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Abstract 

There are many problems of free calltilevered prestressed concrete to be solved by more 
convenient methods. One of these is the determination of the internal forces during 
the assembly and post-tensioning of the cantilevers. This question is also called the 
determination of the elastic shortening loss in already anchored tendons. 

A system of equations for the tendon forces as unknowns using the force method 
for the states of the construction of the cantilevers is written. The analytical solution 
of this equation is enabled by the recognition that the coefficient matrix of the system 
is a one-pair matrix modified by a diagonal matrix. Using the statement according to 
which the inverse matrix of a one-pair matrix is a symmetric tridiagonal matrix and vice 
versa the elements of the inverse of the one-.pair matrix in the coefficient matrix can be 
produced. The task finally can be reduced to the inversion of the symmetric tridiagonal 
matrix modified by a diagonal matrix. This further problem can be solved by means of 
one-pair matrices formed by quantities gained by a recursive algorithm. 

The importance of the result consists in the fact that the internal forces of a free 
cantilevered structure in an arbitrary stage of construction can be written in case of any 
parameters (changing cross-section. length of segments, number of tendons, etc.) 
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Introduction 

In the last decades, methods were developed and widely llsed for con­
struction of prestressed concrete structures, mainly bridges, which avoid 
scaffolding and also moulding in its classical sense. For major spans these 
are the free cantilevering using precast segments or site casting using trav­
ellers. (Considering given features also the incremental launching belongs 
to this group.) The construction method is that at the unique phases of 
the construction it is to be dealt with a cantilever. This cantilever is pro­
duced step by step anchoring a prestressing tendon or tendon group at the 
boundary of each segment [3]. 

The method described in this paper allows to determine analytically 
the forces in the tendons by stage post-tensioning (this task is frequently 
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called the determination of the elastic shortening loss in already anchored 
tendons) and the forces at different concrete cross-sections under prestress 
and different dead loads during construction before the closure of can­
tilevers at midspan or reaching the abutment. This means that the task 
is to calculate the unknown quantities in a statically undetermined system 
[1] to be solved by the force method. 

The Mathematical Model, the Coefficient Matrix 

In the practice, of course, many different versions of the question occur. 
The mathematical method which is dealt with here is fit to describe almost 
all cases. However, for the sake of simplicity the theoretical model will be 
taken with different restrictions. 

The structure in Fig. 1 is a cantilever, i.e. it is statically externally 
determined. At the phases of the construction the structure is elongated by 
segments 1, 2, ... ,i, ... ,n, and these segments are fastened to the segment 
above the pier by tendons (or tendon groups) denoted by the same indices. 
The cantilever is statically internally as many times undetermined as many 
tendons (or tendon groups) are anchored. (Tendon groups contain tendons 
of the same profile.) In this case it is indifferent whether one clamped 
cantilever is constructed or balanced two cantilevers. 

te.ndons 

Fig. 1. Elevation of the cantilever 

The force method is applied and the forces acting in tendons 
1, 2, ... ,i, ... ,n are to be considered as unknowns. 

If segment 1 is completed and the tendon No. 1 is prestressed, the 
system is statically indeterminate to the first degree and the coefficient of 
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the equation with a single unknown is 

J Mr J Nr h 
all = DJ dx + P,A dx + -E A . 

D 1 .!.:J 1 p- pI 

Here the first term is the relative displacement at the place where a fictitious 
cut is made (tendon 1) due to the unit force acting at the same place 
because of bending moment, the second term is that because of axial force 
and the third term is the same because of the elongation of the tendon; 
that is 

This formula is written that the a role here are 
considered to be constant along one segment, but as already mentioned, 
there is no basic alteration in the method, if these changes are taken into 
account. (For the sake of a better overlook in this paper, it will be reckoned 
with the values at the mid length of the segments.) 

Thus, the symbols are the following: 

E the Young's modulus of concrete 
11 the moment of inertia of the cross-section at segment 1 

the cross-section area at segment 1 
II length of segment 1 
e 1 eccentricity of prestress at segment 1 
Ep Young's modulus of the prestressing tendon 

Apl cross-section area of the tendon (or tendon group) No 1 

Let us suppose that the eccentricity of all tendons is the same.(In Fig. 1 
they are only drawn as if they had not the same eccentricity for the sake 
of possibility of presentation). 

