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Abstract 

The topographic-isostatic potential of the earth '5 crust can be computed easily using 
average crustal density parameters, a global isostatic model and a numerical dataset of 
mean continental and oceanic heights. In lack of the detailed data for density, crustal 
thickness and isostatic compensation, a least squares estimation is suggested to determine 
global horizontal variation of crustal parameters. 

These variations can be determined using a minimum principle to yield a minimum 
variance high frequency residual geoid. The basic mathematical tool for the determina­
tion of such parameter variation functions is the Clebsch-Gordan product-sum conversion 
formula of spherical harmonics. 

Computer programs were developed based on the above mentioned mathematical 
algorithm to determine optimal linear topographic-isostatic crust models (OLTM). Previ­
ous calculations detected significant global density variations inside the crust with respect 
to the simple Airy model of uniform crustal parameters. The result would perhaps show 
us a better insight into the global isostatic behaviour of the crust. 

Keywords: topographic-isostatic model, lateral density variations, spherical harmonics. 
isostasy of the earth's crust, 

1. Introduction 

The behaviour of our earth's crust on a global scale is rather difficult to 
model. The gravitational potential caused by mass irregularities inside the 
crust can only be predicted using various crustal density models. On the 
other side the gravitational potential of the earth's crust is included in the 
total gravity potential, which is well-measured on a global scale. 

The disturbing potential due to the density irregularities inside the 
earth's crust is termed shortly topographic-isostatic potential. It can only 
be evaluated through certain global topographic-isostatic models. 

The importance of such models is at least twofold. 

IThe National Scientific Research Fund gave financial support to the research discussed in 
this paper (contract No. 5 - 204). 
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1) They can be used to reduce measured gravity signal so as to make 
residual gravity field as smooth as possible for prediction purposes. 

2) Such models allow us to remove the disturbing effect of the crust and 
they produce a clearer overall insight into the effect of deeper mass 
irregularities. 

The conventional simple Airy-Heiskanen isostatic model was first in­
vestigated. RUMMEL et. al. (1988) developed a very efficient FFT-based -
(Fast Fourier Transform) technique for the computation ofthis model's 
topographic-isostatic potential. In the first part of this report their method 
will be described and the results of our calculations with this model will 
be presented. 

In the second part of this report the detailed study of so-called opti­
mal linear topographic-isostatic models (OLTM) will follow. In these mod­
els a minimum criterion is introduced to determine a topographic-isostatic 
model. This model physically is an optimum Airy-type model with lateral 
variations in density, crust thickness and isostasy. It gives the best possible 
agreement between topographic-isostatic potential and the earth's disturb­
ing potential. Finally, some results and conclusions will be considered for 
simple and optimal Airy-type topographic-isostatic models. 

2. 

The Airy model supposes that the light crust matter of density per floats 
on the more heavy material of the upper mantle of density pm. Each crust 
'column' is in an equilibrium state. This requires for ocean columns the 
anti-root thickness d* for ocean depth h*; and root thickness d for land 
elevations h to exist. (Fig. 1). 

From the equilibrium equations 

root-thickness: d= 
/::"p 

anti-root thickness: d* = pcr;;.ppw h* , 

vvhere /::"P = Pm - pcr and pw is the ocean ""vater density. 
If the factor 

Ch = 1, if h>O and 
per 

( - \ 
la) 

(lb) 

if h<O 

is introduced then the Eqs. (la, b) can be unified in one equation 

d per h kh, 
/::"P 

(2) 
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Fig. 1. Airy isostatic model 

h = qh'. 
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Here h is often termed as equivalent topographic height, and k is the com­
pensation factor. 

For a flat earth (i. e. plane approximation), the compensation factor 
k is const.ant and equal to 

k = ko = _..:...P_CT __ (3) 
pm - pcr 

For a spherical earth k will be slightly modified and it can be computed 
from the mass balance principle of isostasy. It will become dependent on 
both hand D. (SUNKEL, 1986): 

kh' 

R-D 

where R denotes mean earth radius (approximately 6371 km). 

(4) 

Even if this simple Airy model is not accepted as which reflects the 
real behaviour of the earth's crust, it will be quite useful to investigate it 
first as computationally simple and straightforward. 
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3. Spherical Harmonic Analysis of the Topographic-Isostatic 
Potential of the Simple Airy Model 

The simple Airy topographic-isostatic potential, TAiry is defined as the 
potential generated by mass irregularities with respect to an ideal homoge­
neous crust (with density per and uniform thickness D lying on a homoge­
neous mantle with density (7 er). If 0 p denotes mass irregularities according 
to the Airy model the topographic-isostatic potential of the volume density 
distribution op will be 

where G 
l(P, Q) 
dv 

TAiry(p) = G 111 Z-I(P,Q)op(Q)dv(Q), 
v 

Newton's gravitational constant, 
spatial distance of P and Q, 
volume element. 

(5) 

rnAiry ( P)' 1 • 'd h d . h' 1 h . 1 . _ 1S narmomc outS1 e a sp. ere an 1tS sp enca. armon1C ex-
pansion is surely convergent outside the sphere enclosing total mass of the 
earth. Outside of this sphere the following series expansion is valid for Z-I: 

where T 

1jJ Pq 

Pn 

00 n ( ) 
0;;;;;:-' r Q p' ') L r n+1(p)- n(cos1ppq , 
n=O 

magnitude of radius vector, 
angular distance of P and Q, 
Legendre polynomial of degree n. 

(6) 

If U nm, V nm denote fully normalized spherical harmonics of degree nand 
order m, their definition is 

{ 
U nm(P) } _ 21- 6mO (2 -L 1) (n - m)! p ( e) { cos mAp } -=- ( P' - \ n I nm cos P . \ , V nm -). (n+m)! ,s1l1m/lp 

(7) 

where e p polar distance, 
Ap longitude, 
Oij Kronecker's delta, 
n = 0, 1, 2, ... ; m = 0, 1, ... , n. 

