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Abstract 

Permutations consisting of a single cycie are considered. EDELMAN (1987) proved that 
such permutations contain at least n - 1 inversions. Moreover, he determined the number 
of such permutations having exactly n - 1 inversions: 2n

-
2 . The present paper gives 

a new proof of the above statements and determines the number of such permutations 
having exactly n + 1 inversions. 
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Introduction 

Suppose that X is a finite set whose elements are ordered. For sake of 
simplicity, let us choose X = {I, 2, ... ,n} and consider them ordered in 
the usual way. We 'will consider permutations (rearrangements) of X. A 
permutation (J' is the rearrangement ((J'(1), (J'(2), ..• , (J'(n)) where this lat­
ter sequence contains each element of X exactly once, only their order is 
different from the usual one. A permutation is often given in its matrix 
forrn 

2 
(J'(2) 

The set of permutations of n elements are denoted by Sn. One can define 
a group on Sn determining the product of two permutations as the permu­
tation obtained by the consecutive application of the rearrangements. For 
instance, (1,3,2,4)(3,2,4,1) = 

= (i 2 
3 

3 
2 

2 3 
2 4 

2 
4 

3 
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This group is called the symmetric group (of order n). Permutations have 
a very important role in mathematics. It is sufficient to remind the reader 
that the symmetric groups Sn, (1 ::; n) contain all finite groups. From the 



370 L. BALCZA 

practical applications, let us mention the so called oraeI' statistics which is 
a branch of mathematical statistics. 
(Cl,C2, ... ,Ck) is a cycle in the permutation (j E Sn if (j(Cj) = C2,(j(C2) = 
C3, . .. , (j(q) = Cl. The length of the cycle is k. The above notation also 
serves to denote the permutation (j E Sn such that (j(er) = C:2, (j(C2) = 
C3, ... ,(j(q) = Cl and (j(a) = a for all a E X, a =I ci(l ::; i ::; k). It is well 
known (and easy to see) that any permutation (j E Sn can be decomposed 
into a product of cycles, where each element of X occurs in exactly one 
cycle and this decomposition is unique (up to their order). For instance, 

(~ 2 
3 

3 
2 !) = (1)(2,3)(4). 

The number of cycles in the cycle decomposition is denoted by c( (j). These 
concepts have a very clear meaning. If the permutation (arrangement) is 
applied repeatedly in X then any element remains in its cycle, on the other 
hand. if it is applied sufficiently many times, any other member of the cycle 
is obtaiued. 

Another important notion is the number of inversions. \Ve say that i 
and j are ininveTsion in the permutatioll (j if i < j and (j(i) > (jU). The 
number of imJersions in (j is the number of pairs i, j being in inversion. It is 
denoted by l( (j). It can be considered as a measure of the 'anti-orderedness' 
of the permutation. Its use in the theory of determ.inants is well known. 

It is quite natural to investigate the cOllnection between these two 
parameters, c((j) and l((j). Given c((j), how small and hmv large can l((j) 
be? These questions are answered in EDEL;-'IAN (1987). A more general 
question is to determine .1\!I(n,k,I), the number of permutations (j E Sn 
such that c( (j) = k and J( (j) = l. In the present paper we consider only 
the special case m(n,l) = n,Ll). It is kno,\'n from EDELylA:\ (1987) 
that 11,1) = 0 if I < n - 1, that is. if the is just one 
then the number of iIlversions is at least J! - 1. Moreover, EDEL~1."'-:\ (1987) 
determines m (n, n - 1), as well. 

In the present paper we prove the above mentioned two statements by 
a Hew method, characterize the cycles with n + 1 inversions and determine 
m(J!, n + 1). (It is easy to show that m(7I, 11) is zero.) 

Minimum number of inversions in a cycle 

Our method is inductional and based OH the following lemma showing the 
change ill the number of inversions if a cycle is extended by one element 
into a longer Olle. 
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LEt,,1MA 1. Let p = (Cl, C2, ... ,Cn-l) be a cycle in Sn-l and 
(j = (Cl,C2,." ,cn-l,n). Then 

J((j) - J(p) 1 +2j{i: 1 < i < n,cl < Ci,Cn-l < Ci-I}j. (1 ) 

PROOF: Define the permutation If = p(n}. The equality f(lf) = f(p) is 
obvious. On the other hand. (j can be obtained from If b~· interchanging 
7l and Cl. To obtain \ve have to count the increase of the inversions 
by this change. Since If(Cn-I) = Cl and If(n) = n, thus Cn-l < nand 
Cl < n imply that Cn-l and n are not in illversion in If. On the other hand. 
(j(cn-d = nand (j(n) = Cl imply that they are in inversion in (j. This 
increase is reflected the term 1 in (1). 

not COHr:aUllIl,g Cn-l and 7? are nor inn nenced the inter-
change. Suppose that :1' < Cn-i. Then .T is in inversion with C1l -l in If iff 
.T is in inversion with n in (j. On the other hand, :1: is in inversion with n 
in If and it is in inversion \vith C1l-l in er that is, the number of inversions 
between such an :1' and other ciements is not changed. 

