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Abstract

Classification problems of the vertices of large multigraphs (hypergraphs or weighted
grap 15) can be easily handled by means of linear algebreic tools. For this purpose no-
ion of the Laplacian of multigraphs will be introduced, the eigenvectors belonging to k
consecutive eigenvalues of which define optimal & -dimensional Euclidean representation of
the vertices. In this way perturbation results are obtained for the minimal {k + 1)-cuts of
multigraphs {where % is an arbitrary integer between 1 and the number of verucea). The
{k + 1)-variance of the optimal k-dimensional representatives is estimated from above by
the & >maﬂeat positive eigenvalues and by the gap in the spectrum between the K and
(h+ 1)t posm\e eigenvzlues in increasing order. These results are of statistical character.
However, they are useful and well-adopted to automatic computation in the case of large
multigraphs when one is not interested in strict structural properties and, on the other
hand, usual enumeration algorithms are very time-demanding.

I
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1. Intreduction

Hypergraphs and weighted graphs (in the sequel referred to as multigraphs)
often arise when multiple or pairwise connections between objects of a fi-
nite set are of interest. For the investigation of some structural properties
(e.g. k-colourability, minimal-maximal cuts) there exist well-known enu-
meration algorithms and theoretical results as well, e.g. HOFFMAN (1970),
CveETKOVIC, DOOB, SACHS (1979), SiMonovITS (1984), ALon (1986).
But in the case of large multigraphs — when one is not interested in the
strict fulfilment of the investigated property — perturbation results can be
proved by means of linear algebraic tools.

'This work was supported by the Hungarian Foundation for Scientific Research, Grant No
1405 and by the DIMACS, the National Science Foundation, Science and Technology Cen-
ter for Discrete Mathematics and Theoretical Computer Science, Rutgers University, USA
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For this purpose optimal Euclidean representation of multigraphs are
introduced together with their Laplacian (Section 3). The Laplacian is a
positive semidefinite Hermitian matrix which has a physical meaning in
special cases. First it was defined by FIEDLER (1973) for ordinary graphs.

Qur purpose is merely by the investigation of the Laplacian spectra
and of the usual metric distances of the representatives in a multidimen-
sional Euclidean space to characterize the following structural property of
a given multigraph: there exists an integer k (between 1 and the number
of vertices) for which there is a k-partition of the set of vertices in such a
way that most of the hyperedges (or in the case of weighted graphs edges
with large weights) belong to the same cluster of the k-partition (Sections 4
and 5). Relationships between spectral gaps of the Laplacian and variances
of the clusters can alsc be proved (Section 6). Some properties of Laplacian
spectra and examples can be found in Section 7.

The above property often arises in the multivariate statistical analysis
when mutually dependent binary variables are classified in such a way that
objects having many binary properties in common would possibly belon
to the same cluster. The iterative algorithm — introduced in Chapter 8 -
applies the spectral technique in one step of the iteration, while in the other
steps the partitions and the dimensions are determined. The algorithm is
part of the DISTAN (Dlscrete STatistical ANalysis) program package, see
RuDAS (1992). Weighted graphs are used e.g. for the description of neural
networks, see McC ELIECE et al. (1987), I\O»ILO% and PaTturi (1989).

3-dimensional representation of hypergraphs has a special meaning in
chemistry when we are looking for spacial arrangement of compounds by
merely knowing the connections between their atoms. The quadratic forn
tc be introduced in Section 3 has a physical interpretation in the investiga-
tion of the atomic structure, where the energy of the elementary particles
is minimized. The spectrum of the Laplacian al
atomic orbitals (Section 9).
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gives information on the

ergraph H is defined by the pair (1, £), where V is a finite set and

4 consmts of its selected subsets. V is called the set of the vertices

is the set of the edges of the hypergraph H. A vertex is denoted by

v € V and an edge (for brevity a hyperedge will be called simply an edge)

by e € E. Let |V] = n and |E| = m. Then H can be given by its n x m
vertez-edge incidence mairiz A with entries aj; = Z(v; € ¢;), where

ij >

L hyp
c2
and E 1

1, if wvege

0, otherwise
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and the relation v € ¢ denotes that the vertex v is incident with the edge
e. Furthermore let us denote by |e| the number of vertices contained by
the edge le|.

