the root-antiroc

thickness'can be computed from the equation (see RUMMEL et al., 1988)

(9]

ﬁ)

.J
ot

2
Pc: R“
- p P 1
(P) = B2 = ph(P). (31)
When an area is isostatically over-, or undercompensated, the above con-
dition is not valid. Instead we may write the following equation
2
Per R
(P T P)|h(P 32
(P)= B =gl + F(PIA(P), (32)

where the (smoothly varying) f(F) function expresses deviations of com-
pensation with respect to the Airy model. The root-antiroot surface will
remain linearly dependent on the surface topography, but now the mass
balance criterion is not satisfied. If the f(P) parameter function is nega-
tive/positive, the area now becomes under/ overcompensated according to
the traditional Airy hypothesis.

If we keep again only the first-order term in Eg. (17), the coefficient
change due to the imperfect compensation will be

(855 - e - (252 ) -]

In this equation the fcnm, fsnm coefficients are

) == [ CR)rafyr@le@. o
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Table 1
Average correlation coefficients between Rapp 1981 model and simple Airy model

Degree range 2-180 15-180 30-180 90 - 180
€ 0.486 0.504 0.496 0.436

Let us introduce now the following parameter function

L 8(PY=6(P)+ f(P) =

_pc,(P) LADP) . .
= + f(P), (35)

cr

and the following 2D spherical harmonic coefiicients of the product function

[R(P)/RI6(P) '

{ Z?i?;} - // (f’“(@) 5(Q) { U”’”Eg% } do(Q),  (36)

then the change in the topographic-isostatic coefficients will be

(350} s (- (552 {?éz::z} {7

o

37)
The first term in this equation represents a double layer potential similarly
to the linear term in the Eg. (17). In the Eq¢. (33) the relative magnitude
of the first to the second term is

R — D\"
P kit
(%7)
which ratio is tabulated for the compensation depths D =30 and 60 km for
various degrees n in Table 2.

Table 2
Relative magnitude of the double layer term in Eq. (37)

n 2 30 60 90 150 180
D = 30km 0.009 0.132 0.247 = 0.346 0.507 0.572
D = 60km 0.019  0.247 0.433 0.573 0.758  0.818
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This comparison clearly shows that for the degree range 2 — 180 both
terms should be used in Fq. (33) for the computation.

The expression (30) shows that in linear approximation in (h/R), the
effects of crustal density and crust thickness anomalies cannot be separated,
i. e. only their sum, §;(P) can be determined.

Now the following three combinations exist for the determination of
horizontal parameter variations in the crust.

Model 1. Determine the funciion §1(P) only (i. e. crust density and
thickness are variable, but perfect compensation is assumed everywhere
according to the Airy hypothesis).

Model 2. Determine the function f(P) only (i. e. laterally variable
imperfect compensation, but constant crust density and thickness).

Model 3. Determine both functions §1(P) and f(P) (i. e. neither
crust density/thickness nor compensation is treated as fixed).

Mathematlca,ﬂy models 1 and 2 are equally simple but the results will

ertainly be distorted by the effects of changes in certain neglected para-
meters (for model I compensation, for model 2 crust densuy/thlckness)
The model § seems to be the more realistic although it requires mathemat-
ically the determination of two parameter functions simultaneously.

J.
e
1.
Y

7. Optimum Criterion for Topographic-Isostatic CTrust Models

The gravity potential of the earth includes the topographic-isostatic poten-
ial o T rth. This potential is included in the gravity
I e s hor’cei the wavelength of the gravity poten-
tial terms in the therical harmonic expansion, the higher the contribution
isost otential is to it. This fact is due to the rather

shallow source depth of ‘th topographic-isostatic potential. Slmp v saying

the crust should become the most important density source of the gravity
po-ue'ﬁna as the frequency increases. U’\ also means that the shorter the
wavelength, the S’qaﬂex the disturbing effect of other masses is.

If the ‘topographlc-;sos‘cawc pobe:\.ulal is modelled, our model has 1o
reflect the gravity potential well at short wavelengths. This criterion can
be used to judge between such models. From this point of view, the above

T 1 may be used to select a best or opiimal model. This optimality
criterion will be investigated next.

