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Abstract 

Clas:sific2,tion problems of the vertices of large mu!tigraphs (hypergraphs or weighted 
graphs) can be easily handled by means of linear algebraic tools. For this purpose no­
cion of the Laplacian of multigraphs will be introduced, the eigenvectors belonging to k 
consecutive eigenva!ues of which define optimal i:-dimensiona.l Euclidean representation of 
the vertices. In this way perturbation results are obtained for tbe minimal (k + 1 )-cuts of 
multigraphs (where k is an arbitrary integer between 1 and t.he number of vertices). The 
(k + 1 )-variance of the optimal k-dimensional representatives is estimated from above by 

the I,: smallest positive eigenvalues and by the gap in the spectrum between the eh and 
(I,; + 1 )th positive eigen\'alues in increasing order. These results are of scatistical character. 
However, they are useful and well-adopted to automatic computation in the case of large 
multigraphs when one is not interested in strict structural properties and, on the other 
hand, usual enumeration dlgorithms are very time-demanding. 

Keywords: Laplaciall spectra of graphs, Euclidean representations. optimal k-partitions. 
perturbation results. 

1. Introduction 

Hypergraphs and weighted graphs (in the sequel referred to as multigraphs) 
often arise when multiple or pairwise connections between objects of a fi­
nite set are of interest. For the investigation of some structural properties 
(e.g. k-colourability, minimal-maximal cuts) there exist well-known enu­
meration algorithms and theoretical results as well, e.g. HOFFMAN (1970), 
CVETKOVIC, DOOB, SACHS (1979), SIMONOVITS (1984), ALON (1986). 
But in the case of large multigraphs - when one is not interested in the 
strict fulfilment of the investigated property - perturbation results can be 
proved by means of linear algebraic tools. 

IThis work was supported by the Hungarian Foundation for Scientific Research. Grant No 
140.5 and by the DIMACS, the National Science Foundation, Science and Technology Cen­
ler for Discrete Mathematics and Theoretical Computer Science, Rutgers University, USA 
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For this purpose optimal Euclidean representation of multigraphs are 
introduced together with their Laplacian (Section 3). The Laplacian is a 
positive semidefinite Hermitian matrix which has a physical meaning in 
special cases. First it was defined by FIEDLER (1973) for ordinary graphs. 

Our purpose is merely by the investigation of the Laplacian spectra 
and of the usual metric distances of the representatives in a multidimen­
sional Euclidean space to characterize the following structural property of 
a given multigraph: there exists an integer k (between 1 and the number 
of vertices) for which th<:'!re is a k-partition of the set of vertices in such a 
way that most of the hyperedges (or in the case of weighted graphs edges 
with large weights) belong to the same cluster of the k-partition (Sections 4 
and 5). Relationships between spectral gaps of the Laplacian and variances 
of the clusters can also be proved (Section 6). Some properties of Laplacian 
spectra and examples can be found in Section 7. 

The above property often arises in the multivariate statistical analysis 
when mutualiy dependent binary variables are classified in such a way that 
objects having many binary properties in common would possibly belong 
to the same cluster. The it<:'!rative algorithm - introduced in Chapter 8 -
applies the spectral technique in one step of the iteration, while in the other 
steps the partitions and the dimensions are determined. The algorithm is 
part of the DISTAN (DIscrete STatistical A~~alysis) program package, see 
Rl'D:\S (1992). Weighted graphs are used e.g. for the description of neural 
netv\;orks, see ;\.lc ELIECE et al. (1987), EO:,lLOS and PATUU (1989). 

3-dimensional representation of hypergraphs has a special meaning in 
chemistry when we are looking for spacial arrangement of compounds by 
merely knowing the connections between their atoms. The quadratic form 
to be introduced in Section 3 has 2. physical interpretation in the investiga­
tion of the atomic structure, where the energy of the elementary particles 
is minimized. The spectrum of the Laplacian also information on the 
atomic orbitals 0C'-vlVll 9). 