\Ve may suppose Cn-l <:r. Distinguish tv;o subcases. If Cl > If (:r) 

then :c is in ill version with Cn-l and is not in irl"version with 71 in If. while .1' 

is in inversion with n and is not in inversion \vith Cn -l in er. The number 
of these types of inYel'sions is not changed either. In the ot her subcc~se 
Cl < If(:r) is supposed. In this case :r is not ill inversion in If neither with 
Cn-i nor with n. However. hoth relations are inversions ill (j. Thus the 
increase in the llllluher of inversiolls is the double of the number of such 
:1:S. \Vriting.r in the form Ci-I. (1) is obtained. 

Observe that our lemma implies that the extension of the cycle in­
creases the number of inversions by at least 1. Taking into aCC01lnt that a 
cycle of lengt h 1 has zero inversions (a cycle of lengt h 2 has 1 inversion). 
011e can prove the following theorem by indnction. 

THEOREM 1. (EDEL;"!:\r-.; (1987)) If (j E SIt. c((j) = 1 [hell 71 - 1 ~ I((j). 

A cycle can be written in different forms. \Ve call the varietut llClying 
the smallest Humber (ill 0111' case 1) in the first placc the standa1'd /01'111. 
A cycle (Cl. C2 • ...• Cn ) E Sn is called 1l.nimodal iff in its standard form 
1 = Cl < C2 < ... < Cm > .,. > Cn-I > LT! holds for somc m (and then 
Cm = 71 is obvious). 

TIIEORE;"1 2. (EDEUIA:': (1987)) If er E SIt. c((j) = 1 t11(,ll I((j) 
holds iff (j is 111li111odi:!1. 

71 - 1 

P HOOF: The p1'P"iolls illductiollal proof is lls{·d to pro\'(' the '0111;,- if' part. 
The 'if' part is easier alld actnally cOlltaillcci ill this proof. Suppose that 
the statplllcllt is true for 71 - 1 aue! prove it for n. Consider thp following 
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(not necessarily standard) form of 0-: (Cl,C2, ... ,Cn-l,n). By Lemma 1, 
1(0-) = n -1 implies that p = (Cl,C2, ... ,Cn-l) must satisfy 1(p) = n - 2. 
By the inductional hypothesis, p is unimodal. 

Suppose that Cl t= n - 1 and Cn-l t= n - 1. Choose i satisfying Ci = 
n - 1. If Cn-l < Ci-l then i is in the set given in (1) therefore the increase 
of the number of inversions is at least 3, 1( 0-) 2: n + 1 is a contradiction. 

In the case Cn-l > Ci-l take i + 1. If Cl < Ci+ 1 holds then i + 1 is in 
the set given in (1) yielding a contradiction, again. Thus both Cn -1 > Ci-l 

and Cl > Ci+l can be supposed. As p is unimodal, one of the neighbours of 
n 1 must be n - 2. That is, either Ci-l or Ci+l is equal to n - 2. Both 
cases lead to contradictions. 

Therefore, either Cl = n - 1 or Cn -l = n 1 holds. The unimodal­
ity implies Cl > C2 > '" > Cr < ... < Cn -l for some T ill both cases. 
Consequently, 0- is also unimodal. 

THEOREM 3. (EdelmcUl (1987)) m(n, n - 1) = 2n
-

2
. 

PROOF: The unimodal cycles in their standard forms will be enumerated. 
The place of 1 is fixed, it is the first one in the ordering. \Ve call choose the 
subset A of elements between 1 and n in the ordering. They are ordered 
by the natural order and they are followed by the rest of the set ordered 
backwards. The number of possible subsets A. is 2n-2. 

The number of n-cycles with n + 1 inversions 

LEi,J:v!A 2. (Edelmall (1987)) If 0- E Sn satisfies c(o-) = 1 thell 11 + 1(0-) 15 

oeld. 

PROOf. Use induction and Lemma 1. 

This lemma 71) = o. 
A cycle is erTur-unimodal if its standard form satisfies Olle of the 

following conditions: 

1 = Cl < C2 < ... < cp, Cp+l = cp - 1 < cp+~ < ... < Cm > ... > (',,-1 > C" (3) 

for some 1 < p < m ::; Tl, 

1 = Cl < C2 < ... < Cm > ... > cp , Cp+l = Cl' + 1> Cp+2 > ... > c,,_ J > C" (4) 

for some 1 < m < p < Tl. 

1 = Cl < ('2 < ... < cl" cp+ 1 = cp - 2 < cp+:! < ... < Cm > ... > Cn -] > C" (5) 

where 1 < ]J < m < n and cl' - 1 is in the dcsccudillg part. that is. eqnal 
to some C", (m < r :::; n), 

1 = Cl < C2 < ... < cm> ... > Cl" ('1'+1 = Cl' + 2> ('1'+:2 > ... > (',,-1> CT! (G) 
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where 1 < m < p < nand cp + 1 is in the increasing part, that is. equal to 
some cr(l < l' < m). 

In the proof of the following theorem we need Lemma 1 for standard 
forms. that is, when n is deleted from some\'vhere the middle. The proof of 
this variant is obvious. 