A weighted graph G is defined by the pair (V, W), where V =
{vi,...vn} is the set of its vertices and W is the weight mairiz of the
edges of (G. The diagonal entries of the n X n matrix W are zero, while
the nondiagonal entry w;; is the weight assigned to the edge {v;,v;} and
wi; = wj; 2 0, © # 7. (If the vertices v; and v; are not adjacent, the weight
w;j is zero.)

An ordinary graph is a special case of a weighted graph the weight
matrix being its adjacency matrix (its {7, j}'" entry is 1, if the vertices v
and v; are connected and 0, otherwise).

zs

uclidean Representation of Multigraphs

bz
4

3. Spectra and

o

et the hypergraph H on vertex-set {vi,..., vn} and edge-set {¢; e‘m}
e given by its n X m incidence matrix A. Let k (1 <k < n)

nteger. We are looking for k-dimensional representatives x;, (j = 1,.. ., n)
and ¥;, (i =1,...,m) of the vertices and edges, respectively, so that

et

PE

7
~ T - -
> XjX; = i (3'1)
=1

~,

and the sum of the costs of edges

m m n

Q=3 K= ajlx;— vl (3:2)

i=1 i=1 j=1

in this representation is minimized, where the cost K(e;) of the edge e; is
defined by

K(ei) ZCLJZ”XJ yinz' (3.3)

the k-dimensional variance of the representatives of its vertices from the
representative of the edge in question. For an individual edge its cost is
minimized if we substitute the centre of gravity of the representatives of its
vertices for its representative. After performing this substitution for every
edge, the decreased objective function @ will be the quadratic form

LX) = ZZ[ 2 Tl €eIly € o)y }Hx, il = 30 3 e x;

=1 j=1 cEF i=1 j=1
(3.4)
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with
ZI(UgEe)I(vjEe)é-], if 147,
ecE
Cij =g s; — ZL(UIEe)l—i—I:si— S I(vzée)!i—., if =7y, (3:5)
<t o |
e|>

where s; = #{e € E : v; € ¢, |¢| > 1}. The matrix of the quadratic form
(3.4) is called the Laplacian of the hypergraph H, and it is denoted by C
. It can also be written as

C=D,-aD 'aT,

where D, and D¢ are the valency matrices of the vertices and edges, re-
spectively.

The quadratic form L(X) is equal {o tr XCX', and it is to be min-
imized on XX7 = I,. As the n X n matrix C is symmetric and positive
semidefinite, by means of a theorem for the extrema of quadratic forms -
RA0 (1979) — the following Representaticn Theorem can be proved, see

BoLLa (1989):
THEOREM 3.1

{3.1) is

7‘31

The munimum of the cosi funciion (3.2) conditioned on

2
s attained, when tb - dlmﬂnszona ELc--dean ‘_epwexnt ation X o
vertices contains pairwise orthonormal eigenvectors corresponding to &
.

k smallest eigenvalues of T in its rows. If such an X is denoted by X
‘ . 7o . . .- ,

E: x & orthogonal matrix (RR” = I). Then neither the
objective function noc the constraint is e‘fected by the substitution X'
RX. Thus, together W1th an optimal X7, the matrix RX" is optimal too.
But apart from k-dimensional rotauons in the case of distinct eigenvalues
the optimal X7 is uniquely determined by the Laplacian C. Otherwise
their rows can be chosen appropriately within the eigenspaces belonging to
the multiple eigenvalues.

In the future, whenever k-dimensional representatives X -s and y-s
constituting the columns of any optimal X*, Y~ pair are assigned to the
vertices and to the edges, respectively, we speak of optimal k-dimensional
Kuclidean representation of the hypergraph H.
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Since for optimal representations of the vertices and those of the edges
the relation Y* = X*AD! holds, an optimal representation X~ of the
vertices uniquely determines an optimal representation of the hypergraph
H, and by the formula (3.4) it gives a minimal variance arrangement of the
vertices in the k-dimensional Buclidean space.

We remark that the dimension k& does not play an important role

here yet, since for any & (I < k < n) an optimal (k + 1)-dimensional
Euclidean representation is obtained from an optimal k-dimensional one
by introducing a subsequent eigenvector in the rows of X. Or vice versa,
a k-dimensional optimal _JLCh ean representati
(k 4+ 1)-dimensional one onto the subspace spanned by
sponding to the k smallest eigel.values.
It can be seen from the formulas of {

el = 1) do not contribute to the entries of the

r h pi loops will be

i n is al

he eigenvector corresponding to
& wheree is the n-dimensional vector of 1-s.