In the above expression the Pnm (t) associated Legendre functions of degree 
n and order m are defined by the following equation: 

n+rn 
_ 1 2!fd 2 n 

Pnm(t) - -2 f (1 - t ) - -d -,-(t - 1) . nn. tn,m (8) 
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The Pn (cos if; PQ) function can be decomposed into the sum 

Pn(co~if;PQ) = 2n ~ 1 t [U nm(P)U nm(Q) + V nm(P)V nm(Q)] (9) 
m=O 

Inserting the expression (9) into the integral (5) will yield the following 3D 
spherical harmonic representation of the topographic-isostatic potential of 
the Airy model: 

rAiry (P) _ GM co (R) n ~ (CAiry \ + -SAiry . \) - - - -- \ - L...& nm cos mAp nm sIn mAp 

7'p n=l ,1'p m=O 

where M 
P 

x (cos 

total mass of the earth, 
normalized Legendre function, defined as 

D () l_C O( )(n-m)! () 
.rnm t = \ 2· Om 2n+l ( )IPnm t , 

, n+m. 

(10) 

(ll) 

d C Airy -SAirv l' . h . al h . ffi . " h t an nm', nm' are norma.lzed sp enc armonlC coe clents 01 t. e opo-
graphic.isostatic potential of the simple Airy model with uniform crustal 
parameters. The summation in Eq. (10) begins at n = 1 because there is 
no mass surplus or deficit in this compensation model. 

4. Computation of the Spherical Harmonic Coefficients of the 
Simple Airy Topographic~Isostatic Potential 

In the following discussion we summarize the formulae necessary for the 
computation. The detailed derivation and discussion of the above formulae 
can be found in the papers of SUNKEL (1986) and RUMMEL et al. (1988). 

Firstly we split up the topographic-isostatic potential into the follow­
ing two parts: 

TAiry = T(t) + T(e) , 

where T(t) denotes disturbing potential of topographic and T(e) disturbing 
potential of isostatic masses. The spherical harmonic coefficients of T(t) 

are then' 

~ ~ - q {c(t)} 3 1 If) [( h)n+3 1 
s~~ = -p- (2n + l)(n + 3) 411' Ch 1 + R - 1 

(j 
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. {Unm(Q) ~ dO"(Q) , 
V nm(Q) J 

mean earth density (5514kgm-3
), 

denotes integration over the unit sphere. 

(12) 

The spherical harmonic coefficients of T(c) for the simple Airy model will 
be expressed by the integral expression 

{ 

~e~ 1 3pcr 1 
S~e~ J = p (2n+ l)(n+3) 

( 
D)n+3 -1 1 jf [( kh )n+3 ] {Unm(Q)} 

. 1 - R ko 41i" Ch 1 + R _ D - 1 V nm ( Q) dO" ( Q) . 
(j 

(13) 
\Nhen a second order approximation is accepted for the computation of the 
spherical.harmonic coefficients of TAiry, 

(14) 

one gets the second order approximation formula for the computation of 
spherical harmonic coefficients of the simple Airy model's topographk­
isostatic potential. The result is 

{C
Airy 1 3 nm per 

} -SAiry = (2 + 1) l nm) n p 

x [[1- (R - D)n] ~ 1f hQ {Unm(Q)} dO"(Q) 
R 41i" R V nm(Q) 

!Y 

+ n + 2 [1 _ per (R - D)n-3] ~ r r (hQ)2 {~nm(Q)} dO"(Q)] ) 
2 6.p R 41i"JJ R Vnm(Q) 

• (j 

(15) 
The numerical FFT-based technique developed by COLOMBO (1981) is an 
extremely efficient tool for the fast computation of integrals of the type 

4~ 11 f(Q)dO"(Q) 
!Y 
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on the sphere. The expression (15) is well-suited for the application of 
O. Colombo's method, and its application to the computation of Airy 
topographic-isostatic potential is well established (see RUMMEL et al., 
1988). 

Let us introduce the following 2D (surface) spherical harmonic coef­
ficients of the equivalent topography: 

{ 
hCnm \ = ~ fJf h(~) {"f!nm(Q)} dO"(Q), 
hSnm J 411 J R V nm(Q) 

{ 
h2cnm \ = _.1. 

J 41[' 

(j 

nm(Q) ~ dO"(Q). 
nrn ) 

(16a) 

(16b) 

These integrals can be evaluated by the efficient FFT method and thus the 
ffi rion.l. (1~) -, .- 'b "bt in~d b'- Lhp .c 11 .. in - ~ti . coel _.d.~S _0 1l.ay e va.LC y G .. ~ lO . .!.OVV.Lg eq Ue .on. 

_ [[1 _ (R -= D)n-
J

i 
{hcnm 1 

p 1:( hSnm J 

+ n + 2 [1 _ pep (R - D\ n-3] { h2cnm I] 
2 6.p R) , h2snm J 

n = 0,1, .. . 

m = 0,1, ... ,n 
(17) 

Now the practical computation of the potential coefficients of isostatically 
reduced topographic potential of the simple Airy model is straightforward. 

5. COlmlPU1catiOllS with the Si:r.npJle 
Topographk-Isostatic Model 

The computer programs HARMIN and SSYNTH listed in the report of 
COLOMBO (1981) were adapted to Microsoft FORTRAN and also the 
Mixed-Radix FFT algorithm of SINGLETON (1969). These programs were 
used to compute the hCnm, hsnm , h2cnm , h2snm coefficients from 10 x 10 

mean topographic height dataset (64, 800 mean height for the entire earth). 
This dataset was kindly provided by H. SUNKEL on a magnetic tape to us in 
1986. These 2D spherical harmonic coefficients in Eg. (16) were then used 
to determine the 3D spherical harmonic coefficients of topographic-isostatic 
potential complete up to degree and order 180. The topographic-isostatic 
geoid computed with the uniform D = 30 km crust thickness can be seen 
on Fig. 2. 
The following statistical quantities were then computed to see the agree­
ment between topographic-isostatic potential of the simple Airy model and 
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the gravity potential represented by the RAPp (1981) model. If we define 
the differences of spherical harmonic coefficients C nm , Snm of the observed 

gravity potential and c~~y, s~~y coefficients of the simple Airy model 
topographic-isostatic potential 