2. !\iotations 

A hypergraph H is defined by the pair , E), where V is a finite set and 
E C 2'" consists of its selected subsets. V is called the set of the vertices 
and E is the set of the edges of the hypergraph H. A vertex is denoted by 
v E V and an edge (for brevity a hyperedge will be called simply an edge) 
by e E E. Let IVI = nand IEI = m. Then H can be given by its n x m 
vertex-edge incidence matrix A with entries aJi I(vj E ed, where 

I(v E e) = . { 
l. 

0, 

if v E e 

otherwise 
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and the relation v E e denotes that the vertex v is incident with the edge 
e. Furthermore let us denote by lel the number of vertices contained by 
the edge le!. 

A w-eighted graph G is defined by the pair (V, W), where V .­
{VI, ... vn } is the set of its vertices and W is the weight ma.trix of the 
edges of G. The diagonal entries of the n X n matrix Ware zero, while 
the nondiagonal entry Wij is the weight assigned to the edge {Vi, Vj} and 
Wij = Wji 2:: 0, i =f:. j. (If the vertices Vi and Vj are not adjacent, the weight 
Wij is zero.) 

An ordinary graph is a special case of a weighted graph the weight 
matrix being its adjacency matrix (its {i,j}th entry is 1, if the vertices Vi 

and Vj are connected and 0, otherwise). 

3, and Eudidean H.~epresentatio:n of 

Let the hypergraph H on vertex-set {VI, ... , v n } and edge-set {e 1, ... , em} 

be given by its n x m incidence matrix A. Let k (1 S k S n) be a fixed 
integer. VIle are looking for k-dimensional representatives Xj, (j = 1, ... , n) 
and Yi, (i = 1, ... , m) of the vertices and edges, respectively, so that 

n 

j=1 

and the sum of the costs of edges 

T 
XjXj = 

i11 rn n 

Q = 2:= K(ei) = 2:= 2:= aijllxj - y;ll2 
;=1 i=1 j=1 

(3.1) 

(3.2) 

in this representation is minimized, where the cost K(ei) of the edge ei IS 

defined by 

(3.3) 
j=1 

the k-dimensional variance of the representatives of its vertices from the 
representative of the edge in question. For an individual edge its cost is 
minimized if we substitute the centre of gravity of the representatives of its 
vertices for its representative. After performing this substitution for every 
edge, the decreased objective function Q will be the quadratic form 

n "[1 1] 71 11 

L(X) = L L 2 L I(Vi E e)I(vj E e)-le' Ilx; - xjl12 = L L CijX!'Xj 
,=1 )=1 fEE I ,=1 )=1 

( 3.4) 
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with 

{

-I: I(Vi E e)I(vj E e)I~I' 
eEE 

Gij = Si - I: I(Vi E e)I!1 = S~ - I: I(Vi E e)-I!" 
eEE eEE I 

lel>1 

if i =1= j, 

if i = j, (3.5) 

where si = #{ e E E : Vi E e, lel > I}. The matrix of the quadratic form 
(3.4) is called the Laplacian of the hypergraph H, and it is denoted by C 
It can also be written as 

C = D v -
T 

vihere D L and are the valency matrices of the vertices and edges, re-
spectively. 

The quadratic form L(X) is equal to trXCXT , and it is to be min­
imized on I.~. As the n X n matrix C is symmetric and positive 
semidennite, by means of a theorem for the extrema of quadratic forms -
RAO (1979) - the following Representation Theore:m can be proved, see 
BOLLA (1989): 
THEORDl 3.1 The minimum of the cost function (3.2) conditioned on 
(3.1) is 

k 

(3.6) 
j=1 

where 0 = )\] ::::; A2 ::::; ... ::::; An are the eigenvalues of the Laplacian C and 
it is attained, when the k-dimensional Euclidean representation X of the 
vertices contains pairwise orthonormal eigenvectors corresponding to the 
k smallest eigenvalues of C in its rows. If such an X is denoted by X~, 
the Vl~"'~.,uc"'~ choice for the k-dimensional Euclidean rej)[t;sentatl.oll of the 
edges is y= = X= 0 

