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Abstract 

'Dieu! La regarderai-je?' 
(E. R.: CdB Quatrieme acte, scene V) 

A new test of Poissonity based on a characteristic property of Poisson distributions is 
proposed. 

Keywords: Poisson distribution, exponential distribution, characterization of distribu­
tions. 

Prelude 

In 1875 a young professor of our University, Gyula Konig (also Rector 
between 1891 and 1894) gave an interesting lecture on the determination 
of the period cjJ of a periodic event if only very rough observations are 
available, say, the signs of cos(kcjJ) k = 0, 1, .... E.g. if we can only observe 
periodic eruptions of a geyser occurring at night ) or in the daytime (+) 
then from this sequence of + and signs we can reconstruct the value of 
cjJ( mod 7i). If Wn denotes the changes of signs in this sequence of + and -
of length n, then 

et = lim Wn. 
1i 71-00 n 

This result was published in E:ONIG (1876). 

Variations 

Variation 1 

Konig's idea can be used to find a solution of the algebraic equation 

f ( ) 1! ,,- I 0 X =aox +alx +···+a,,=. 

1 I{c,;earch supported hy HUllgariall ;\atiollal FOUlldatioll for Scil'lltific l\C'sC'arch. 
Grallt )\!2. 1'1O.'i 
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If we compute 

and Wn denotes the changes of signs in the sequence 0:0, ... O:n, then one of 
the roots (zeros) of our equation is 

where 

and 

::vo = r ( cos w + i sin w) , 

w l' Wn -= Im-
11" n~oo n 

T = lim 10:,,1-;,1 
n--cx:: 

(in fact Xo is a root with the smallest absolute value r). 

VaTiation 2 

If the period <P is random and the random periods cPll cPl., ... between consec­
utive eruptions of a geyser are independent, identically distributed random 
variables with unknown distribution function then we might want to 
determine F from rough observations of 

n = 1,2, .. ,. 

(5" can be considered a random arithmetic progression where <P1, <P'2, ... 
are not necessarily only identically distributed. The case 
rP'l. = ... = cP would correspond to Konig's sequence SA: = Suppose 
that a rough observation of 511 is the integer part of Sll denoted by [Sit] (if 
the unit is one day, then we can only observe the dates of eruptions). 

By the law of large numbers the expectation of F is 

n-:x n n-x n 

with probability one. 
A much deeper result of BAH.TFAJ (1966) and EHI)()S R(;i\\{j (1970) 

shows that not only the expectation of F but F itself can also be recon­
structed from the sequence [5,,] (see also CS()H(;6·R(;vJ~sZ (1981)). 
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Rondo 

Try to test the hypothesis that the random number of eruptions (of a 
geyser) per day is a Poisson random variable. In other words if VI, V2, ... , Vn 

denote the random number of eruptions on the first, second, ... ,n-th day, 
then we want to test the hypothesis that VI, V2, ... ,Vn are (independent) 
Poisson random variables, 

P(V; = k) = 
k! 

i = 1,2, ... ,n; k = 0,1,2, .... 

is the unknovvn expected number of eruptions per day). 
Testing Poissonity in a powerful way is not an easy problem. Neither 

IS easy to get rid of the unknovm parameter A (here A is neither location 
nor scale). In fact, one can prove (see PE;\A-RoHATGI-SZEEELY (1992)) 
there is no (nonconstant) function of 1/1, ... ,1/n whose distribution function 
does not depend on A. 

Approach the problem in the following way. If <PI, <P2,'" are inde­
pendent, exponentially distributed random variables with density function 
Ae - AX for x ;:::: 0 (and 0 otherwise) and 5" = <P i, then in the sequence 
of increasing integer parts [51],[52],[5;1], ... the number of O's, l's, 2's, etc. 
is a sequence VI, V'l., ... of independent Poisson random variables. By Vari­
ation 2 above, this sequence uniquely determines the distribution F of cp's, 
therefore F must be exponential, v is Poisson if and only if <P is exponential. 
Thus, testing for Poissonity of v is equivalent to testing for exponentiality 
of <p. In the density of <p, however, the parameter A is a scale parameter 
and, thus, the problem of testing is easier and well known (see e.g. SHAPlRO 
and \VILE (1962), LILLIEFORS (1969), BAHTIIOLO\1E\\' (19.57). :-'IOHA\' 
(1951). EpSTEI\' (1960), STOHMEH (1962)), 

There is only one more missing link: how can we reconstruct the se­
quence <PI, <P:I., .,. from VI, V'2", .. Take independent, uniformly distributed 
samples of size Vi on the interval [i - 1, i] i 1,2, . , . , n. If the (in­
creasingly) ordered joint sample is ~l, ~2," . ,~'" where m = L;~l Vi, then 
<Pi = ~i+l - ~i, i = 1,2, ... is a sequence of independent, exponentially 
distributed random variables with parameter A, i.e. {<Pi} and {cf;i} are 
identically distributed therefore {<Pi} can play the role of {<Pi} in the com­
putations above. 
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