LE~lMA 3. Let p = (C},C2,." ,Cm-l,Cm+l, ... ,Cn) be a cyde in 5n -1 in 
standard fonll (tllat is, Cl = 1) and u = (Cl, C2, ... ,Cm-I, Cm, Cm+l,··· ,Cn) 

where Cm = n. Then 

f(u) - f(p) = 1 + 21{i: 1 < i < n. Cm +] < Cj, Cm-l < ci-l}l. (7) 

. ,. 
S2[lSneS = 1 then ) = 71 + 1 if[ er is el'I'OT-

ullimodal. 

PROOF: Use induction on n w prove the 'only if' part. The 'if' part is 
easier and actually contained in this proof. Suppose that the statemellt is 
true for n - 1 and prove it for n. (The first reasonable value is n = 4.) 
Delete n froln u = (Cl.C2, ... . Cm-l,Cm,Cm+I, ... ,Cn). The reriuced cycle 
p = (er, C2,··· , Cm-I, Cm +],··· ,cn ) either satisfies f(p) = nor I(p) = n-2. 
\Ve treat these hvo cases separately. 

1. Iep) = n. p has to be of the form (3)-(6). On the other hand. the 
set in (7) has to be empty by Lemma 3. 

Suppose that (3) is valid: 

1 = Cl < C2 < ... < cp, Cp+1 = c p - 1 < Cp+2 < ... < Cm > ... > Cn -l 

for some 1 < p < m:S n -1. Let n be between Cj and Cj+l in G. 

If m < j then Cj < Cm and Cj+ 1 < Cm + 1 holds, m is in the set in (7), 
a contradiction. If j < m-I then Cj+l < Cm holds. Cj < Cm-l also holds, 
unless j = p = m - 2. m-I is in the set in (7), a contradiction, again. 
If j = p = m - 2 and Cp < 11 - 2 then Cm +1 = 11 - 2 therefore we have 
Cj < Cm, Cj+l < Cm+l. Here m gives the contradiction. 

It is easy to see that u is error-unimodal in the remaining cases: 
1) j = m. 2)j = m-I, 3)j = m 2 = p and Cm -2 = 11 - 2. In the last 
case, u is of type (6). 

The case of (4) is symmetric to the previous one. 
Suppose that (5) is valid: 

1 = er < C2 < ... < cp, Cp+l = cp - 2 < Cp+2 < ... < Cm > ... > Cn -1 > Cn, 

where 1 < p < rn < 11 and Cp - 1 is in the descending part, that is, equal 
to some Cr(rn < r :S n). Let n be bet\veen Cj and Cj+l in (T. 
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If m < j then Cj < Cm and CHI < Cm+l hold, m is in the set in (7), 
a contradiction. If j < m-I then Cj+l < Cm holds. Cj < Cm-l also holds, 
unless j = p = m - 2. m-I is in the set in (7), a contradiction, again. If 
j = p = m - 2 then we have Cj < Cm and Cj + J = cp - 2 < cp - 1 = Cl' :=s; Cm + I. 

Here m gives the contradiction. 
It is easy to see that (J is error-unimodal in the remaining cases: 

1. j = m, 2. j = m - 1. 
The case of (6) is symmetric to the previous one. 
2. I(p) = n - 2. In this case p must be unimodal. The set in (7) has 

to contain one element. 
Let p be a cycle (q, C2, ... , Cn-l) where 1 = Cl < (;2 < ... < Cm > 

... > Cn-l. Suppose that n is between Cj and Cj+l in (J. 

Let rll + 1 < j. Then Cj < Cm,Cm+1 and CJ+I < Cm +1,Cm +2 imply 
that the set in (7) contains at least two elements (m and In + 1), this is a 
contradiction. The case 'when j < m - 2 is analogous. 

If j = m - 2 then t·wo su bcases are distinguished. 1) Cm -I < Cm + 1 

implies that the set in (7) contains both m and In + 1. 2) Crn-l > Cm+l 

implies Cm-i = n - 2 and then (J is error-unim.odal of type (4). 
If j = m-I or j = In then the set in (7) is empty. this is Cl contra­

diction. 
The case j = m + 1 is analogous to the case .i = m - 1. 

THEORD! 5. men, n + 1) = (3n - 10)2n
-

4 if 4 :s; n. 

PROOF: By Theorem 4, it is sufficient to enumerate the error-unimodal 
cycles. An error-unimodal cycle of type (3) is determined by the choice 
of cp and the set of elements in the increasing part. It is obvious that 
3 :=s; Cl' :=s; n - 1, that is, cp can have n - 3 different values. Then the places 
of 1, cl" cp - L 11 are fixed, 2n

-
4 subsets can be chosen from the remaining 

elements. The number of error-unimodal cycles of (3) is (12 - 3)2"-". 
the san.1C result. In the case of (;)). has - 4 different 

values. On the OtlH:'l' hand, in this case the places of 1, ep , cl' - 1. cp - 2. n 

are all determined, thus the number of error-unimodal cycles of type (5) is 
(n - 4)2 n

-
5

. The same is true for (6). Adding up the results in the four 
cases, the statement of the theorem is obtained. 
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