,_
=
3
.
9

== i {(Cnm - Vf’znr?xdd) i (gnm - grfr%del>2} (38)

m==0
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denote the signal variances of the residual AT = T —model gravity potential
field, where T is the earth’s, and T™°%! is our ‘best’ topographic-isostatic
model’s anomalous potential. The optimum criterion

ny
Z Bnc:(T) = minimum, (39)

n=n;

with the de-smoothing facior B, expresses a minimum condition for the
residual anomalous potential field in the degree range n1 ~ ny. This way
the high frequency part of the residual field will be minimized and it yields a
topographic-isostatic model which approximates best the short wavelength
anomalous potential field.

The de-smoothing factor f, amplifies the higher frequency residual
anomalous potential field components, and it can be determined in various
ways. 1n the following discussion we present a purely theoretical approach
tc determine [,.

Let us assume that the density inhomogeneities are uncorrelated, i. e.
they have an ideal ‘white noise’ distribution inside the earth. Their covari-
ance function is then

cov [Ap(P), £p(Q)] = C8(F,Q), (40)

where §(P, Q) now denotes the 3D Dirac delta ‘function’. From covariance
propagation through the integral

77)=¢ [[[ r(P.@)2n@)R@) (41)
sphere R

one may derive the covariance function of T arising from the density dis-
tribution inside the spherical shell between radii R; and R,,

1
(2n+1)(2n + 3)

3 K%)zws _ (}%) 2n+3} P (costbmon) (42)

where P, @1 points lie on the earth’s surface and P, @ are inside the
spherical shell. If we compare this expression to the

cov [T(P), T(Q)] = 4¢rG*CR ”i
n=0

oo

cov[T(P1), T(Q1)] = > oa(T) P (costhr, ;) (43)

n==0
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covariance function of anomalous potential T', we get the theoretical signal
variances of T for the spherical shell as

on(T) =

2 2n+3 2n+3
4nG*CR <R2\ B (gzi) (44)

(2n+1)(2n+3) [\ R/ R

Let now Dmax denote the mazimum depth of crustal density anomalies.
The 62(T)pmes o2(T) ratio then theoretically should increase as the fol-
lowing de-smoothing function

R— Dmax 2n+3
Bo=1— <T> . (45)

this function B, are tabulated for Dy =70km in Table 3.

Table 8
Theoretical de-smoothing function for maximum crustal depth 70km

n 2 30 60 90 150 180
Dmax = 70km 0074 0.501 0.743  0.868 0.965  0.982

The function f, shows the increasing bheOTCblC&L signal variance of the
gravity anomalou tential generated by the crust relative to the to
signal variance of the an —pa.lm.s potential.

’:r‘..d

s
th

The determination of an optimal linear {opographic-isostatic model re-
rematically the determination of one (two) op'imai parameter

o £ H For the sake
nction §; will be

discussed in ae‘saﬂ ne i The computa
function will be quite traigh‘sforw*rd then

In the following discussion let §(@, A) denote the following parameter
function . N N .

50, 3y = 2£r(@:N) | £D(9,2) (46)
Per D
where ©, A polar distance and longitude,
Per mean crust density,

D mean crust thickness.
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This equation corresponds to Eg. (30) and Model 1 in Sec. 6.
- . . . —ymodel -mmodel L.
The spherical harmonic coefficients Crm  , Sam . of the optimal
model will then be computed from the formulae below, which are anal-

ogous to the expressions (28) and (29).

{ —=model Y Alry
Cnna QU ! hécnm , Cnm (”7)
model g - tn ] hés cAlry =
dnm cnm Sam
- Alry ATy . =
Here U, Sam are determined by the expression {15),
_ / N
, 3 Pel|,_ [B-D\"] ’
tn = - - - (48)
n P = 11 i
et D7 | \TE )|
and the 2D spherical harmonic coefficients in Fg. (47) are

) ,
fsin©dOdA. (49)

( 4. In the following we shall see how they may be represented by the
2D spherical harmonic coefficients of its component functions.