- -Airy 
.6.Cnm = C nm - Cnm , 
AS -"0 ",Airy 
w nm - w-nm - ~nm " 

(18a, b) 

then the first statistical quantity one may define is the root mean square 
(rms) undulation difference 5N between degrees nl and n2: 

oN = [ 
n 

n=n: m=O 

(.6.C~m + 
1. 
2" 

(19) 

The next quantity is the rms anomaly difference between degrees nl and 

(20) 

Let us denote by 0'"; (T) the signal variance 

(21) 

of the observed gravity potential T, the correlation coefficient by degree, Cn 

is another measure of potential coefficient fit, 

~ (c CAiry + Cf -SAiry ) L..t nm nm unm nm 

Cn = _m_-=_O ____ ~~--~~~~----
(ju(T) . (jn(TAiry ) 

(22) 

Finally the average correlation coefficient between degrees nl and n2 is 

(23) 

Table 1 shows the value of above statistical quantity for D = 30 km com­
pensation depth. 

The fit between the two potential coefficient sets is rather bad even 
in the higher degree range when the greater part of the gravity signal is ex­
pected to be yielded by the topographic-isostatic mass irregularities. This 
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comparison clearly shows that this simple Airy model cannot be expected 
to reflect the very behaviour of the earth's crust on a global scale, even if 
it is physically more tenable than the Pratt model. 

We agree with the following conclusion of the authors of RUMMEL et 
al. (1988): 'Since the isostatic behaviour of the earth is dependent on a 
number of factors, and considering that such behaviour varies substantially 
from area to area, global models cannot be expected to reflect the full 
picture.' 

Even the simple Airy model depends on a number of factors, e. g. 
crust and mantle density, crust thickness, etc. which may vary from area to 
area, so it seems reasonable to allow the changes of these factors. This will 
lead us to the study of type global isostatic models with horizontally 
varying crustal parameters. 

6. Lateral Variations of Crustal Parameters 

When the compensation is complete, the follovling approximation is valid 
for the topographic-isostatic potential (see SUNKEL, 1986): 

r7"1Airv( P) 2 GD h 1 . _ = Tt perch. (24) 

This appr.oximation can be derived from the Eqs. (10) and (17) by retaining 
only the linear term in h in the Eq. (17). Let us allow now the per, D 
parameters to be horizontally variable, i. e. 

Per(P) = Per + /::,.Per(P), 

D(P) = D + /::,.D(P) , 

where Per average crust density (2670 kgm -3), 
D average crust thickness (e. g. 30 km), 

then the /::,.TAiry potential change will be linearly dependent on h(P): 

(25) 

(26) 

(27) 

To be more rigorous if we introduce horizontal changes of crustal para­
meters, the following changes will result in the topographic-isostatic po­
tential coefficients in Eq. (17), if we restrict ourselves to the first-order 
term only: 

{ 
/::"Cnm } __ 3_pcr 
/::"Snm = (2n + 1) P 

(28) 
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where the 2D spherical harmonic coefficients f:1hcnm , f:1hs nm are defined 
by the following equation: 

[ f:1hcnm} = ~ Je [ (h(Q)) 61(Q) {l! nm(Q)} du(Q). (29) 
If:1hsnm 47r J R Vnm(Q) 

er 

Here we used the abbreviation 61 (Q) for the following parameter function 

61 ( P) = --'---'--"- + f:1 DD( P) 
Per 

(30) 

which describes the total effect of horizontal variations in crustal density 
and crust thickness. It shows that if linear is used 
it is impossible to separate the effects of crust density and thickness onto 
the topographic-isostatic potential. 

The effect of compensation disiurbances will be examined next. In the 
spherical Airy model when the compensation is complete, the root-antiroot 
thickness'can be computed from the equation (see RUMMEL et al., 1988) 

R2 
.t.( P) _ per - h( P) 
t - - f:1p (R _ D)2 - . (31) 

When an area is isostatically over-, or undercompensated, the above con­
dition is not valid. Instead we may write the following equation 

i(P) = ~~ (R ~2D)2 [1 + f(P)]h(P), (32) 

where the (smoothly varying) f (P) function expresses deviations of com­
pensation with respect to the Airy model. The root-antiroot surface will 
remain linearly dependent on the surface topography, but now the mass 
balance criterion is not satisfied. If the f(P) parameter function is nega­
tive/positive, the area now becomes under/overcompensated according to 
the traditional Airy hypothesis. 

If we keep again only the first-order term in Eq. (17), the coefficient 
change dye to the imperfect compensation will be 

{ L1~~P} _ 3 per [[1 (R - D)n] { fCnm } { fCnm }] 
L1~C;:P - (2n+1) p - R fSnm - fSnm . 

(33) 
In this equation the f Cnm, f Snm coefficients are 

{ fCnm } = ~ Jr [ (h(Q)) f(Q) {U nm(Q)} dcr(Q). (34) 
fSnm 41T' J R ,Vnm(Q) 

er 
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Table 1 
Average correlation coefficients between Rapp 1981 model and simple Airy model 

Degree range 2 - 180 15 - 180 30 180 90 180 

c 0.486 0.504 0.496 0.436 

Let us introduce now the following parameter function 

5(P) = 51(P) + f(P) = ~p:::(P) + ~D~P) + f(P), (35) 
Per 

and the following 2D spherical harmonic coefficients of the product function 
[h(P)/R]5(P) 

{ ~5cnm} = ~ Jf (h(Q)) 5(Q) {~ nm(Q)} dO"(Q) , (36) 
h5snm 471 \ R Vnm(Q) 

(J" 

then the change in the topographic-isostatic coefficients will be 

{ 
~Qnm 1 = 3 Per [[1 (R - D)n] { h5cnm } _ { fCnm }] 
~Snm ; (2n + 1) P - R f5snm fSnm 

(37) 
The first term in this equation represents a double layer potential similarly 
to the linear term in the Eq. (17). In the Eq. (33) the relative magnitude 
of the first to the second term is 

which ratio is tabulated for the compensation depths D = 30 and 60 km for 
various degrees n in Table 2. 