Let R be a k x h orthogonal matrix =). Then neither the 
objective function nor the constraint is effected by the substitution 
RX. Thus, together with an optimal X , the matrix is optimal too. 
But apart from k-dimensional rotations, in the case of distinct eigenvalues 
the optimal X= is uniquely determined by the Laplacian C. Otherwise 
their rows can be chosen appropriately within the eigenspaces belonging to 
the multiple eigenvalues. 

In the future, whenever k-dimensional representatives x= -s and y*-s 
constituting the columns of any optimal X"', Y'" pair are assigned to the 
vertices and to the edges, respectively, we speak of optimal le-dimensional 
Euclidean representation of the hypergraph H. 
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Since for optimal representations of the vertices and those of the edges 
the relation Y* = -1 holds, an optimal representation of the 
vertices uniquely determines an optimal representation of the hypergraph 
H, and by the formula (3.4) it gives a minimal variance arrangement of the 
vertices in the k-dimensional Euclidean space. 

VVe remark that the dimension k does not play an important role 
here yet, since for any k (1 s: k < n) an optimal + I)-dimensional 
Eudidean representation is obtained from an optimal k-dimensional one 
by introducing a subsequent eigenvector in the rows of X. Or vice versa, 
a k-dimensional optimal Euclidean representation is the projection of the 
(k + I)-dimensional one onto the subspace spanned by eigenvectors corre-

jJL'ELllllF; to the k smallest eigenvcdues. 
It can be seen from the formulas of that the loops 

n-l Tl 

'\' '\' " T Q := L... L... Wij!!Xi - xjll- = trXCX , (3.7) 
;=1 j=;+1 
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where the n x n matrix C is equal to D - W. This C is also symmetric, 
singular and positive semidefinite. We call it the Laplacian of the weighted 
graph G. 

We remark that a weighted graph can be always assigned to a hyper­
graph in such a way that their Laplacians be the same as follows: 

1 
Wij = Wji = L I(Vi E e)I(vj E e)-I I' 

eEE e 

Let us denote by 
0= Ao ::; Al ::; ... ::; An-l 

(1 ::; i < j ::; n). 

the eigenvalues of the Laplacian C. A Representation Theorem similar 
to that for hypergraphs can be proved: the minimum of Q constrained 
on = lie and 2:,'1=1 Xj = 0 is 2::7=1 Aj and it is attained for X* = 

(Uj, ' .. , Uk)T, where Uj, ... , Uk E Rn are k pairwise orthonormal eigenvec­
tors corresponding to the eigenvalues AI, . .. ,Ak of the matrix C. The col­
umn vectors , ... , of any optimal X' are called optimal k-dimensional 
representatives of the vertices and then we speak of optimal k-dimensional 
Euclidean representation of the weighted graph G. 

The above representation can be extended to weighted graphs, the 
vertices of which are weighted too, as follows. Let G be a weighted graph 
with w'eight matrix W of the edges, the vertex 'Uj of which has the weight 
Sj, (j = 1, ... ,n) and S := diag (51, ... , sn). Now the quadratic form of 

(3.7) is minimized subject to the constraints that 2:::;'=1 s 

and s jX j = O. Since Q can be written as 

tr tT (3.8) 

the III in in1u ITl of OIl the abo)/e constraint is 
1 

1\:1 ::; ... ::; 1\:,,-1 are the eigenvalues of the symmetric, singular, positive 
semidefillite matrix in brackets - and it is attained for the representation 
X· = " .. l udT S- 1