Let the functions & and § be represented mathematically by the fol-
o

f=

lowing 2D spherical harmonic series and coefficients:
< L _ —
R(O,2) =R S [hc;kUlk(&}s) + hsV (O, A)] , (50)
=0 k=0
S I . .
5(0,0) = 3_ 3" |oeiT5i(8, 1) + 057V 55(8,3)] (51)
=0 j=0
7 2w —
hey | _ L// (h(@,A)) {Uzk(e,/\)} :
{ hep } = i iy TR )\ Tw©) sin ©dO dA, (52)
1 7T T:(0,7)
0Cij _ \ __ij 3 H
{OSij}_ W//6(®,A;{Vij((_),k)}s,n@d(%dk (53)
0 0

In analogy to the theory of ordinary Fourier series, where to a convolution
of two functions in the space domain there corresponds a simple product
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in the frequency domain and vice versa; now to a product of two functions
on the sphere there corresponds a ‘convolution’ in the discrete ‘frequency’
domain between the 2D spherical harmonic coefficients. The mathematical
tool needed for such a computation is the product-sum conversion formula
of spherical harmonics (see Appendix A).

In an abbreviated form the following relationship holds for the deter-
mination of hécnm, hésnm coefficients:

hécnm ace(n,m,t,7) - acs(n,m,1,7) By
o B 9 ol [ it J TS Pt i S LT

(54)
The dcc, Qsc, Qcs, @ss coefficients can be determined from the hey, hs
2D spherical harmonic coefficients and the Clebsch~Gordan coefficients.
The definition and a practical computation method of Clebsch—Gordan
coefficients can be found in Appendices B and C. Detailed derivation of
the expression (54) can be found in Appendix A and thus the following
equations will be obtained for the acs, acs, ase, ass coefficients :

facc
2e | -5 \/(21_4“ DAY 6601, 0,0,0) !
Bes Vo 20e+]) V(L 6m0) (1 + 80)
Ass
( [ hClm—j ]
ASimes .
x| C6, L jym = 7,m) |1/ (1+ bm—jo) j >lm=] E , m>7,
% | —hsim-; |
\ ( hcl,m—j
hcf,j—-m
but (=1 L4 Gyome) { T m <
hsij—m
l hcf,j—m J
hC[)m‘j }
. . . . RSl m—;
+ﬂumwmm+wﬂFWMﬂ+%ﬁw_j?JT . (59)
;=7
hepm—;

In this equation the summation according to the index [ must be done for
all the values of [ where the C(4,1,n; j, k, m) Clebsch-Gordan coefficients in
this expression do not vanish. The §;; symbol here denotes the Kronecker
delia.
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Now we introduce the matrix elements

Ace(g; ) aec(n,m; 4, 7)
Asc(q; 7‘) - Gsc(n, ™m; 7'1.7) l (Kﬁ)
Acs(g; 7) ") acs(n,m; 4, 7) °

E\ féss(q; T) ass(nam; 7’1.7) }

of the matrices A, Acs, Ase, Ass arranged according to the single indices

g=n(n-+1)/24+m-+1and r —zkz—rT)/"—!—j-H, and similarly the column

cmodel gmodel | mAiry gAiry Na:ged according to the single

indices r and g, :especmfely. With this notation the ﬁqs (47) and (54) will
result finally in the following linear system of equations:

vectors ce, os,

CmOdel .ﬁf’»—cg B _f__cs -l l‘@c @:’ilfy
...... = . -+ . (57)
gmodel og | S.&irv

l.. Aise ﬁbs -

The optimal parameter vector [oc, @s]T may now be estimated (up to a
certain maximum degree and order imax = K ) to make the variance of the
high frequency residual field minimum according to the condition (39).
This is mathematically a weil-known least squares estimation procedure
for the optimal parameter vector.

This way the optimum parameter function 6(®, ) through its 2D
spherical harmonic coefficients will be determined. The computation of
the spherical harmonic coefficients of topographic-isostatic potential of our
optimal linear model (OLTM) from the linear system (57) is quite simple.

9. Numerical Results

Computer programs and subroutines were developed in MS FORTRAN
to determine optimal linear topographic-isostatic models. Subroutine
NORMCP computes the arrays of the linear system and the normal equa-
tions. Subroutine GAUSS solves the normal equations and main program
CRUSTPAR determines the optimal model coefficients. Some statistical
quantities are also computed to judge the fit between our model and the
earth’s anomalous potential.