Table 2 
Relative magnitude of the double layer term in Eq. (37) 

n 
D = 30km 
D = 60km 

2 30 60 90 
0.009 0.132 0.247 0.346 
0.019 0.247 0.433 0.573 

150 180 
0.507 0.572 
0.758 0.818 
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This comparison clearly shows that for the degree range 2 - 180 both 
terms should be used in Eq. (33) for the computation. 

The expression (30) shows that in linear approximation in (hi R), the 
effects of crustal density and crust thickness anomalies cannot be separated, 
i. e. only their sum, bl(P) can be determined. 

Now the following three combinations exist for the determination of 
horizontal parameter variations in the crust. 

Model 1. Determine the function 81 (P) only (i. e. crust density and 
thickness are variable, but perfect compensation is assumed everywhere 
according to the Airy hypothesis). 

Model 2. Determine the function f(P) only (L e. laterally variable 
imperfect compensation, but constant crust density and thickness). 

Model 3. Determine both functions 81 (P) and f (P) (i. e. neither 
crust density Ithickness nor compensation is treated as fixed). 

Mathematically models 1 and 2 are equally simple but the results will 
certainly be distorted by the effects of changes in certain neglected para­
meters (for model 1 compensation, for model 2 crust density Ithickness). 
The model :3 seems to be the more realistic although it requires mathemat­
ically the determination of two parameter functions simultaneously. 

7, O]ptin"lum Criterion for 'r()pog;r~ip.hic-:[S<)Slta-tic Crust :l:v'Iodels 

The gravity potential of the earth includes the topographic-isostatic poten­
tial of the real crust of the earth. This potential is included in the gravity 
potential in such a way that the shorter the wavelength of the gravity poten­
tial terms in the spherical harmonic expansion, the higher the contribution 
of the topographic-isostatic potential is to it. This fact is due to the rather 
shallow SOUT'ce depth of the topographic-isostatic potential. Simply saying 
the crust should become the most source of the gr,avitv 
potential as the frequency increases. This also means that the shorter the 
vvavelength, the smaller the disturbing effect of other masses is. 

H the topographk-isostatic potential is modelled, our model has to 
reflect the gravity potential well at short wavelengths. This criterion can 
be used to judge between such models. From this point of view, the above 
criterion may be used to select a best or optimal modei. This optimality 
criterion will be investigated next. 
Let 
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denote the signal variances of the residual ~T=T_Tmodel gravity potential 
field, where T is the earth's, and TmodeJ is our 'best' topographic-isostatic 
model's anomalous potential. The optimum criterion 

n2 

L f3nU';(T) = minimum, (39) 
n=nl 

with the de-smoothing factor ,Bn expresses a minimum condition for the 
residual anomalous potential field in the degree range nl - n2. This way 
the high frequency part of the residual field will be minimized and it yields a 
topographic-isostatic model which approximates best the short wavelength 
anomalous potential field. 

The de-smoothing factor Pn amplifies the residual 
anomalous potential field components, and it can be determined in various 
ways. In the following discussion we present a purely theoretical approach 
to determine f3n. 

Let us assume that the density inhomogeneities are uncorrelated, i. e. 
they have an ideal 'white noise' distribution inside the earth. Their covari­
ance function is then 

COy [~p(P), .6.p(Q)J = Cb(P, Q), (40) 

where b(P, Q) now denotes the 3D Dirac delta 'function'. From covariance 
propagation through the integral 

T(P) = G 11/ l-l(p,Q)~p(Q)dR(Q) ( 41) 

sphere R 

one may derive the covariance function of T arising from the density dis­
tribution inside the spherical shell between radii RI and R2, 

00 1 
COy [T(P), T(Q)] = 47'iG2CR L ( )( 

n=O 2n + 1 2n + 3) 

x [( i) 2n+3 - (i) 2n+3] Pn (cos1j;PlQJ , (42) 

where PI, Ql points lie on the earth's surface and P, Q are inside the 
spherical shell. If we compare this expression to the 

00 

cov[T(P1 ), T(Ql)] = LU'~(T)Pn(cOS1j;PIQl) (43) 
n=O 
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covariance function of anomalous potential T, we get the theoretical signal 
variances.of T for the spherical shell as 

2 4r.G
2CR [(R2)2n+3 

un(T) = (2n + 1)(2n + 3) If (44) 

Let now Dmax denote the maximum depth of crustal density anomalies. 
The U;(T)Dmax : u;(T) ratio then theoretically should increase as the fol­
lowing de-smoothing function 

(.l=1_ - max (R D 
)

2n+3 
{In - R ( 45) 

Values of this function (3" are tabulated for Dmax = 70 km in Table 3. 

Table 3 
Theoretical de-smoothing function for maximum crustal depth 70 km 

n 2 30 60 90 150 180 

Dmax = 70km 0.074 0.501 0.743 0.868 0.965 0.982 

The function (3n shows the increasing theoretical signal variance of the 
gravity anomalous potential generated by the crust relative to the total 
signal variance of the anomalous potential. 

8. Opt:i!Jnatl Linear '.l~[)IJ'o:g:r·aiy.IJlic Model DeteTI1f""Elnation 

The determination of an linear ll10del re-
quires mathematically the determination of one (two) parameter 
function(s) 01 and/m: j, defined on the surface of the earth. For the sake 
of simplicity the determination of only one parameter function 01 will be 
discussed in detail next. The computation of more than one parameter 
function will be quite straightforward then. 

In the following discussion let 6(8, ),) denote the following parameter 
function. 

where e, A 
per 
D 

5(e. A) = llPcr(e, A) .J.. llD(8, A) 
. Pcr ID' 

polar distance and longitude, 
mean crust density, 
mean crust thickness. 