/
2 of the vertices, vihere U1" .. , Uk are k pairwise 

orthonormal eigenvectors corresponding to the k smaliest positive eigenval­
ues of the so-called weighted Laplacian := S 1/2 CS- l /:!. \Vith other 
words the k x n matrix (.JS1xl, ... , 0X;1) - \v'here the column vectors 

, ... , of any optimal X" are called optimal k-dimensional represen-
tatives of the vertices 
rows. 

contains the above eigenvectors U1, ... , Uk in its 

VVe remark that III the case of the weighted graph G on vertex set 
V the weight matrix W can be regarded as a symmetric measure on the 
product of measure spaces (l,A), (I, A), where 1= {1,2, ... ,n} and A 
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is the generated o--algebra. The probabilities of elementary events are 
d1 , d2 , •.. , dn . Let W(I) = 1 and the symmetricity of W means that 
W(A x B) = WeB x A) for any A, B E A pairs. Hence D = {d1 , d2, . .. ,dn } 

is just the marginal of the joint distribution W. Let us denote by P : 
L2(I, A, D) -+ L2(I, A, D) the operator taking the conditional expectation 
according to the joint distribution V.f. Its matrix form is 1/2 

therefore the above CD is just - P and (}-s are like canonical correlations. 

4. Structural 
Means of ""T,P€'i:~'~ I 

Let H = 71, = m be a without loops and 
multiple edges, its eigenvalues being 0 = )'1 :s; ),2'" :s; ),n in increasing 
order. Now we shaH give upper and lower bounds for combinatorial mea­
sures characterizing k-partitions of the vertex set of H by means of the k 
smallest eigenvalues, where k is any natural number between 2 and n. First 
of all let us introduce the following notions: 
DEFII\"ITiOI\" 4.1 A k-tupie (VI,' .. , Vd of non-empty subsets of V is called 

k . . e h f . . e T/ TV r1I e . I' d I: TT V a "-partztw7I OI t e set 0_ vertlces, 11 '; n 'j = 'i.I IOr l r J an Ui=l Vi = . 
Sometimes a k-partition is denoted by PI" while the set of all k-partitions 
by Plc. The volume v(Pd of the k-partition Plc = (VI, ... , Vd is defined by 

and its weighted. volume u(Pd by 

1 ( 1 1 ) u(Pd := L -I I L ~ + --:- ai(e) aj(e), 
cEE e 15,i<j5,Jc 71, nJ 

where a;(e) = le n Vii and ni = IViI· 
The minimal k-cut of H is defined by 

(4.1) 

while the minimal weighted k-cut by 

( 4.2) 

DEFII\"ITIOI\" 4.2 The cut set of the k-partition PI: = (VI, ... , Vd consists of 
those edges e for which le n Vi I ::j:. 0 holds f0r at least two different parts 
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of Pk, and it is denoted by H(Pk). The k-partition Pk defines a colouring 
c of the vertices in the following way: c( v) : = i, if v E Vi. An edge e 
is said to be multi-coloured in this colouring, if it contains two different 
vertices v, v' such that c(v) -I c(v'). Thus, the cut set H(Pk) consists of 
the multi-coloured edges. H(Pk) is called a minimal k-sector of E, if 

IH(pnl = min IH(Pk)1, 
PkEPk 

and its cardinality is denoted by edH). THEORE:VI 4.3 For the sum of the k 
smallest eigenvalues of the hypergraph H the upper and lower estimations 

k 

cne k (H) :s; I>,\j :s; vd H) (4.3) 
j=l 

hold, where en = n(nLl)' For the proof see BOLLA (1989). The upper 
bO',llld shows that the existence of k relatively small eigenvalues is a nec­
essary condition for the existence of a good classification (with a small 
minimal weighted cut). Thus, the spectrum can give us some idea about 
the choice of the number k of the clusters for which good colouring may 
exist. But the spectrum itself does not say anything about the optimal k­
partition, moreover, it does not give a sufficient condition for the existence 
of a good clustering. The lower bound in (4.3) depends on the constant 
Cn, and there are graphs for which the lower bound is attained in order of 
magnitude. E.g. for lattices and spiders (see Section 7, Examples 7.8 and 
7.9), which cannot be classified into k clusters in a sensible way. 

