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Abstract

Permutations consisting of a single cycle are considered. EDErmAn (1987) proved that
such permutations contain at least n — 1 inversions. Moreover, he determined the number
of such permutations having exactly n — 1 inversions: 27~2 The present paper gives
a new proof of the above statements and determines the number of such permutations
having exactly n + 1 inversions.
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Introduction

Suppose that X is a finite set whose elements are ordered. For sake of

simplicity, let us choose X = {1,2,... ,n} and consider them ordered in
the usual way. We will consider permuiaiions (rearrangements) of X. A
permutation ¢ is the rearrangement (¢(1),0(2),... ,0(n)) where this lat-

ter sequence contains each element of X exactly once, only their order is
different from the usual one. A permutation is often given in its mairiz

form 1 2
<a(1) s(2) ... U?n))'

The set of permutations of n elements are denoted by S,. One can define
a group on S, determining the product of two permutations as the permu-
tation obtained by the consecutive application of the rearrangements. For
instance, (1,3,2,4)(3,2,4,1) =

_ {1 2 3 4 1 2 3 4y _/1 2 3 4
T\l 3 2 4 3 2 4 1/)7\3 4 2 1/
This group is called the symmetric group (of order n). Permutations have

a very important role in mathematics. It is sufficient to remind the reader
that the symmetric groups Sn, (1 < n) contain all finite groups. From the
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practical applications, let us mention the so called order statistics which is
a branch of mathematical statistics. '

{c1.c9,... ,ciy is a cycle in the permutation o € Sy if o{c1) = ¢2,0(c2) =
c3,... ,0(ck) = c1. The length of the cycle is k. The above notation also
serves to denote the permutation ¢ € Sp such that o(c1) = co,0(c2) =
c3,...,0(cg) =ciand g(a) =aforall a € X,a # ¢;(1 <i < k). Itis well
known (and easy to see) that any permutation ¢ € S, can be decomposed
into a product of cycles, where each element of X occurs in exactly one
cycle and this decomposition is unique (up to their order). For instance,

G ; ?; §>:<1><2,3><4>.

The number of cycles in the cycle decomposition is denoted by ¢(c). These
concepts have a very clear meaning. If the permutation (arrangement) is
applied repeatedly in X then any element remains in its cycle, on the other
hand, if it is applied sufficiently many times, any other member of the cycle
is obtained.

Another important notion is the number of inversions. We say that ¢
and j are in verston in the permutation ¢ if ¢ < j and o(7) > o(j). The
number of inversions in ¢ is the number of pairs i, j being in inversion. Itis
denoted by I(c). It can be considered as a measure of the ‘anti-orderedness’
of the permutation. Its use in the theory of determinants is well known.

It is quite natural to investigate the connection between these two
parameters, c(o) and I(g). Given ¢(¢). how small and how large can I(o)
be? These questions are answered in EDELMAN (1987). A more general
question is to determine 1 (n,k,I), the number of permutations ¢ € Sp
such that ¢{o) = k and I(¢) = I. In the present paper we consider onl

et

the special case m(n,[) = M{(n,1,1). is known from EDELMaAN (1987)
that m(n,l) = 0 if I < n — 1, that is, if the utation is just one cycle
then the number of inversions is at least n — 1. Moreover. EDE N (1987)

determines m(n,n — 1), as well.
In the present paper we prove the above mentioned two statements by

a new method, characterize the cycles with n + 1 inversions and determine
m(n,n + 1). (It is easy to show that m{n,n) is zero.)

Minimum number of inversions in a cycle

Our method is inductional and based on the following lemma showing the
change in the number of inversious if a cycle is extended by oue element
into a longer one.
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LevMma 1. Let p = (e1,02,...,.0n-1) be a cycle in S,-1 and
o = {c1,¢2,... ,¢n-1,n). Then

Ho)=I(p)=1+2{i: 1<i<n.c;<cicn-1< i1} (1)

ProOF: Define the permutation 7 = p(n). The equality I(7) = I(p) is
obvious. On the other hand, ¢ can be obtamed from 7 by interchanging
n and c;. Tc obtain (1) we have to count the increase of the inversious
by this change. Si
1 < nimply tha
g(cn-1) = n and

q and ﬁ(i'ﬁ = n, thus ch-y < n

increase is refle in (1).