( 46) 
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This equation corresponds to Eq. (30) and Model 1 in Sec. 6. 
mh h' 1 h . ffi . =e odel =S odel f h . . 1 1 e sp encal armomc coe. clents nm , nm 0 t.e Op-tlma 

model ,,,rill then be computed from the formulae below, which are anal· 
ogous to the expressions (28) and (29). 

(-=me ode! 

{ 
nm 

"('mode! 
:.Jnm 

{ 
• 5:: } { fflAiry '~ _ . nvcnm , '-'nm 

- tn ht5s T -Airy_ 
l. nm Snm ) 

(47) 

Here are determined the eX10T<!SSllOn (15), 

In = ----""- [ 

and the 2D SpJtlelclCl21 harmonic coefficients in are 

{ 
ht5cnm } = J.. J1rJ21r(hC8, >.) \) 
ht5 Snm 411" R 

d>.. (49) 
o 0 

These are the surface spherical harmonic coefficients of the product function 
(hi R)t5. In the foHowing we shall see how they may be represented by the 
2D spherical harmonic coefficients of its component functions. 

Let the functions hand 6 be represented mathematically by the fol· 
lowing 2D spherical harmonic series and coefficients: 

00 I 

h(8,A) = RI: L [hCfkUUcC8, >.) + hSlkVlk(8, >')] , (50) 
1=0 k=O 

00 I 

8(8,>.) = I: I: [OCijUij(8,>')+OSijVij (8,A)] , (51) 
i=O j=O 

7r 27r 

{ hCik } = ~ 11 (hCe , A)) {?"lkCe , A) } sin ed8 dA, (52) 
hS1k 411" R V/k(e, A) 

o 0 

1r 2rr _ 

{ OCij } = ~ J J 8(8, A) { U;j(8, A) } sin ed8 dA. (53) 
OSij 411" Vij(8, A) 

o 0 

In analogy to the theory of ordinary Fourier series, where to a convolution 
of two functions in the space domain there corresponds a simple product 
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in the frequency domain and vice versaj now to a product of two functions 
on the sphere there corresponds a 'convolution' in the discrete 'frequency' 
domain between the 2D spherical harmonic coefficients. The mathematical 
tool needed for such a computation is the product-sum conversion formula 
of spherical harmonics (see Appendix A). 

In an abbreviated form the following relationship holds for the deter­
mination of hocnm , hosnm coefficients: 

{ 
hocnm} = ~ ~ [{ acc(n,m,i,j)} .. + {acs(n,m,i,j)} .. ] 
h i: ~ ~ ( ..) DC,) ( ..) OSl) uSnm . O' asc n,m,t,] ass n,m,t,] 

l= )=0 

(54) 
The acc, asc , acs, ass coefficients can be determined from the hqk, hS1k 
2D spherical harmonic coefficients and the Clebsch-Gordan coefficients. 
The definition and a practical computation method of Clebsch-Gordan 
coefficients can be found in Appendices Band C. Detailed derivation of 
the expression (54) can be found in Appendix A and thus the following 
equations will be obtained for the acc, acs , as e , ass coefficients: 

( ace} 

t 
ase = L (2i + 1)(21 + 1) C(i.l, n; 0,0,0) 1 
acs I. 2(2n + 1)' )(1 + omo)(l + Ojo) ass 

( [ { hq,m-j '~ 
I (. .' '.) I(....L .) hSI,m_j 

X • C t,l,n, ],m - ),m VI, om-),O . -h . 
\ . SI,m-) ! 

\ hq,m-j J 
if m;::: j, 

but J 
hq,j-m ) 

( -1 )j-m. 1r-(l-'-'-' -) -hsl,j_m f 
- V - T U)-m,O l h· ' Sl,)-m 

hq,j-m ) 

ifmo,j J 

I hq,m-j 1) 
+C(i, 1, nj -j, m + j, m)( -l)j )(1 + om+j,O) !:hsl,m- j .). (55) 

l 
Sl,m-) 

hq,m-j 

In this equation the summation according to the index 1 must be done for 
all the values of I where the C(i, 1, nj j, k, m) Clebsch-Gordan coefficients in 
this expression do not vanish. The Oij symbol here denotes the K ronecker 
delta. 
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Now we introduce the matrix elements 

~ 
Acc(qi r)} {acc(n,mi ~,~) 1 
Asc(qi r) _' asc(n,mi t,J) 
A ( ) - Z;n ( •• ) cs qi r acs n, mi t, J J 

l Ass(q; r) ass(n, mi i, j) 

(56) 

of the matrices arranged according to the single indices 
q=n(n + 1)/2+m+l and r =i{i+l)/2+j+l; and similarly the column 
vectors GC, lOS, Cmodel, smodel, C Airy , sAiry arranged according to the single 
indices rand q, respectively. With this notation the Eqs. (47) and (54) will 
result finally in the following linear system of equations: 

1 r GC 1 r 1 
j 

. ,. + ... ,'. 
lGS _ SAlTY 

(57) 

The optimal parameter vector [GC, Gs]T may now be estimated (up to a 
certain maximum degree and order i max = K) to make the variance of the 
high frequency residual field minimum according to the condition (39). 
This is mathematically a well-known least squares estimation procedure 
for the optimal parameter vector. 

This way the optimum parameter function 5(8,).,) through its 2D 
spherical harmonic coefficients will be determined. The computation of 
the spherical harmonic coefficients of topographic-isostatic potential of our 
optimal linear model (OLTM) from the linear system (57) is quite simple. 

9. Numerical Results 

Computer programs and subroutines were developed in MS FORTRAN 
to determine optimal linear topographic-isostatic models. Subroutine 
NORMCP computes the arrays of the linear system and the normal equa­
tions. Subroutine GA USS solves the normal equations and main program 
CRUSTPAR determines the optimal model coefficients. Some statistical 
quantities are also computed to judge the fit between our model and the 
earth's anomalous potential. 