After segment 2 is completed, all is unchanged according to the fea­
ture of the structure and logically 

eil1 e~12 II l2 h + 12 
a22 = Eh + E12 + EAI + EA2 + EpAp2' 

In the case of completion of segment i, all unit coefficients m the mam 
diagonal will be according to what mentioned above, and 
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i 

i 2 I: lk 
'\:'"'"' { eklJ: lk} k=l aii = L.t -- + -- + ---. 
k=l Eh EAk EpApi 

Let us introduce the following notation 

l.e. 
ajj = Ci + dj, 

i 

Ci = I: ak, 
k=l 

D =< di >, 

i = 1,2, ... ,no 

Making use of the definition of the unit coefficients, the arrangement of the 
struct ure implies that the off-diagonal elements aij (i =j: j) of the coefficient 
matrix A=[aij] of the system of equations are 

{

C' 
aij = 1 

Cj 

'r 
11 

if 

i < j 
i > j 

Thus the element.s aij can be written as 

-where 

Cij = { ::niI1(ij ) 
if 

if 
i # j 

i = j 

and is the Kronecker delta. !nt.rOQUclD.g the notation 

r-o [ ] IV = Cij, 

obviously 

The problem leads to t.he system of equations 

Ax = aD, 

(1) 

(3) 

where aD is the load vector. The solution of the system (3) is known if the 
elements of the inverse A -1 are given in an explicit form or if a convenient 
recursive algorithm can be formulated for calculating them. 
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The Inverse of the Coefficient Matrix 
Solution of the System of Equations 

3.59 

Let us give the definition: A matrix T=[tij] is called a one-pair matrix (see 
e.g. [2], p. 72) if its elements can be expressed in the following form: 

if i::; j 

if i;:: j 

It is to be seen that the matrix C defined by (2) is a one-pair matrix with 
Pi = Ci, qi 1; (i = 1,2, ... ,n). According to a 'well-known theorem, the 
elements of the inverse of a non singular one-pair matrix can be obtained 

1: t' . r ')(\ 1 (~6° \ (P means 01 cer aln recurSiOns ,see pp. vU-,- ,v. OJ ... v. 
It is not difficult to verify that 

Cl Cl Cl Cl r' cl Cl + C2 Cl + c2 Cl + C2 

Cl Cl + C2 Cl + C2 + C3 Cl + C2 + C3 
tr'-l 
"-' = 

Cl Cl + C2 Cl + C2 + C3 Cl + C2 + ... + Cn 

! I I _.l 0 

1 

-,-
Cl C2 ('2 

1 .l+.l 1 0 
C2 C2 C3 C3 

0 _.l .l+.l _.l 0 
('3 C3 C4 C..; 

= 0 _.l 
C4 

J 0 

I 
Cn 

Since the solution of the Eg. (3) can be written in the form 

the task is to find the inverse of C+D when the inverse C- l is known. In 
order to get the solution x, i.e. the vector formed by the unknown tendon 
forces, let C and D be factored out to the left and to the right, respectively: 

(4) 
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Substituting the identity 

(D- 1 + C-1)-1 C-1 = 

= (D- l + C-l)-l (D- l + C- l _ D- l ) = 1- (D- l + C-l)-lD- l 

into (4) we get 

x = D- l ao - D-l (D- l + C-l)-lD- l ao. 

Since the matrix D-l + C- l to be inverted is a symmetric tridiagonal ma­
trix, its inverse is a one-pair matrix the elements of which can be obtained 
by a simple recursive algorithm (see [2] p. 300). 

Let the inverse of D- l + C- 1 be denoted by R=[r;j], then 

where 

(D- l + C-l)-l = R = hj], 

Tij = ! J 
{ 

U'v-

ViUj 

if i ~ j 

if i 2: j. 

Obviously, one factor of the parameters Ui,Vi(i = 1,2,3, ... n) can be 
arbitrarily chosen, so let us substitute Uj = 1. The further parameters 
Ui (i = 2,3, ... , n) can be obtained by the recursive algorithm 

Uj = 1, 

U2 = C2 (~ + ~ + ~), 
Cl c t d1 

{(Ill) 1 } 
Ui+l = Ci+l - + -- + - Ui - -Ui-l , 

Ci Ci+l di Ci 
i=2, ... ,n-1. 

Introducing the parameter Uo according to the formula, 

1 1 1 
LLO = (-=- + d- )u n - -=-Un-l, 

Cn n Cn 

(uo is proportional to the determinant of the tridiagonal matrix to be in­
verted), we get the recursive algorithm for the parameters Vi: 

1 
v" =-, 

Uo 

( 
1 1 ) 1 

V,,_! = Cn - + -d -, 
Cn n Uo 

Vn-i 
. {( 1 1 1) 1 } Cn +l-i --- + --- + Vn+l-i - ---Vn +2-i . 

Cn+l-i Cn +2-i dn+1-i Cn +2-i 

i = 2,3, ... ,n - 1 
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In knowledge of U; and Vi, the unknowns Xi can be obtained in the following 
form: 

Xi = 
aiO 

d; 

; 

Vi ~Uj 
- L....t -a~o 
di j=1 dj J 

n-i-l 
ui '\'"" Vn - j 

d L....t -d . an-j.O, 
i j=O n-) 

i=1,2, ... ,n. 

The importance of the derived result is given by the fact that the technical 
parameters of the task can be taken arbitrarily. Thus e.g. the cross-section 
can change, also the length of the segments, the number of prestressing 
tendons, etc. For structures of different forms of girders, different tendon 
layouts, different prestressing force and dead load distribution the solution 
can be given by substitution. 

The work was partially supported by the Hungarian Academy of Sciences (Contract 
OTKA 19(5). 
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