The pairs not cor ing c,-1 and n are not influenced by the inter-
change, Suppose that ¢ < ¢p—1. Then z is in inversion with cp_y in 7 iff
T 18 in inversio i . he other hand, x is in inversion with n

in 7 and it is in inversion with ¢h_jin ¢ t
between such an r and other elements is not changed.
We may suppese ¢p—; < x. Distinguish two subcases. If ¢1 > w(x)

¥
s in inversion with c,—1 and Is not in inversion with n in #, while x
§ in inversion with n and is not in inversion with c,_1 in ¢. The number
of these types of inversions is not changed either. In the other subcase
c1 < w(x) is supposed. In this case v is not in inversion in 7 neither with
¢cn—1 nor with n. However, both relations are imversions in ¢. Thus the
increase in the number of inversions is the double of the number of such
rs. Writing » in the form ¢;_1. (1) is obtained.

Observe that our lemma implies that the e\:teﬂ'*ion of the cvcle in-
creases the number of inversions by at least 1. Taking into account that s
cycle of length 1 has zero inversions {a cycle of length lds 1 inversion).
one can prove the following theorem by induction.

THEOREM 1. (EDELMAN (1987)) If o € Sy, c(c) =1 then n —1 < I(o).

A cycle can be written in different forms. We call the variant having
the smallest number (in our case 1) in the first place the standard form.
A cycle {cj.c9.... .cn) € Sp is called unimodel iff in its standard form
l=cp <o < ... <cem > ... > cn1 > cn holds for some m (and then
cm = n is obvious).

THEOREM 2. (EDELMAN (1987)) If 0 € S,.clo) = 1 then I{o) = n — 1
holds iff o 1s unimodal.

Proor: The previons inductional proof is used to prove the "ouly if” part.
The “if" part is easier and actunally coutained in this proof. Suppose that
the statement is true for n — 1 and prove it for n. Consider the following




372 L. BALCZA

(not necessarily standard) form of o: (c1,¢9....,cn-1,n). By Lemma 1,
I(c) = n — 1 implies that p = {c1,¢2,... , cp—1) must satisfy I(p) = n — 2.
By the inductional hypothesis, p is unimodal.

Suppose that ¢y # n — 1 and ch—) # n — 1. Choose 7 satisfying ¢; =
n — 1. If ch1 < ¢ then { is in the set given in (1) therefore the increase
of the number of inversions is at least 3, I{(¢) > n + 1 is a contradiction.

In the case cn—1 > ci—; take : + 1. If ¢; < ¢;41 holds then i + 1 is in
the set given in (1) yielding a contradiction, again. Thus both ch-1 > i1
and ¢; > c¢i41 can be supposed. As p is unimodal, one of the neighbours of
n — 1 must be n — 2. That is, either ¢;— or c;+1 is equal to n — 2. Both
cases lead to contradictions.

Therefore, either ¢y = n — 1 or ¢y—; = n — 1 holds. The unimodal-
ity implies e;1 > ¢e2 > ... > ¢ < ... < ¢u—1 for some 7 in both cases.
Consequently, ¢ is also unimodal.

TuzoreM 3. (Edelman (1987)) m(n,n —1)=2""2

ProoOF: The unimodal cycles in their standard forms will be enumerated.
The place of 1 is fixed, it is the first one in the ordering. We can choose the
subset 4 of elements between 1 and n in the ordering. They are ordered
by the natural order and they are followed by the rest of the set ordered
backwards. The number of possible subsets A is 2772

The number of n-cycles with n + 1 inversions

LEMMA 2. (Edelman (1987)) If ¢ € S, satisfies c(g) =1 then n + I(o) is

C

following.conditions:

l= <<, <cperi=c — 1< < .<em > . > -1 >0 (3)
for some 1 <p <m < n,

= << .<em > .2 cpCpr1=Cp+ 1> > . > > (4)
for some 1 < m < p < n,

l=c1 << epacpur=c¢p —2<ppa <. < ey > . > C—1 >0 (D)

where 1 < p < m < n and ¢; — 1 is in the descending part. that is, equal
to some ¢p. {m < r < n)j,

I=c1<ep<. . <em>. .20 1 =Cp + 2> 002> . >0 >0 (6)



ON INVERSIONS AND CYCLES IN PERMUTATIONS 373

where 1 < m < p < n and ¢p + 1 is in the increasing part, that is, equal to
some ¢.(1 <7 < m).

In the proof of the following theorem we need Lemma 1 for standard
forms, that is, when n is deleted from somewhere the middle. The proof of
this variant is obvious.