Euclidean representation is realized in the (k ~ l)~dimensio*1a1 subspace of
R* orthogonal to the vector e. It is well known that the multiplicity of
the zero as an eigenvalue of a hypergraph without loops and isolated ver-
tices is equal to the number of its connected components. In this case
the spectrum consists of the spectra of its components, so only spectra
of connected hypergraphs are of interest. But in the case of connected
hypergraphs one can ask how many edges must be removed so that the hy-
pergraph be not connected or consist of £ components. How the strongly
connected sub-hypergraphs can be recognized on the basis of optimal Eu-
clidean representations? These problems are discussed in the subsequent
sections.

In the case of weighted graphs let d; denote the sum of the weights of

the edges incident with the vertex v;. Suppose that d; >0, (7 =1,...,n)
and D = diag(di,...,d,) be the diagonal matrix with d;-s in its main
diagonal.

Let k(1 < k < n) be a fixed integer and let the vectors x1,...,x, € RF
satisfy the constraints 77—, xijT =1I; and 3%, x; = 0. Here the vectors
X},...,Xn are regarded as k-dimensional representatives of the vertices.
Let X := (x1,...,X,) be the k X n matrix containing the vectors x;-s as
its columns. Let us define the quadratic form

Q:= Z Z wijllxi — %;]° = tr XCXT, (3.7)

i=1 j=itl
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where the n X n matrix C is equal to D — W, This C is also symmetric,
singular and positive semidefinite. We call it the Lapiacian of the weighted
graph G.

We remark that a weighted graph can be always assigned to a hyper-
graph in such a way that their Laplacians be the same as follows:

1
wi = wj = ZI v;i € e)I(v; € e)—

(1<i<j<n).
ecE ll

Let us denote by
0=2 <A < <A

the eigenvalues of the Laplacian C. A Representation Theorem similar
to that for hypergraphs can be pioved the minimum of @ constrained

on XX* =T and 37 x%; = 0O is Z L A; and it is attained for X =

(wy,.. ak) , where u),...,u; € R" are k pairwise orthonormal eigenvec-
tors Corresl,-ondmg to the eigenvalues A1,..., A, of the matrix C. The col-
umn vectors Xj, ..., X, of any optimal X~ are called opiimal k-dimensional

representaiives of the vertices and then we speak of optimal k-dimensional
Fuclidean representation of the weighted graph G.
The above representation can be extended to weighted graphs, the
ertices of which are weighted too, as follows. Let G be a weighted graph
With weight matrix W of the edges, the vertex vj of which has the weight

55, (j: ,...,n) and §:= drav(ﬂ... ,sn). Now the quadratic form Q of
b T = o
(3.7) is minimized subrm to the constraints that 37, s = xsx’ =

ip and ”‘;_] s;%; = 0. Since @ can be written as

tr1

7= (uy, .. .,uk)TS_l/z of the vertices, where uy,...,uy are A pairwise
orthonormal eigenvectors corresponding to the k smallest positive eigenval-
ues of the so-called weighted Laplacian CTg = s~12¢s~ 2, With other
words the £ X n matrix ( \/—xf, v+ y1/Sn%,) — where the column vectors
%],...,%, of any optimal X" are called optimal k-dimensional represen-
tatives of the vertices — contains the above elgenvectors uy, ..., , Uy 1n 1ts
TOWS.

We remark that in the case of the weighted graph G on vertex set
¥V the weight matrix W can be regarded as a symmetric measure on the
product of measure spaces ([, 4), (I, A), where I = {1,2,...,n} and A
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is the generated o-algebra. The probabilities of elementary events are
di,da,...,dn. Let W(I) = 1 and the symmetricity of W means that
W(AXxB) = W(BxA)forany A, B € Apairs. Hence D = {d1,ds,...,dn}
is just the marginal of the joint distribution W. Let us denote by P :
Ly(I, A, D) — Ly(I, A D) the operator taking the conditional expectation
according to the joint distribution W. Its matrix form is D~ VD2,
therefore the above Cp is just I, — P and p-s are like canonical correlations.