For our previous calculations the spherical harmonic coefficients of the
anomalous potential of the earth were the RAPP (1981) coefficients limited
up to degree and order 90. The 1°X1° average height dataset of H. Siinkel
was used to produce 2D spherical harmonic coefficients of the equivalent
topography up to the same degree and order 90.
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Optimal linear topographic-isostatic models were computed up to K =
imax =8 and 12. The OLTM was as described by Model I. The optimality
criterion was as described by Eg. (39) and for the 3, de-smoothing function
Dppax = 7T0km was used in Fg. (45). The average crust parameters were
Per = 2670kgm™, D = 30km and Ap = 600kgm™. The second order
approximation of T*"™ was used in Eq. (15) and the fit interval was chosen
to be in the spherical harmonic degree range n=60 - 90.

Computed optimal parameter functions for K = 8 and 12 can be seen
in the Figs. 2 and 3. The topographic-isostatic geoid differences for K = 12
are shown in Fig. 4. Correlation spectra for the simple and OLTM models
are shown in Fig. 5.

Table 4 shows the average correlation coefficients (22) in various degree
ranges for Airy versus OLTM models.

Table 4
Average correlation coefficients of various topographic-isostatic models

Degree range 15-90 30-980 60-90
Simple Airy 0.576 0.583 0.559
OLTM K =8 0.617 0.631 0.634
OLTM K =12 0.623 0.643 0.659

These previous results were derived from the simple Model 1 and iz
the relatively low degree range 60 — 90. Further investigations are planne
to derive OLTM for the higher degree range up to n=180 and with high
resolution of the parameter funciion (higher K = imax). Calculations ar
also needed with Model 2 and 3, and with cther minimum principles. The
effect of smoothing of root-antiroot surface according to the physically more

b
I

[

- N o T
realistic Vening—Meinesz model we would like to investigate as well,

Qur previous results show that a clear improvement of global topographic-
isostatic models, compared to the simple Airy model can be achieved by
allowing horizontal change of the crustal parameters. Our results also show
that significant depariures must occur on a global scale due to crust den-
sity and thickness change with respect to the Airy model of uniform crusi
parameters. These departures vary from area to area and they show the
complex behaviour of the crust. Large negative values resulted for areas of
significant ice coverage, because no ice thicknesses were included in the to-
pographic height dataset. Negative values are mostly correlated with large
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mountain zones and ocean bottom areas. Positive values are associated
with ocean trenches and old continental massifs. These results suggest the
nonlinearity of compensation, i. e. there is no strict linear relation (1)
between topographic heights and root thicknesses.

Of course it is hard to interpret these previous results of Model I
physically, but it is ex pected that the physically more relevant Aodel 3
with higher resolution will be a2 more adequate tool to support some global
mechanism of isostatic compensation. We think that in the lack of accurate
global geophysical data, the anomalous potential field still remains a very
important source of information to support or reject any global mechanism
of isostatic compensation.

Finally it should be mentioned that the whole procedure is rather
independent of the choice of the original topographic-isostatic model. It
can be used with various topographic-isostatic dels as well. The only
assumption is that the model change should be in linear relation with

topographic heights.

Complez spherical harmonics

Let us introduce the following complex spherical harmonics (ROSE, 1957):

. . =0,1,... \
Vam(0, ) = €™ P (c0s @), . (A1)

m=-n,...,—1,0,1,...,n

where ¢ denotes imaginary unit and P, (cos ©) is defined by the following
equation:

2n+1)(n —m)!
0)=(-1 i
P (cos®) = )™ \/ 47'(71 + m) P (cos®).
n = ’ ’
. (A2)
m=-n,...,0,...,n
Here the P;'(t) functions are defined through the expression
m A 1 2\ 2 dn+m 2 n 7120,1,...
Ft) = — 2 (" - .
w () Q”nl(l t) dtn+m(t DI m=-n,...,0,...,n

(A3)
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The defining Eq. (A2) is a useful extension of the associated Legendre
functions for negative m values. If such definition is used, the following
symmetry relations

P, "(cos®) = (—=1)" P, (cos O) (A4)
and
Yo (©,2) = Yam(©, =2) = (=1)"Yn —m(6, ) (A5)

will hold for the associated Legendre functions and complex spherical har-
monics. Here the sign © denotes complex conjugate.