LEMMA 3. Let p = (€1,¢2,. .. yCm—1;Cm+1,--- s Cn) be a cycle in S, in
standard form (thatis, c1 = 1) and 6 = {€1,¢2, ..+ ; Cin—1, Cm, Cm41+-+ . + Cn)
where ¢y, = n. Then

by
—~
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ProOOF: Use induction on n to prove the ‘only if® part. The if " part is
casier and actually contained in this proof. Suppose that the statement is
true for n — 1 and prove it for n. (The first reasonable value is n = 4.)
Delete n from ¢ = (¢1,¢9,. .. ,Cm—1+Cm; Cm+1s. - ;s Cr). Tl.e reduced cycle
= (C1,09: .. yCm—1,Cm+1,... ,Cn) either satisfies I(p) = nor I(p) = n—2.

We treat these two cases separately.
1. I(p) = n. p has to be of the form (3)-(6). On the other hand. the

)
set in (7) has to be empty by Lemma 3.
Suppose that (3) is valid:

1:61<c~g<...<cp‘,cp+1:cp——1<cp+2<...<cm>...>cn_1

for some 1 < p <m <n —1. Let n be between ¢; and ¢;.1 in ¢.

If m < j then ¢; < ¢m and cjyq < ¢ holds, m is in the set in (7),
a contradiction. If j < m — 1 then c¢;1; < ¢ holds. ¢j < ¢p—1 also holds,
unless j = p = m — 2. m — 1 is in the set in (7), a contradiction, again.
Ifj=p=m-=—2and ¢, < n—2then ¢cp+; = n — 2 therefore we have
¢j < cm.Cj+1 < Cm+1. Here m gives the contradiction.

It is easy to see that ¢ is error-unimodal in the remaining cases:
Dji=m.2)j=m-1,3)j=m—2=pand cp—2 = n— 2. In the last
case, ¢ is of type (6).

The case of (4) is symmetric to the previous one.

Suppose that (5) is valid:

Il=a<ao<... <1 =cp—2<cp<...<cm>...> Cn-1 > Cn,

where 1 < p < m < n and ¢, — 1 is in the descending part, that is, equal
to some cr(m < 7 < n). Let n be between ¢; and ¢jq; in 0.
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If m < j then ¢; < ¢ and ¢ji1 < ¢+ hold, m is in the set in (7),
a contradiction. If j < m — 1 then ¢;41 < ¢m holds. ¢; < cm-1 also holds,
unless j = p=m — 2. m — 1 is in the set in (7), a contradiction, again. If
J=p=m-2thenwehavec; <cmandcjii =—-2<cp—1=cr < Cmt1.
Here m gives the contradiction.

It is easy to see that ¢ is error-unimodal in the remaining cases:
l.j=m, 2.j=m-—1.

The case of (6) is symmetric to the previous one.

2. I{p) = n — 2. In this case p must be unimodal. The set in (7) has
to contain one element.

Let p be a cycle {c1,¢2,... ,cn—1) Where 1 = ¢y < 9 < ... < ¢m >

. > Cn—1. Suppose that n is between ¢; and ¢;41 in 7.

Let m+ 1 < j. Then ¢; < cm,cmy1 and ¢jr1 < Cmtl, Gz imply
that the set in (7) contains at least two elements (m and m + 1), thisis a
contradiction. The case swhen j < m — 2 is analogous.

If j = m — 2 then two subcases are distinguished. 1) ¢m-1 < G
implies that the set in (7) contains both m and m + 1. 2) ¢t > Cma
implies ¢;;—1 = n — 2 and then ¢ is error-unimodal of type (4).

Ifj=m —~1or j=m then the set in (7) is empty, this is a contra-
diction.

1

The case j = m + 1 is analogous to the case j = m — 1.

THEOREM 5. m(n,n+ 1) = (3n — 10)2"

~Hifd < n.

PROOF: By Theorem 4, it is sufficient to enumerate the error-unimodal
cycles. An error-unimodal cycle of type (3) is determined by the choice
of ¢, and the set of elements in the increasing part. It is obvious that
3 < ¢y < n—1, thatis, cp can have n — 3 different values.
of 1,¢p,¢p — 1,1 are fixed, 2"~% subsets can be chosen from the remaining

[=]
elements. The number of error-unimodal cycles of type (3) is (n — 3)277°
Type (4) gives the same result. In the case of {3}, ¢p has onl

4

values. On the other hand, in this case the places of

=iy
|_..x

C‘L'. - 1.0‘* - 2.

p-
are all determined, thus the number of error-unin wdal cycles of type (5) is
+ £
L 10

(n — 4)2"7°. The same is true for (6). Addiug up the results in
cases, the statement of the theorem is obtained.
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