For a graph G it is the same estimate as given by FIEDLER (1973). He 
has also given an upper bound for ),2 by the edge-connectivity e( G) of the 
graph G. As v2(H) :s; n~1J.I2(H) and J.I2(H) = le(G), for the second small­
est eigenvalue of graphs the upper bound V2 (G) is asymptotically sharper 
than ~e (G), the estimate of Fiedler. 

1'1" O\V \ve "vant to optimal l11eans of classi-
fication of k-dimensional representatives of the vertices in an optimal }.;;­
dimensional Euclidean representation of the hypergraph. The classification 
is performed by the k-means method introduced by MAC QUEEN (1967). 
We shall be confined to the case, when a 'very' well-separated k-partition 
of the above k-dimensional points exists. 
DEFIKITWK 4.4 A k-partition PI, = (Ill, ... , Ilt: )is called a well-separated k­
partition of the vertex set Il in the k-dimensional Euclidean representation 
X = (Xl, ... ,xn ) of the vertices, if for the colouring c belonging to Pk the 
relation 0:( PJJ > 1 holds, where 

min Ilxi - xjll 

(P ) 
._ c(v;);tc(Vj) 

0: k .- . 
max .llxi - xjll 

c( v;)=c( Vj ) 

(4.4) 
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(In the case when there exists a well-separated k-partition of the k-dimen­
sional points Xl, ... ,Xn , DUNN (1974) has proved its uniqueness, and he 
has given an algorithm to determine the k well-separated clusters of Xj-s. 
Dunn has also proved that the larger o:(Pk) is, the better the separation 
and the quicker the algorithm is.) 
THEOREM 4.5 Assume that for some k < n there exists a well-separated 
k-partition of the vertex set V, for the clusters of which the diameters are 
at most c) where c < 2ft is a small positive number. Then 

(4.5) 
j=1 

where q = 1 + Comparing the results of Theorems 4.3 and 4.5, 

under the constraints of Theorem 4.5 we obtain that 

I~ 

Aj, where 1 < q < 2. 
j=1 j=1 

This means, that provided c is less than 
1 

then q is at most 2, and 

k 
the combinatorial and analytical measures of H, vk(H) and L ;'j differ 

j=1 
at most by a factor of 4. 

5. OJDt:i:rn,al Partitions of We!i5hted. f:!7I"'~nh", 

Similar statements can be proved for the spectrum of a weighted graph 
G = (V, W). Here more precise perturbation results for the representatives 
are examined. We shall need a definition. 
DEFINITION 5.1 The k-variance of the vectors Xl, ... ,Xn E R k

- l with re­
spect to the k-partition Pk is defined by 

where ni = IViI. The k-variance of the vectors Xl, ... ,Xn is defined by 
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Even if no a well-separated k-partition of the optimal (k - 1 )-dimensional 
representatives xi, ... , x~ exists, it can be asked how the k-variance Sk (X*) 
of them depends on the eigenvalues. To get some perturbation results, the 
following situation is investigated: 

Let Pk be a fixed k-partition of the set of vertices (sometimes we 
shall refer to it as a colouring). The Laplacian C of the weighted graph G 
can be decomposed as B + P, v;here P is the Laplacian of the weighted 
graph formed from G by retaining the bicoloured edges with respect to 
the colouring Pk, while B is the Laplacian of the weighted graph obtained 
by retaining the mono coloured ones. The matrix B has the eigenvalue 
o with multiplicity k, the corresponding eigenspace can be spanned by k 
pairwise orthogonal vectors (let us denote them by Uj, ... , Uk) so that all 
the coordinates of the lth vector - being different from those assigned to 
the vertices of Vi - are equal to 0, (I = 1, ... , k). Let us denote by (2 