Let H = (V, E), |V . |[E] = m be & hype d
multiple edges, its elﬁenvalues being 0 = A < Ag--+ < A, in increasing
order. Now we shall give upper and lower bounds for combinatorial mea-
sures characterizing k-partitions of the veriex set of H by means of the &
smallest eigenvalues, where k is any natural number between 2 and n. First
of all let us introduce the following notions:

DEFINITION 4.1 A k-tuple (V1,...,V}.) of non-empty subsets of V is called
a k-partition of the set of vertices, if V;NV; = 0 for 7 # j and Uizlvz =V.
Sometimes a k-partition is denoted by P, while the set of all k-partitions

by Pr. The volume v(F}) of the k-partition P, = (V1,..., V) is defined by
) 1
v(Pp) =) o Z ai(e)a;(e)
ceE licici<n

and its weighted volume u{F;) by
1 1 )

u(Py) : z el Z ;'l"‘r‘b' ai(e)aj(e),

ce £ 1<i<j<k :

where a;(e) = |e N Vj| and n; = |V}
The minimal k-cut of H is defined by

pe(H) = P??%L v(P), (4.1)

while the minimal weighted k-cut by

{H) = P 4.2
v (H) jmin i) (4.2)
DEFINITION 4.2 The cut set of the k-partition P, = (Vi,..., V) consists of

those edges e for which |e N V;| # 0 holds for at least two different parts
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of P, and it is denoted by H(P:). The k-partition P, defines a colouring
¢ of the vertices in the following way: c(v) := 7, if v € V;. An edge e
is said to be multi-coloured in this colouring, if it contains two different
vertices v, v’ such that c(v) # c(v'). Thus, the cut set H(P;) consists of
the multi-coloured edges. H(Py) is called a minimal k-sector of H, if

|H(P)| = iz |2 (Pl

and its cardinality is denoted by 6;(H). THEOREM 4.3 For the sum of the k
smallest eigenvalues of the hypergraph H the upper and lower esttmations

k
nOi(H) < DA < we(H) (4.3)
L

hold, where ¢, = (n,_‘? 7 For the proof see BoLLa (1989). The upper

Y-
bound shows that the existence of k relatively small eigenvalues is a nec-
essary condition for the existence of a good classification (with a small
minimal weighted cut). Thus, the spectrum can give us some idea about
the choice of the number k of the clusters for which good colouring may
exist. But the spectrum itself does not say anything about the optimal k-
partition, moreover, it does not give a sufficient condition for the existence
of a good clustering. The lower bound in (4.3) depends on the constant
cn, and there are graphs for which the lower bound is attained in order of
magnitude. E.g. for lattices and spiders (see Section 7, Examples 7.8 and
7.9), which cannot be classified into & clusters in a sensible way

For a graph G it is the same estimate as given by FIEDLER (1873). He
has also given an upper bound for Ay by the edcre connectivity e(G) of the
graph G. As vy(H —=po(H) and i(E) = Z e({d), for the second small-

est eigenvalue of gzaphs the upper bound 14 (G) is asymptotically sharper
than %e(G), the estimate of Fiedler.

Now we want to recognize optimal k-partitions by means oz’ dassi—
fication of k- da ensional representatives of the vertices in an optimal k-
dimensional Buclidean representation of the hypergraph. The dassﬁcatloﬂ
is performed by the k-means method introduced b Mac QUEEN (1967).
We shall be confined to the case, when a ‘very’ well-separated k-partition
of the above k-dimensional points exists.

DEFINITION 4.4 A k-partition P, = (Vi,..., V) is called a well-separated k-
partition of the vertex set V in the k-dimensional Fuclidean representation
K= (x1..., ,Xn) of the vertices, if for the colouring c belonging to P the
relaiion cz(Pk) > 1 holds, where
min  ||x; — X;
w(Py) = SEEE) I = (4.4)

max |lx; — x|l
C(v‘_)j-c(cj) 1% J”
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(In the case when there exists a well-separated k-partition of the k-dimen-
sional points x%1,...,%n, DUNN (1974) has proved its unigueness, and he
has given an algerithm to determine the k& well-separated clusters of x;-s.
Dunn has also proved that the larger «(P;) is, the better the separation
and the quicker the algorithm is.)
THEOREM 4.5 Assume that for some k < n there ezists a well-separaied
k-partition of the veriez set V, for the clusters of which the diameters are
at most €, where € < 5—1\/—; is a small positive number. Then

_— 2 -
< - ;«; .
n(H)<gq /)>\ja (4.5)
i=1i
y ; 2e ¢ 1 f
where ¢ = 1+ == Comparing the results of Theorems 4.3 and 4.5
under the consiraints of Theorem 4.5 we obtain that
k 3
N - 2 T -
> N <w(H)<Lg Aj, where 1<g<2
j=1 j=1

ot
=l
¢}
)
0y
—
w
s3]
<t
£
@]
w
et
[N
o
oo}
jo N

at most by a factor of 4.