For our previous calculations the spherical harmonic coefficients of the 
anomalous potential of the earth were the RAPP (1981) coefficients limited 
up to degree and order 90. The 10 x 10 average height dataset of H. Siinkel 
was used to produce 2D spherical harmonic coefficients of the equivalent 
topography up to the same degree and order 90. 
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Optimal linear topographic-isostatic models were computed up to K = 
i max =8 and 12. The OLTM was as described by Model 1. The optimality 
criterion was as described by Eq. (39) and for the j3n de-smoothing function 
Dmax = 70 km was used in Eq. (45). The average crust parameters were 
Per = 2670 kgm -3, D = 30 km and 6.p = 600 kgm -3. The second order 
approximation of TAiry was used in Eq. (15) and the fit interval was chosen 
to be in the spherical harmonic degree range n=60 - 90. 

Computed optimal parameter functions for K = 8 and 12 can be seen 
in the Figs. 2 and 3. The topographic-isostatic geoid differences for K = 12 
are shown in Fig. 4. Correlation spectra for the simple and OLTM models 
are shown in Fig. 5. 
Table 4 shows the average correlation coefficients (22) in various degree 
ranges for Airy versus OLTM models. 

Table 4 
A verage correlation coefficients of various topographic-isostatic models 

Degree range 1·5 - 90 30 - 90 60 90 

Airy 0 . .576 0.583 0 . .5.59 
OLTM J( = 8 0.617 0.631 0.634 
OLTM K = 12 0.623 0.643 0.6.59 

These previous results were derived from the simple Iv.[ odel 1 and in 
the relatively low degree range 60 - 90. Further investigations are planned 
to derive OLTM for the higher degree range up to n= 180 and with higher 
resolution of the parameter function (higher K = i max ). Calculations are 
also needed with IVIodel 2 and 3, and with other minimum principles. The 
effect of smoothing of root-antiroot surface according to the physically more 
realistic ng-l\!lelll{;SZ model we would like to ,,...,',,,,+,r,,,t 

10. Conclusions 

Our previous results show that a clear improvement of global topographic­
isostatic models, compared to the simple Airy model can be achieved by 
allowing horizontal change of the crustal parameters. Our results also show 
that significant departures must occur on a global scale due to crust den­
sity and thickness change with respect to the Airy model of uniform crust 
parameters. These departures vary from area to area and they show the 
complex behaviour of the crust. Large negative values resulted for areas of 
significant ice coverage, because no ice thicknesses were included in the to­
pographic height dataset. Negative values are mostly correlated with large 
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mountain zones and ocean bottom areas. Positive values are associated 
with ocean trenches and old continental massifs. These results suggest the 
nonlinear"iiy of compensation, i. e. there is no strict linear relation (1) 
between topographic heights and root thicknesses. 

Of course it is hard to interpret these previous results of .IV1odel 1 
physically, but it is expected that the physically more relevant Model 3 
with higher resolution will be a more adequate tool to support some global 
mechanism of isostatic compensation. \Ve think that in the lack of accurate 
global geophysical data, the anomalous potential field still remains a very 
H-rln,-,rl"'.T1T. source of information to support or reject any global mechanism 
of isostatic compensation. 

it should be mentioned that the whole procedure is rather 
IIlllepencterlt of the choice of the original topographic-isostatic model. It 
can be used with various topographic-isostatic models as well. The only 
assumption is that the model change should be in linear relation with 
topographic heights. 

The Harmonic 

Complex spherical harmonics 

Let us introduce the following complex spherical harmonics (ROSE, 1957): 

v (e ') im,\-.=:7Tlp ( eO) 
.1. nm -, /\ = e n cos - , 

n = 0,1, ... 

m=-n, ... , 0,1, ... ,n 
(A1) 

where i denotes imaginary unit and Pr;: (cos e) is defined by the following 
equation: 

(2n + l)(n - m)! pm ( e) 
4 ( ) ' n cos . 1in+m. 

n = 0,1, ... 
(A2) 

m = -n, '" , 0, ... , n 

Here the P::'"(t) functions are defined through the expression 

n = 0,1, ... 

m = -n, ... , 0, ... , n 
(A3) 
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The defining Eq. (A2) is a useful extension of the associated Legendre 
functions' for negative m values. If such definition is used, the following 
symmetry relations 

(A4) 

and 
(A5) 

will hold for the associated Legendre functions and complex spherical har­
monics. Here the sign * denotes complex conjugate. 

Orthogonality relations 

The orthogonality relation of complex spherical harmonics (AI) is 

27. 7. J J Y,~~(8, A)Y,"l'm,(e, A) sin eded), = onn1omm l • (A6) 
o 0 

Triple product iniegral (see ROSE, 1957) 

(A7) 

where C (n 1, n2, n; m 1, m2, m) denotes the Clebsch-Gordan coefficients (see 

Now we are able to derive the 

Complex spherical harmonic product-sum conversion 
formula 

for the complex coefficients. 
Let the functions aCe, A) and b(8,,x) be expanded into the following 

2D spherical harmonic series 

00 n 

a(e,A)=::L ::L AnmYnm(e,A), (A8) 
n=Om=-n 
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00 n 

b(e,.\) = L L Bnmynm(e, A) , (A9) 
n=Om=-n 

with the complex Anm , Bnm coefficients. Now the question is how to de­
termine the complex Znm spherical harmonic coefficients of the product 
function 

00 n 

z(0,.\) = a(e, .\)b(e,.\) = L L ZnmYnm(e,.\). (AlO) 
71.=0 m=-n 

Now if we substitute the expressions (A8) and (A9) into the left side of 
Eg. (AIO) and perform index change, the result is the equation 

= 

Let us multiply both sides of this equation by the function Y;m(0,.\) and 
then integrate it onto the surface of the unit sphere (j termwise. Then if we 
apply the relations (At)) and (A 7), the terms on the left side will not vanish 
only if n3 = nand m3 = m. Thus finally we get the following equation for 
complex Znm coefficients: 

(A12) 

From the properties of the Clebsch-Gordan coefficients (see Appendix B) 
it is clear that the C(nl' n2, n; ml, m2, m) coefficients will not vanish only 
if m = m-ml' The sum with respect to n2 should be extended over the 
integers 

where 

nl + n2 + n = 2k = even. 