the smallest positive eigenvalue of the matrix B. It is the minimum of the 
smallest positive eigenvalues of the weighted sub-graphs induced by the 
vertices of the parts of the k-partition Plc. Put f := IIPII and suppose 
that f < (2. THEORE~l 5.2 Unde7' the above assumptions 

f ) :5: k­
(2 

holds fOT the k -va7'iance of the optimal (le - 1) -dimensional TepTesentatives 

~ . . . , 'Ne remark that 

and 

D = min)\] 
- i 

c = 11 :5: tr P = L Wij = v(PI:) 
i,j 

e( ili:c(j) 

"0< (G"<l' 11 _ f..i'l.. -1) _ :;zdir!lax 

'r ld (G' ) 11 2' i r!lax < f..i'2 i, 

1 ') (" 2" ) 2" (1 " ) d d Wl1ere cij = ~ cos ni-cOS ni' C;:2 = cos ni -cos -;;i' ill la >: = rnaXjE\', j 

- see FIEDLER (1973) - and is the Laplacian of the induced weighted 
subgraph G; by the vertex set V; (on ni vertices). is just the itlr diagonal 
block of B. Therefore the 'smaller' the volume of the k-partition Plc and the 
greater the 2-cut of the monocoloured ones is (this means that the Gi-S are 
strongly connected), the better the optimal k-dimensional representatives 
of the vertices can be classified into k clusters. This reasoning also gives 
us some idea on the choice of the k-partition Pk. The next proposition 
estimates the k-variance of the optimal k-partition. 
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PROPOSITION 5.3 Let X* be an optimal (k - I)-dimensional representation 
of the above weighted graph. Then for the k-variance of the optimal (k -1)­
dimensional representatives 

S 2(X*) < S2(p "V*) < )\1 + ... + A!~-l 
k - _ k ~ b A _ (D) 

Q .L k 

holds with any k-partiiion Pk. Notice that the more 'concise' the edges 
within the Gi-S are, the greater Q( Pk) is. 

The question naturally arises: does in general the existence of a gap in 
the spectrum between A!~-l and Ak itself result in a 'small' (k - 1 )-variance 
of the optimal k-dimensionaI representatives? This is answered, at least 

in the next section. 

6. in the of a 

Let G = be a weighted graph with weight matrix 
and D = diag (d!, ... , dn ) of the vertices, where di = 

n n 

of the edges 
Wij, (i = 

1, ... , n). Suppose that 2:: 2:: Wij = l. According to Section 3 the spec-
;=1 j=1 

trum of this weighted graph is defined by the eigenvalues of the weighted 
Laplacian CD. 
THEORDf 6.1 Let 0 = AO < A] < A2 :::; .. , :::; An-l denote the eigenvalues 
of the weighted Laplacian CD and let be the optimal I-dimensional 
representation of the vertices (it is just the eigenvecior correspon ding to 

AI)' Then 

The theorem implies the following expanding property of the eigenvalues: 
the greater the gap between the two smallest positive eigenvalues of G is, 
the better the optimal I-dimensional representatives of the vertices can be 
classified into two clusters. 

For establishing similar relations between the (k + 1 )-variance of an 
optimal k-dimensional representation of the vertices of the above weighted 
graph and the gap of the spectrum of its weighted Laplacian CD between 
the eigenvalues Ak and )'1,+1 we would like to prove the following conjecture: 
COKJECrCRE 6.2 Let 0 = AO :::; Al :::; ... :::; Ak < Ak+l :::; ... :::; An-l 
be the spectrum of the weighted Laplacian CD = In - D- 1/2WD- 1/ 2 of 
the weighted graph G with weight matrix W, where 2::~1 2::}=1 Wij = 1, 

di = 2::j'=IWij and D = diag(dl, ... ,dn ). Let xi, ... ,x~ E Rk be opti-
ji:.i 

mal k-dimensional representatives of the vertices satisfying the conditions 
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2.:7=1 diXi = 0 and 2.:7=1 diXixi
T = Ik· Let Sk+l (x~, ... , x~) denote the 

(k + 1) -variance of the vectors xL ... , x;. Then 

2 * * . )\1 + A2 + ... + 
Sk+1(Xl," .x,,) :S k· --------

Ak+l 
l:Sk<n-l. 