1

3 Graphs

T
il

5. Optimal Partitions of Weighte

Similar statements can be proved for the spectrum of a weighted graph
G = (V, W). Here more precise perturbation results for the representatives
are examined. We shall need a definition.

DEFINITION 5.1 The k-variance of the vectors Xi,...,%n € RB*™1 with re-
spect to the k-partition P is defined by '

k Z'Xl 9
Sk(PeX)i=3" 3 x; — 0= )

i=1 jie(j)=i i
where n; = |V;|. The k-variance of the vectors Xi,...,Xn is defined by

2 v— ol 2 ~7
Sp(X) = A Si(Pr, X).
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Even if no a well-separated k-partition of the optimal (k — 1)-dimensional
representatives X7, ..., X, exists, it can be asked how the k-variance S}i(X*)
of them depends on the eigenvalues. To get some perturbation results, the
following situation is investigated:

Let P, be a fixed k-partition of the set of vertices (sometimes we
shall refer to it as a colouring). The Laplacian C of the weighted graph G
can be decomposed as B & P, where P is the Laplacian of the weighted
graph formed from G by retaining the bicoloured edges with respect to
the cclouring Py, while B is the Laplacian of the weighted graph obtained
by retaining the monocoloured ones. The matrix B has the eigenvalue
0 with multiplicity k, the corresponding eigenspace can be spanned by k
pairwise orthogonal ‘vpctors (let us denote them by uy,...,u;) so that all
the coordinates of the I vector - being different from those assigned to
the vertices of V) — are equal to 0, (I = 1,...,k). Let us denote by o
the smallest positive eigenvalue of the matrix B. It is the minimum of the
smallest Do<itive eigenvalues of the weighted sub-graphs induced by the
vertices of the parts Vi-s of the k-partition P,. Put ¢ := ||P|| and suppose
that ¢ < THEOREM 5.2 Under the above assumpiions

SHP,KT) < kS
0

&

holds for the k-variance of the optimnal (k — 1)-dimensional representatives
%7,...,3%n. We remark that
e= P <uP= ) w;=u(F
iJ
eli)Fel )
and
S T 't g Y 1 j
NP, ( 2(1 — COS ;,)/‘Ll(c'z) 10 < /’L;’(Gi/ < gdinmx
o= minhi(B) 2 | , o :

! ci]#?(Gi) - CizdiII)EL)ZT iu §dinm.\' < #Z(Gi)>

where ¢;; = 2(cos = ~.-—cos =) ciy = 2cos Z (1—cos :;) dijey = Maxjel, d;

— see FIEDLER (19/3) - and B; is the Laplacxan of the mduce& wewhted
subgraph G; by the vertex set V; (on n; vertices). B; is just the ' magonal
block of B. Therefore the ‘smaller’ the volume of the k-partition P, and the
greater the 2-cut of the monocoloured cones is (this means that the G;-s are
strongly connected), the better the optimal k-dimensional representatives
of the vertices can be classified into & clusters. This reasoning also gives
us some idea on the choice of the k-partition P,. The next proposition
estimates the k-variance of the optimal k-partition.
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PROPOSITION 5.3 Let X* be an optimal (k — 1)-dimensional representation
of the above weighted graph. Then for the k-variance of the optimal (k—1)-
dimensional representatives

AL+ M
S? (X" < S;( X <
- D,
o(Pr)
holds with any k-partition P,. Notice that the more ‘concise’ the edges
within the Gi-s are, the greater g(P;) is.