With these restrictions for indices in the Eq. (A12), it will assume the 
following form: 

00 

Znm= L (2nl + 1)(2n2 + 1) 
411'(2n + 1) C(nl, n2, n; 0,0,0) 

(A13) 
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Real spherical harmonics 

When we would like to use real 2D spherical harmonic series with conven­
tional real spherical harmonics (7), the following relations will hold between 
real and complex coefficients: 

m;:::: 0, (AI4) 

)87r(1 + bm2 o) { -~iln::2 } = [( _1)m2 An2m2 { ~ } An2,-m2] 

)87r(1 + bm1o) { -~'i::2 } = (( _1)mJ Bn1m1 { ~ } Bn1,-m1] 

m2;:::: 0, 

(AI5) 

(AI6) 
Now let us substitute Znm and Zn,-m from (AI3) into the right side of 
(AI4). If the summation with respect to ml now runs on positive values 
only, we get the following equation 

= 
= (2nl + 1)(2n2 + 1) C( . 0 0 0) 

'\ 4 (2 '-1) nl,n2,n" , 
! Tt n-r 

.-rn, jl . . 

(AI7*) 

Finally we introduce real coefficients instead of the complex coefficients 
A and B from the Eqs. (AI5) and (AI6) and we get the following real 
equation pair for Cnm and Snm: 

(2nl + 1)(2n2 + 1) G( . 0 0 0) 
2(2n+ 1) nl,n2,n" , 
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-L { H n2 ,ml+m 1. F 'Jl-L f 1 
I -Gn2 ,ml+m J nl

m
l J I ml=O )(1 + Dmo)(l + Dm1 0) 

x 
"2 ,'''-'''1 } 

(A17) 

Now if the following notations 

{ 
Cnm} = f ~ [{ acc (n,m,n1 ,m1 )} En,ml 
Snm L asc(n,m,n,m} -

nl=O ml=O 

I {acs (n,m,n1 ,m1)} F. } 
T ( ) - nl ml ass n,m,n,m 

(A18) 

and 

(2nl + 1)(2n2 + 1) 
2(2n+ 1) C(nl,n2,ni 0,0,0) (A19) 

are introduced, then the ace, asc , acs, ass coefficients will be defined through 
the following equations: 

a =" Q(nl, n2, n) [VI D 
cc L )(1 6 )(1 6) + m-ml,O 

n2 + mO + mlO 

(A20a) 
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if ml::; m} 
if ml;::: m 

if ml::; m} 
if ml;::: m 

+)1 + bm+ mj ,o( _l)mJ Hn2 ,m+mJ] , 

= '\' Q(nl, n2, n) [;' <5 
ass ~ V(l + bm o)(l + OmjO) y - + m-mj,O 

if ml::; m} 
if ml;::: m 

If we perform the index change 

(A20b) 

(A20c) 

(A20d) 

in the Eqs. (JU8), (A19) and (A20a - d), the Eg. (55) will be yielded. 
The program uses formulae (A18 - 20) for the computa-

tion. The commutaiivity of the product (AIO) was tested numerically, and 
the maximum errors were of order 10-14 using 8-byte reals. 

Ap'pe:ndl,x B 
The Clebsch-Gordan Coefficients 

The definition of the Clebsch-Gordan coefficients (see ROSE, 1957 and 
WIGNER, 1959) is 
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X (n3 + n1 - nZ)!(n3 - n1 + nZ)!(n1 + nz - n3)!(n3 + m3)!(n3 - m 3)!] t 
(n1 + nZ + n3 + l)!(nl - ml)!(nl + m1)!(nZ - mz)!(nz + mz)! 

v (_1)k-n2+m2 (n3 + nZ + m1 - k)!(n1 - m1 + k)! 

" ~ k! (n3 - n1 + n2 - k)!(n3 + m3 - k)!(k + n1 - n2 - m3)! ' 

(Bl) 
where the index k assumes all integer values for which none of the factorials 
is negative. 

The Clebsch-Gordan coefficients are non-vanishing only if the follow­
ing three conditions are satisfied. 

1.) Imll:::;nl, Im21:::;n2, Im31:::;n3; (nI, 11,2, n3 are non-negative integers) 
2.) m3 is the algebraic sum oiml and m2:m3=m1=mz 
3.) 11,3 is the 'vectorial sum' of n1 and 11,2; i. e. a triangle can be formed by 

the vectors of lengths nl, nz, n3, respectively. This triangle condition, 
.6.(nl, n2, n3) is satisfied if Inl-n2!:::;n3:::;nl+n2. 

Properiies of the Clebsch-Gordan coefficients 

C(nl, n2, 11,1 + n2; n1, nz, n1 + nz) = 1 
C(nl, n2, n3; 0,0,0) =0, except if n1 +n2+n3 = even (parity coefficient) 
C(nl, 0, n3;ml, 0, m3) =Onln30mlm3 

symmetry relations: 

Detailed other formulae for the computation of Clebsch-Gordan coefficients 
for special index values can be found in the paper of PEC (1983), in Ap­
pendix AI. 

Appendix C 
Practical Computation of Clebsch-Gordan Coefficients 

The aim of the following discussion is to present suitable recursion formulae 
for the computation of Clebsch-Gordan coefficients instead of the direct 
formula (Bl), which is well-suited only for the computation of several, but 
not all coefficients. The recursive method described here can be easily 
adapted for computers. 
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Parity Clebsch-Gordan coefficient 

It is straightforward to derive a recursive computation method for the 
Q(n],n2,n) coefficient, which is in connection with the parity/Clebsch­
Gordan coefficient through the equation (A19). 