For the proof we would need the following LE~"l:VIA 6.3 There exists a 
transformation Yi = f(xi) so that the function f satisfies the Lipschitz 

condition, 2.:~1 diYi = 0, 2.:7=1 diXiYi = 0 and u 2(y) := 2.:7=1 diy[ ~ 
Sf+l (Xl, ... , x;). Our conjecture is that with Lipschitz constant "ik such 
an Y can be found. For some special representations even we have a con­
struction, but in general it is not sure that such construction exists at all. 

This means that supposing the optimal k-dimensional representatives 
form k+l well-separated clusters and there is a gap in the spectrum between 
the eigenvalues Ai; and Ak+1, then the (k + I)-variance of the optimai k­
dimensional representatives , ... , can be estimated from above by this 
gap. But a construction can be given that the (k + I)-variance is small, 
however, this gap does not occur. (This is because the eigenvalues do not 
determine the eigenvectors and vice versa.) Nevertheless, the spectrum can 
give us some idea about the number of clusters. But a sufficient condition 
and the classification itself can be obtained only by means of Euclidean 
representations. 

'( 0 Some Rem.arks of lVl.li.ltlgI~alPtls 

Finally, we introduce some simple propositions on spectra of hypergraphs 
and on Euclidean representations of some special hypergraphs (sometimes 
without proofs). Unless otherwise stated, the propositions refer to the 
spectral characteristics of the hypergraph H = (V, E) with !VI = nand 

IEI=m. 
ASSERTJO:\ 7.1 If Hi = CV, Ei), (i = 1, ... , are edge-disjoint hyper-
graphs, and H = (V, F), where E = U;"=lEi, Ei n = (/) (i # j), then for 
their connectivity matrices the relation 

B(H) = B(Hi) ( ,... 1 ) 1._ 

;=1 
holds. 0 PROPOSITlOi'\ 7.2 Let H = (V, E) be a hypergraph, E = El U E:z, 
El n E2 = 0, Hi = (V, E;), i 1,2. Then 

k k k 
""' \ . > ""' A (I) I ""' A ('2) 
~ A) _ L...t J T L-- J ' (l:Sk:Sn), (7.2) 
j=1 j=l j=l 
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where A.)i) denotes the j-th eigenvalue of Hi in increasing order (i = 1,2). 
PROPOSITION 7.3 With the notations of the previous proposition: 

(j = 1, ... ,n), (7.3) 

where Ti = rank 
and A.I = 0, if l < 1. 

being the connectivity matrix of Hi (i = 1,2) 
COROLLARY 7.4 For z = 2, by the successive and 

alternating application of the two sides of (7.3) we obtain that 

o (7.4) 

EXAdv£PLE 7. ,) Let denote the COmj)lE:te hVP€:rgraph 'l;ith /1, vertices and 
vlithout has - n - 1 consists of one 

n2n - 1 _ 2n + 1 
zero and the number _ with n - 1. Any n - 1 

n-I 
pairv,rise orthogonal vectors 'within the subspace orthogonal to the vector 
e E Rn are eigenvectors belonging to the multiple eigenvalue. OEXA~!PLE 

7.6 The smallest positive eigenvalue of the path graph Pn having n 2l + 1 
vertices is 1 - cos;. Labelling the vertices as V-I, ... , Vo, ... , VI, the second 
coordinates or their representatives in the optimal 2-dimensional Euclidean 
representation of are 

.j2 . (''') Xj = .Jii sm J;;, j = -I, . .. ,0, ... ,l (7.5) 

while the first coordinates are all equal to )n. '] 
EXAMPLE 7.7 Let 3d denote the star graph with n = d + 1 vertices. 