Orthogonality relations

2% 7
/ / Y (0, A) Vit (©, A) 5in ©AOAN = 86t (A6)
0 0

Triple product iniegral (see ROSE, 1957)

(2n1 4+ 1)(Zne + 1)
in(2n+ 1)

// Y (P)Yimy (P)Yoym, (P)do (P) = \/

78
xC(ni,ng,n; 0,0,0) C(n1,n2,n; m1,ma, m), (A7)
where C(ni, na,n; mi,ma, m) denotes the Clebsch-Gordan coefficienis (see

Appendix B).
Now we are able to derive the

Complez spherical harmonic product-sum conversion
formula

for the complex coefficients.
Let the functions a(®©, A) and (&, A) be expanded into the following
2D spherical harmonic series

oo n

CL(@,/\) = }: z Anmynm(®:’\)s (AS)

n=0 m=-—n



OPTIMAL TOPOGRAPHIC 231

o]

JCRVNEDY i BnmYam (0, A), (A9)

n=0m=-n

with the complex Anm, Bnm coefficients. Now the question is how to de-
termine the complex Znm spherical harmonic coefficients of the product
function

[ee] mn
2(0,0) =a(@, 086, =5 > Zam¥Yam(0,X). (A10)

n=0 m=-n
we substitute the expressions (A8) and (A9) into the left side of
Fg. (A10) and perform index change, the result is the equation

o0 na

Z Znamgyn3m3<®, }z}
rig=0 ma=-n3
o0 ni o] Ny
= = N - -
= L Z z Y Bnlmlﬂ.numg-nlml (e‘,/\)ynzm._, (@,)\) (All)
ny=0mi==-nj ny=0 mo=-ny

Let us multiply both sides of this equation by the function ¥;,,(€, A) and
then integrate it onto the surface of the unit sphere o termwise. Then if we
apply the relations (A6) and (A7), the terms on the left side will not vanish
only if nz=mn and m3z=m. Thus finally we get the following equation for
complex Znm coefficients:

Znm = Z z z Z (znl - l)(znz - 1)5(72'1977'2’77'; 0,0, O)

ny=0mi==ny ny=0 mag=—ny 47?(27’2,—}- 1)

xC(n1,n2,n; m1,mg, m)Anym, Baym, - (A12)
From the properties of the Clebsch~Gordan coeflicients (see Appendix B}

it is clear that the C(n1,n2, n; m1, mo, m) coefficients will not vanish only

if m =m—my. The sum with respect to ny should be extended over the
integers

ln—nll Sn2§n+n1,
where
ni+ns+n=2k =even.

With these restrictions for indices in the Eg. (A12), it will assume the
following form:

[e2e] ni
(2n1+ 1)(2ne + 1)
Znm = . .
Z Z Z\/ 47T(2n+ 1) C(nlanZ)n) 0100)

ny=0my=-~n; n2

xC(n1,n2,n; m1,m — m1,m)Anym, Baym, - (A13)
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Real spherical harmonics

When we would like to use real 2D spherical harmonic series with conven-
tional real spherical harmonics (7), the following relations will hold between
real and complez coefficients:

M{ _(fg:m } = [(—1)”‘2,,,,1 { T } Zn,_m} m>0, (Al4)
Yo+ ma { S b= [0 e { T} o] a2 0,
]

(A15)
m1 > 0.
(A16)

Now let us substitute Znm and Z, ., from (A13) into the right side of
(A14). If the summation with respect to m; now runs on positive values
only, we get the following eguation

1/ 8 (l+5mo){ Cnm }

= i Zm&/(zng(z)(%z ’ ‘)C(m na,7; 0,0,0)

I

—1Fnam,

ni=0 72 1 2 i)
1
y
W -
- 2, | C(n1,na,n; ma, M — T, )
7771: i +§m10

[} 3
/1N o4 ™44 T
’ !%_1} Ay m—m anml { _ }P Ang,—(rn—m;)g?’»z;-mzj
i

+C(n1,ny, 7 —mi, m +mi,m)

) [(‘“Dmlénzznﬁmz Bnl,-‘ml {i } Aﬂz,—(m+m1)Bﬂ1m1H . (Al’ﬁ)

Fin we mtroduce real coefficients instead of the complex coefficients
A and B "rom the Egs. (A15) and (A16) and we get the following real
equation pair for Unm and Spm:

Cam = 2n 1279 4
(&)= £ 2R o mmon

=0 ng
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ni 1
X - —1m1~an,n,ﬁ;m,m__m,m
{m1§+1 V(1 4+ 6m0) (1 + 6my0) {( ) (n1,7n2 1 1, ™)

C ) "

g ,my —m i ~=T9,T] —T2 ]

X4/l + 5m—m1,0 P ﬁ/nlmz + ’ fnlml
“"—’ing,ml—m Gng,mg —1m

; - G U R
+(—L)m1€(n1,n2,n; —mi, ™+ mi, m) L'{“émr’rm,e[{ npmtm L

E ng,my+m

7 tm ) 1 = 1
+{ Zrmim g J + 3 =
{'—Gﬂa,ml'*'m/{ e ] m%_fo V(14 6m0)(1 + bmy0)

\,
X

e

/ Ghym—m 1
g{:nhﬂ")s%; miam"mhm}’ E'{"ém—m;,ﬁ{{ et ! ? En;mx_

gﬂg,m—-m;

Hey omm = <\
+{ Pt > ' aymy "‘f'{'—}-) 16(77’13%27'”; ;'lem_%"ml,'in) 1+6m1+my0

‘ G'l') i) = Eﬂ').ﬂ’h +m ] o
X [{5 o }f’nlml +{ T ?fmmv.H} (ALT) -
R,y g J

- Gn? ,my+m

~ co 1
“Unm — Ty s acc(namanlaml) E
Snm 2 asc(n, m,n, m) i

17 =0 my =0

. {&cs(n,m,nl,ml) } me} (A18)

ass(n, m,n, m)

and

(2n1 +1)(2ny + 1)
2(2n+1)

Q(nl’n%n) = C(TL},?‘Q,’R; 01073) (Alg)

are introduced, then the acc, as¢, acs, ass coefficients will be defined through
the following equations:

Q(n1,n2,n) \/'—_'—“—“‘
cc — l+6m—m
e ny \/(1+5m0)(1+5m10) [ e

Gng,m——ml 3 if m1 S m
(—l)ml_mGng,ml—-m, if my 2 m

+\/ 1+ 6m+n11 ,0(_1)m1 Gng,m—}—ml] 3 (A20a)
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. Q(nlaTLQan) /
Qsc = Z \/(1 T 6m0)(1 T 6m10) [ 1 -+ 6m——m1,0

ny

{ Hng,m-ml N if mi S m
(—l)ml_m+lﬂng,m1—m, if mi2m

/1 + Smrns 0(=1)™ Hrgems | (A20D)
Q(n1,na,n) /
Qcs = 1+ 6m-—m ,
ny \/(1+6Tn0)(1+6m10) [ v

{ "'anym—-ml 3 if m1 S m
(

"Dml—erzz,mx—m; if my>m

FY/1 4 Gt 0(=1)™ Hnz o | (420¢)

_ Q(n1,n3,n) I
= L T (L G VL et

{ an,m'-mi ) if my <m
(

—'1)m1 _man’ml—-m s if m] 2 ™m

‘%"V 1 + 5m+m1,0(-1)m1+1Gng,m+m1J . (AZOd)

i=mn1, J=mi; I=ny9, k=my

in the Egs. (A18), (A19) and (A202 - d), the Eg. (55) will be yielded.

The program NOEMCF uses formulae (A18 — 20) for the computa-
tion. The commutativity of the product (A10) was tested numerically, and
the maximum errors were of order 10™!* using 8-byte reals.

Appendix B
The Clebsch~Gordan Coefficients
The definition of the Clebsch—Gordan coefficients (see ROSE, 1957 and
WIGNER, 1959) is

C(’)’L] y B2, NI Ty, MY, mli) - 57113,111; +ry (27'1,3 -+ 1)
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_ (s +n = n2)l(ng = n1 + ng)l(n1 + n2 — n3)l(n3 4+ m3)!(ng — ms)!
(n1 + ng + ng + 1)I(n1 — m1)l(n1 + m1)l(ng — ma)!(na + ma)!

(-1
VL )

b— no-tms (ns -1|- n9 -J—ml - k)l(nl - mi ’ k)‘

(ng — n1 =+ ng — B)(ng + m3 — k)I(k +n1 — ng — ms)l’
(B1)
where the index k assumes all integer values for which none of the factorials
is negative.
The Clebsch—Gordan coeflicients are non-vanishing only if the follow-
ing three conditions are satisfied.