The qu°s‘tlon naturally arises: doesin general the existence of a gap in
the spectrum between x,_; and )\, itself result in a ‘small’ (£ — 1)-variance
of the optimal k-dimensional representatives? This is answered, at least

partly, in the next section

8. Gaps in the Spectrum of 2 Weighted Graph

Let G = (V, %) be a weighted graph with weight matrix W of the edges

and D = diag(ds,..., dn) of the vertices, where d; = >, wyy, (i =
n n

1,...,n). Suppose that ) > w;; = 1. According to Section 3 the spec-
=1 j:l

trumn of this weighted graph is defined by the eigenvalues of the weighted

o L] i v t=3 o

Laplacian Cp.
THEOREM 6.1 Zet 0 = Ap < A1 < A9 < -+ < A,_1 denote the eigenvalues
of the weighted Lagiccia"z, Cp and let X° be the optimal I-dimensional

representation of the veriices (1t is just the eigenvector corresponding to
/\1). Then

The theorem implies the following expanding property of the eigenvalues:
the greater the gap between the two smallest positive eigenvalues of G is,
the better the optimal 1-dimensional representatives of the vertices can be
classified into two clusters.

For establishing similar relations between the (k + 1)-variance of an
optimal k-dimensional representation of the vertices of the above weighted
graph and the gap of the spectrum of its weighted Laplacian Cp between
the eigenvalues A\; and Ap; we would like to prove the following conjecture:
CONJECTURE 6.2 Let 0 = Xo < A < ++- < XA < Mg € -+ < Anmn
be the specirum of the weighted Laplacian Cp = I,, — D-/2wp /2 of
the weighted graph G with weight matriz "W, where 3 7L, > 7= wij = 1,
di = Yjoiwi and D = diag(dy,...,dn). Let xi,..., %}, € R* be opti-

—"7.
mal k- dzmenswnal representatives of the vertices satisfying the conditions
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SR, dix] = 0 end S0, dixx]T = L. Let SE (x5,...,x}) denote the
(k + 1)-variance of the vectors xI,...,%X,. Then

A F A+ o+ A

Star(x7, . ¥ < k- ,
Akt

1<k<n~—1.

For the proof we would need the following LEMMA 6.3 There exists a
transformation y; = f(x]) so that the function f satisfies the Lipschitz
condition, "% diy; = 0, T2, dixly; = 0 and o%(y) = 0, div? >
S;§+1(x7, ...,%5). Our conjecture is that with Lipschitz constant v/& such
an y can be found. For some special representations even we have a con-
struction, but in general it is not sure that such construction exists at all.

This means that supposing the optimal k-dimensional representatives
form k+1 well-separated clusters and thereis a gap in the spectrum between
the eigenvalues Ap apd A;ﬁl. then the (k + 1)-variance of the epu:nal k-
imensional representatives xj,..., %5 can be estimated from above by this
gap. But a construction can be given that the (k + 1)-variance is s-x-all,
however, this gap does not occur. (This is because the eigenvalues do no
determine the eigenvectors and vice versa.) Nevertheless, the spectrum can
give us some idea about the number of clusters. But a sufficient condition
and the classification itself can be obtained only by means of Euclidean
representations.

2}

+
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Finally. we introduce some simple Dvonos-uons on specira of hypergraphs
lidean representations of some suv al hypergraphs (sometimes
without proofs). Unless otherwise stated, propositions Te
characteristics of the hypergraph r? (V. i

I
=
0.
o)
=
=
=
(_l

0
T

(D
O
o+
X
2.

ASSERTION 7.1 Tf H; = (V.E:), (1 =1,...,k) o
graphs, and H = (V, 77), v vhere £ = U E;, E;NE; =0 (i #j), then for
their connectivity matrices the

holds. © PROPOSITION 7.2 Let H = (V, E) be a hypergraph, £ = Ey U Ey,
EiNEy=0, H =(V,E;}, 1=12. Then
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where /\gi) denotes the j-th eigenvalue of H; in increasing order (i = 1,2).
PROPOSITION 7.3 With the notations of the previous proposition:

Ner, <A <25 (5=1,.00,m), (7.3)
where r; = rankB;, B; being the connectivity matrix of H; (1 = 1,2)

and A\ = 0, if I < 1. COROLLARY 7.4 For 2z = 2, by bhe successive and
alternating application of the two sides of (7.3) we obtain that

e 6 i% are eigenvectors be Longwg to
7.6 The smallest 9031 tive eigenvalue of pa’ch gra 1
vertices is 1 — cos Z. Labelling the Vert1ces as v-z vg, ..., V], the second

coordinates of ’chez- r representatives in the optimal 2—a1mensional Euclidean

representaticn of P, are

Y2 n(sT

f (_) j=~0,...,0,...,1 ({

~1
[
e

while the first coordinates are all equal to ﬁ O

EXAMPLE 7.7 Let 5; denote the star graph with n = d + 1 vertices.
The smallest positive eigenvalue of Sy is 1/2 with multiplicity d — 1. An
optimal d-dimensional Euclidean representation of Sy is a d-simplex in the
(d — 1)-dimensional subspace of R? orthogonal to the vector e € RY. The
centre of gravity of the simplex is in the origin. The representatives of the
vertices of valency 1 are the vertices, while the representative of the vertex
of valency d is the centre of gravity of the simplex. ' )

EXAMPLE 7.8 Let G4 denote the subdivision graph of Sy, where
each of the edges of Sy is divided into [ parts. We call G4, spider with
d feet and [ sections. The number of its vertices is n = dl + 1. The
smallest positive eigenvalue of Gy is of multiplicity d — 1 and it is equal
to 1 — cos 5y. An optimal d-dimensional Euclidean representation of the
spider G4, is obtained from those of Sy and Py4;, where the feet of the
spider are divided according to the sine rhythm of (7.9). o

EXAMPLE 7.9 Let Ly, denote the d-dimensional lattice whose vertices
are all d-tuples of numbers —{,...,0,...,[, where two d-tuples are adjacent
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if and only if they differ in exactly one coordinate. The number of its
vertices is n = (21 + 1)¢. The smallest positive eigenvalue of Lyjis 1-
cos 57 with multiplicity d. An optimal (d + 1)-dimensional Euclidean
representation of Lg; is realized in the d-dimensional subspace of R+
orthogonal to the e € R4 vector. It is a d-dimensional lattice, its centre
of gravity being in the origin, and the distances between the representatives
of adjacent vertices follow the sine rhythm of (7.9). 0

EXAMPLE 7.10 Let Kir,,. n, be the complete k-partite graph, where

k

>-n; (n being the number of vertices). Let (Vi,...,V.) denote
the colour classes where Vil = ni, (¢ = 1,...,k). The spectrum of
K, ..n, contains a single 0, the numbers %(n —n;) with multiplicity n; — 1
(i=1,...,k) and k — 1 numbers are equal to %n If we regard the (k — 1)-

dimensional Buclidean representation corresponding to the largest eigen-
value 5n, the representatives of the vertices in this representation consti-
tute & different points in the (k& — 1)-dimensional Euclidean space, where
the representatives of vertices of the same colour coincide.

In this way we can characterize the complete k-partite graph on the
basis of its optimal (k — 1)-dimensional Euclidean representation belonging
to the largest eigenvalue with multiplicity k—1 . But how we can recognize
a k-colourable graph in a similar way, we do not know exactly. Recently
it has turned out that these speciral techniques are not always capable of
the recognition of the chromatic number.

Analogously to the derivation of the Representation Theorem the
maximum of the quadratic form L(X) = tr XBXT on XXT =1
sum of the /’c largest eigenvalues of the hvpergraph in questlon and 1
matrix 2L giving the maximum contains the correspondin

chls kind of representation the sum of the variar
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vertices of the multi-coloured edGes Le'ld 1o be f r away. Con-
e COlOLT‘ Darmulon f*equem y results in well separated clusters

Let vi,v2,...,vn be binary random variables taking the values 0-1 and
e1,€2,...,em be a sample for them (n &« m). They form a hypergraph
H = (V, E) with vertex-set V = {v1,v2,...,vn} and edge-set
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E = {e1,ez,...,em}, where Z(v € e) = v(e), v(e) being the observed
value of the variable v on the object e. (When v represents some property,
v(e) = 1 means the presence, while v(e) = 0 the absence of this property
on the object e.)

Let ' C E be a sub-sample. The sub-hypergraph H' = (V, E')
is called the hypergraph of the edge-cluster E’. Let us denote by 0 =
M(H') € M(H') < -+ £ X(H') the spectrum of H', while the n X n
matrix X*(H') contains a whole system of pairwise orthonormal eigenvec-
tors of the connectivity matrix of H'. According to the Representation
Theorem of Section 2, for any integer d (I < d < n) the d x n matrix
X5(H') — obtained from 3 *(H') by retaining the eigenvectors correspond-
ing to A (H'), 2(H')..., \q(H') — determines an optimal d-dimensional
Buclidean representation of H'. Furthermore, the sum of the variances of
edges of E in this representation is minimal, and it is equal to

d
LIX3(H)) =y L{e,Xy(H")) =3 MN(H).
ec F! ;=1

Put K(H') := min}_,[c2""% + L(X(H"))], where ¢ > 0 is a constant
(chosen previously according to the size of problem). The dimension d°
giving the minimum is called the dimension of the edge-cluster E’.