The following closed expression can be found for the parity Clebsch­
Gordan coefficient (see ROSE, 1957): 

(_l)k- n k! (2k 2nr)!(2k 2n2)!(2k 2n)! 
~----~~~--~~~----~ 

(k - nl)!(k - n2)!(k - n)! (2k + 1)! 
(Cl) 

where 

From this expression the foliowing recursion scheme can easily be derived: 
1. initial value: 

1 
Q(O,n,n) = ~, (C2) 

2. recursion with respect to n]: 

3. recursive computation with respect to n2 according to the index 

1 
p = 2 (n j - n2 + n) , p = 0,1,2, ... , min(n1,n) 

Q(nj,p + 1,n) 

J (2p + l)(n - p)(n1 - p)(2n + 2nj - 2p + 1)(2n + 2nj - 4p - 3) 
= -V (p + 1)(2n - 2p - 1)(2n1 - 2p - l)(n + n1 - p)(2n + 2n1 - 4p + 1) 

xQ(nj,p,n) , (C4) 

where the initial value Q(nj,O,n) = Q(n1,nj + n,n) was computed from 
(C3 ). 
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Recursive computation of Clebsch-Gordan coefficients 

In the foregoing discussion we used the special values of these coefficients 
as described in the paper of PEe (1983) and recursive formulae were as 
found in M. ROSE (1957). 

By the term row we denote all non-vanishing coefficients where the 
indices n, nI, m, ml are fixed but n2 is variable. The term column refers 
to all those non-vanishing coefficients for which n, r1.}, n2, m are fixed but 
ml is variable. 

Now the general scheme for the computation is briefly the following. 

CC)mpulte four initial values to start the computation of two rows at 
a time 
Compute two complete TOWS at a time to be the initial value for 3). 

3.) Compute all the columns for vvhich the coefficients exist. 
Repeat 1.) - 3.) for an possible n, m, nl values. 

VVe define the following two different cases for the recursion: 

Case A: when 

Case B: when 

1.) Initial value computation 

Case A 

C(O, n, n; 0,0,0) 1, (05) 

C(m + 1, n + m + 1, n; m + 1,0, m + 1) = 

n-m 
2(2n + 2m + 3) C(m, n+m, n; m, 0, m), m=O,l, ,n-l. (C6) 

Four initial values for two rows for nl #0, nl =m, m + 1, ... , etc. are 

value 1: 
C(nl,nl +n+ 1,n; m,O,m) 

. (nl + 1)(2nl + l)(n + nl + 1) 
(2n + 2nl + 3)(nl + ml + l)(nl _ m + 1) C(nl' nl + n, n; m, 0, m) 

(C7) 
with initial values (C6), 
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value 2: . 
C(nl,nl + n, n; m -1, I,m) 

= - (C8) 

can be computed from (C7), 

value 3: 

C(nl,nl +n-l,n; m,O,m) = m 
(2n+ 2nl + 1) 
-'-------"-C(nl,nl +n,n; m,O,m) 

nnl 

can be computed from (C7), and finally 

value 4: 
C(nl,nl+n-1,n; m-1,1,m) 

[ ( 1 ) 1 
I 2n + 2nl + 1 = n m - _ + nlm 11 

V nln(n+nl + 1)(n+nl -1) 

xC(nl' nl + n, n; m-I, 1, m) 

can be obtained by the coefficient (C8). 

Case B 

e(o, n, n; 0, m, m) = 1. 

Four initial values for two rows for successive nl values are 

value 1: 
C(nl + 1, nl + n + 1, n; nl + 1, m - nl - 1, m) 

= (n - m + 2nl + l)(n - m + 2nI + 2) 
(2n + 2nl + 2)(2n + 2nl + 3) 

(C9) 

(010) 

(Oll) 

·C(nl + 1,nl +n+ 1,n; nl + I,m -nI-I,m), nl = 0, 1, ... , 'm - 1, 
(012) 

then compute from (C12) the following 

value 2: 
C(nl,nl +n,n; nl -I,m - nl + I,m) 
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= 

and 

value 3: 

= 

Finally, then from (C13) compute the following for nl > 0, 

value 4: 

2n + 2n1 + 1 
nln(n+m+1)(n m+2nl+1) 

2.) Recursive computation of two complete rows for Case A or B 

General formula (see ROSE, 1957) 

1 [2n2 + 1 
2n2 

_ 
1 

V(n2)C(nl' n2, n; ml, m - ml, m) - W(n2) 

2n2 + 3 1 ---1 W(n2 + 1)C(n1., n2 + 1, n; ml, m - ml, m) 
2n2 - . 

where we· have used the following abbreviations: 

V() ( )
nl(nl+l)-n(n+l)+n2(n2+1) 

n2 = ml + m - ml () 
2n2 n2 + 1 

and 
W(n2) = [n~-{m-ml J2](n2-nlfi1)(n2fi11-n)(nrtrlfnz+l)(nlfi1-nz+l) 

4n; (2n2-1 )(2nZ+l) 

239 

(013) 

(014) 

(015) 

(016) 

Initial values for recursion with re~pect to n2 are obtained through the 
expressions (07 - 10) or (012 - 15) to start the computation of two rows 
at a time. 



240 L. VOJ,GYBSI arod GY. TOTH 

3.) Compute all the columns 

This type of computation requires the following general recursion formulae 
with respect to the integer m2: 

for increasing ml: 

1 = N(ml) [M(ml)C(nl,n2,n; ml,m - ml,m) 

':"N(ml - 1)C(nl, n2, n; ml - 1, m - ml + 1, m)] , 

for decreasing ml: 

1 = N(ml _ 1) [M(ml)C(nl, n2, n; ml, m - ml, m) 

-N(ml)C(n}, n2, n; ml + 1, m - ml - 1, m)] , 

where 

and 

(C17a) 

(C17b) 

The initial values for this recursion are those two rm1\[S, which were previ­
ously computed from the equation (C16). 

The FORTRAN subroutine NORMCP utilizes the above sketched 
procedure to compute all the necessary Clebsch-Gordan coefficients. This 
algorithm was tested numerically using the direct formula (B1). 
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