1) |mi<na, Ime| <na, |ms|<ns; (ri, n2, ng are non-negative integers)

2.) mg3 is the algebraic sum of mi and ma: mg=mi=m2

3.) ngis the ‘vectorial sum’ of n; and ny; 1. e. a triangle can be formed by
the vectors of lengths 1, na, n3, zespecuvely. This triangle condition,
A(ni, ng, n3) is satisfied if |n1 —ng| <nz <ny+na.

roperiies of the Clebsch—Gordan coefficients

C(ni,n2,n1 + ng; n1,ng,n1 +ng)=1
C(ni,n2,n3; 0,0,0)=0, except if n1+no+n3=even (parity coefficient)
C(TL],O,?’?@; m1,09m3):5n1n36m1m3

symmetry reletions:

C(nlynz.a 735 mlam21m3) = (_1)n1+n2+n30(n1,n2’n3; —my, —M32, —mg)
= (=)™ ™ C(ng, n1, na; ma, m1,m3) -

Detailed other formulae for the computation of Clebsch—Gordan coefficients
for special index values can be found in the paper of PEC (1983), in Ap-
pendix Al.

Appendix C
Practical Computation of Clebsch—Gordan Coefficients

The aim of the following discussion is to present suitable recursion formulae
for the computation of Clebsch-Gordan coeflicients instead of the direct
formula (B1), which is well-suited only for the computation of several, but
not all coefficients. The recursive method described here can be easily
adapted for computers.
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Parity Clebsch—Gordan coefficient

It is straightforward to derive a recursive computation method for the
Q(n1,n2,n) coefficient, which is in connection with the parity/Clebsch—
Gordan coefficient through the equation (A19).

The following closed expression can be found for the parity Clebsch—
Gordan coefficient (see ROSE, 1957):

C(n1,n2,n)
_ (—1)* k! (2k — 2n1)1(2k — 2n9)!(2k — 2n)! (1)
T (k= n)(k = na)l(k —n) (2k + 1)! ’
where
1
k= 2(n1 +ns+n).

From this expression the following recursion scheme can easily be derived:
1. initial value:

Q(0,n,n) =

(C2)

S
B

2. recursion with respect to ni:

' /
é . ' (2n1 +3)(n1+n+1) L
Qmtlmtntln)= —\/ (m+D(2m F 2 g1y C ).

3. recursive computation with respect to ny according to the index

1 .
p:;(nl—ng+n), p=0,1,2,..., min(n,n) :

<

Q(n,p+1,7n)

| @+ 1)(n—p)(n = p)(2n + 201 — 2p+1)(2n + 201 — 4p — 3)
\/ (p+1)2n=2p—1)2n1 —2p— 1)(n+n1 —p)(2n+2n; —4p+ 1)

XQ(nlapvn)a (04)

where the initial value Q(n;,0,n) = Q(n1,n1 + n,n) was computed from

(C3).
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Recursive computation of Clebsch—Gordan coefficients

In the foregoing discussion we used the special values of these coefficients
as described in the paper of PEC (1983) and recursive formulae were as
found in M. RosE (1957).
By the term row we denote all non-vanishing coefficients where the
indices n, n1, m, m1 are fixed but ns is variable. The term column refers
all those non-vanishing coeflicients for which n, n1, n2, m are fixed but
ma is variable.

Now the general scheme for the computation is briefly the following
1.} Compute four initial values to start the computation of two rows at
a Time
2.) Compute two complete rows at a time to be the initial value for 3).
3.} Compute all the columns for which the coefficients exist.
4.) Repeat 1.) = 3.) for all possible n, m, n; values.

e define the Tollowing two different cases for the recursion:

!
=
-

Case A: when m < ni,

Case B: when m > n.