Let S denote the set of all partitions of £ into non-empty disjoint
sub-samples. Our purpose is to find a partition S € S consisting of sub-
samples Ej-s for which the objective function K = 5 K(H;) is minimal,

where H; = (V, E;) is the hypergraph belonging to the edge-cluster E;.
Now let k£ be a fixed integer, (1 < & < n). We shall define a nu-
merical algorithm converging to a local minimusm of the objective function,
when the minimization takes place over the set of all k-partitions S;.. Let
(FE1,...,EL) € Si be a k-partition of the edge-set of H. Applying the
previous notations for the hypergraphs H; = (V,E;), (i = 1,...,k) the

k
following cost function is constructed: Q = 3 Qg,(H;), where

=

Qu(Hi) =2 %+ L(XL(H)), (=1, k).

To minimize the cost function Q — with respect to k-partitions of the edges
and dimensions of the edge-clusters — the following iteration is introduced.

First let us choose k disjoint clusters £, ..., E} of the objects (e.g. by the
k-means method, see in {19]).
i. Fixing the clusters E|,..., E}: the spectra and optimal Euclidean

representations of the sub-hypergraphs of the edge-clusters are calcu-
lated.
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ii. The function Qg,(H;) is minimized with respect to the dimension d;,
(1 € d;i € n) for each ¢ separately. A unique d; giving the i-th
minimum always exists. As for it

&
Qu: (Hy) = 2" ™% +ZA (H) (G=1,...,k)
j=1

holds, in this step the cost function @ is decreased. Until this moment

the minimization took place within the clusters. In the next step the

objects are relocated between the clusters:

iii. Fixing the dj-dimensional optimal Euclidean representations
X5.(H;)-s: an object e is replaced into the cluster Ej, for which
L(e,}f_zi(ﬁi)) is minimal. If the minimum is taken for more than one

, let us replace e into the cluster E; with the smallest index 7. In
thls step @ is also decreased. In this way a new disjoint classification

E{, ..., E} of the objects is obtained. From now on we go back to

step 1. w1th starting classification E7,..., E}, etc.

As the cost function ¢ is decreased in each step and in steps il. and iii.
discrete minimizations are performed, the algorithm must converge to a
local minimum of Q in finite steps. It is easy to see that for fixed k the k-
partition to which the iteration converges gives a local minimum of the ob-
jective function K, too. As a new step of the iteration, a minimization with
respect to k could be introduced, but it would be very time-demanding.
(The optimal value of & also depends on the constant c.)

During the iteration some edge-clusters may become empty. Also
the hypergraph H; = (V, E;) may contain isolated vertices (this results in
additional zero eigenvalues). Let us denote by 1 i the set of the non-isolated
vertices of H;. Provided H has no isolated vertices, then UL, Vi = V and
Vi,..., V). are not necessarily disjoint subsets of the vertices. V; 1s called
the charauerzsizc properiy-association of the sub-sample F;.

8. Summary

For the time being we have investigated Laplacian spectra and Euclidean
representations of multigraphs merely in connection with the above clas-
sification property. The authors think that these spectral techniques are
worth for further investigation because of the following reasons:
— In the case of large multigraphs (up to 100 vertices and arbitrary
number of edges) there are numerical algorithms which can quickly
perform the spectral characteristics.
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— In low dimensions (mainly in 3 dimensions) and on special fields (e.g
in chemistry) relative location of the representatives of vertices real-
izes real spatial arrangement of certain atoms.

— The objective function ) itself has a physical meaning: It gives the
variance of the whole system which is to be minimized on certain
constraints.

The Hiickel’s theory — see CVETKOVIC (1979) introduces a model of quan-
tum theory where the stationary state of atoms can be obtained via the
Schrddinger equation (it also contains the Laplacian operator). Describing
the structure of the atoms the eigenvalues can be represented in special
cases as energy levels of the electrons (called atomic orbitals).
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