1.) Initial value computation

Case A

C(O,TL, 7 O:an) = 17 (35)
Clm+1ln+m+1nm+1,00m+1)=

\/2(2711;::«}— S)C(m,n—i-m,n; m,0,m), m=0,1,...,n—1. (C6)

Four initial values for two rows for n1#0, ny=m, m + 1, ..., etc. are

b

value 1:
C(ni,n1+n+1,n;,m,0,m) =

'\/ (i +1D@2n + D4 ny +1)
(2n+2n1+3)(n1+m1+1)(n1—m+1)

C(Tll,nl +mn,n; m, 07 m)

(C7)

with initial values (C6),
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value 2: -
C(ni,n1 +n,n; m—1,1,m)

__ [mtm)(ntn+1)

(n+n1)(n1—m+l)c(nl’n1+n’n; m,0,m) (C8)
can be computed from (CT7),
value 3:
2 2
C(n1,n1+n—1,n; m,0,m) = m\/MC’(m,m +n,n; m,0,m)
nni
(C9)
can be computed from (CT7), and finally
value 4:
C(ni,ni+n—-1,2, m—1,1,m)
[ 2n42n1 + 1
= -1
n(m = 1) + mm] \/nln(n—!—m +D(n+n - 1)
xC(ni,n1 +n,n; m—1,1,m) (C10)
can be obtained by the coefficient (C8).
Case B
C(0,n,n; 0,m,m) =1, (C11)
Four initial values for two rows for successive ny values are
velue 1:
Cri+l,nmi+n+l,nn+1l,m—mn—1,m)
_jn-m+2n+1)(n—m+ 201 +2)
- (2n + 2n1 + 2)(2n + 2n1 + 3)
L+ 1Lni+n+1Ln;n+1,m—n —1,m), n=0,1,..., m—1,
(C12)

then compute from (C12) the following

value 2:
C(ni,n1+n,n;n1 —1,m—n; +1,m)
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=—\/znl(n+m+1)0(m,n1+n,n; ni,m —ni,m), (C13)

n —m -+ 2n1

and

value 3:
Clni,n1 +n—1,n ni,m = ni,m)

\/nl(n—!—m)(Zn-%-an + 1)0(77:1,77'1 +n,n; n,m— nlym), (014)

n(n —m + 2n;1)

Finally, then from (C13) compute the follewing for n1 >0,

Clrni,nmi+n—-1,nn—1,m—-—ni+1,m)

/

-“; [n(n1 — 1) + nim] \/

2n+4+2n; 41
nin(n+m+1)(n—-m+2n; +1)

xC(ni,m +n,n; 0 —1L,m—ny+1,m). (C15)

2.) Recursive computation of two complete rows for Case 4 or B
General formula (see ROSE, 1957)

C(ni1,n2 — 1,n; mi,m — my, m)

_ 1 2ng + 1 . B

- W(nQ) {\/;;V(nQ)O(nI,nZ’n, mi,m ml,m)

_ Zzz+i>w(n2+1)0(m,m+1,n; my,m —mi,m)| (C16)
2 R

where we have used the following abbreviations:

(ni+1)—n(n+1)+n2(ng+1)
2n2(ng + 1)

V(ng) =mi+ (m - ml)n1

and

[ r3Hmem)? [ (na—nitn) (natng—n) (nytrtna 1) (nytenotl)
W(ng) = Tnl(2np-1)(2nrt)
Initial values for recursion with respect to ns are obtained through the
expressions (C7 — 10) or (C12 - 15) to start the computation of two rows
at a time.
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3.) Compute all the columns

This type of computation requires the following general recursion formulae
with respect to the integer mao:

for increasing mi:

C(TL},TLZ,TL; mi + l,m —my — lam)

1
= ——m [M(m1)C(n1,ng,n; mi,m — mi,m)
—N(m; — 1)C(n1,n2,n; m1 — 1,m —m; +1,m)], (Ci7a)

for decreasing my:

C(ni,ng,n; mi — 1,m ~my + 1, m)

1
= m [M(m1)C(n1,n2,n; m1,m —mi,m)
—N(m1)C(ni,n2,n; m1+1,m—-m; - 1,m)], (C17b)

where
M(mi)=n(n+1) —ni{n +1) —n2(ng + 1) = 2mi{m — ma)

and

N(mi) = X/{m —mi)(ni+mi+1)(ng—m+m 4+ 1) (ng +m—m1).

The initial values for this recursion are those two rows, which were previ-
ously computed from the equation (C16).

The FORTRAN subroutine NORMCP utilizes the above sketched
procedure to compute all the necessary Clebsch-Gordan coefficients. This
algorithm was tested numerically using the direct formula (B1).
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