The smallest positive eigenvalue of 3d is 1/2 with multiplicity d - 1. An 
optimal d-dimensional Euclidean representation of 3d is a d-simplex in the 
(d - I)-dimensional subspace or Rd orthogonal to the vector e E Rd. The 
centre or gravity of the simplex is in the origin. The representatives of the 
vertices of valency 1 are the vertices, while the representative of the vertex 
of valency d is the centre of gravity of the simplex. 0 

EXAMPLE 7.8 Let Gd,! denote the subdivision graph of 3d, where 
each of the edges of Bd is divided into I parts. We call Gd,! spider with 
d feet and l sections. The number of its vertices is n = dl + 1. The 
smallest positive eigenvalue of Gd,l is of multiplicity d - 1 and it is equal 
to 1 - cos 21: l' An optimal d-dimensional Euclidean representation of the 
spider Gd,l is obtained from those of Bd and P21+!, where the feet of the 
spider are divided according to the sine rhythm of (7.9). 0 

EXAMPLE 7.9 Let Ld,1 denote the d-dimensionallattice whose vertices 
are all d-tuples of numbers -l, .. . ,0, ... , l, where two d-tuples are adjacent 
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if and only if they differ in exactly one coordinate. The number of its 
vertices is n = (2l + l)d. The smallest positive eigenvalue of Ld,/ is 1 -
cos 2/~ 1 with multiplicity d. An optimal (d + 1 )-dimensional Euclidean 

representation of Ld,l is realized in the d-dimensional subspace of R d+I 

orthogonal to the e E Rd+ I vector. It is a d-dimensionallattice, its centre 
of gravity being in the origin, and the distances between the representatives 
of adjacent vertices follow the sine rhythm of (7.9). 0 

EXAMPLE 7.10 Let Kn1, ... ,nk be the complete k-partite graph, where 
k 

n = :z::: ni (n being the number of vertices). Let (VI, ... , Vk) denote 
i=l 

the colour classes where !Vi! = ni, (i = 1, ... , k). The spectrum of 
Kn1, ... ,nk contains a single 0, the numbers ~(n ni) with multiplicity ni-1 
(i = 1, ... , k) and k - 1 numbers are equal to ~n. If we regard the (k - 1)­
dimensional Euclidean representation corresp;nding to the largest eigen­
value ~n, the representatives of the vertices in this representation consti­
tu te k different points in the (k - 1 )-dimensional Euclidean space, where 
the representatives of vertices of the same colour coincide. 

In this way we can characterize the complete k-partite graph on the 
basis of its optimal (k - 1 )-dimensional Euclidean representation belonging 
to the largest eigenvalue with multiplicity k - 1 . But how we can recognize 
a J~-colourable graph in a similar way, we do not know exactly. Recently 
it has turned out that these spectral techniques are not always capable of 
the recognition of the chromatic number. 

Analogously to the derivation of the Representation Theorem the 
maxirTIum of the quadratic form = tr on = is the 
sum of the k largest eigenvalues of the hypergraph in question and the k x n 

matrix X giving the maximum contains the corresponding eigenvectors in 
its rOViS. In this kind of representation the sum of the variances of edges 
is maximized. As a l-z-colourable graph has no edges within the subsets 
of colour-partition ) the - 1 i-dimensional of 
vertices of the same colour tend to be near to each other, vvhile the repre­
sentatives of vertices of the multi-coloured edges tend to be far away. Con­
sequently, the colour-partition frequently results in well-separated clusters 
of the representatives of vertices in this representation. 

8. A Heuristic Classification =.15\J.!.JlC~,U.u Based 
on Euclidean Representations 

Let VI) V2, ... ) Vn be binary random variables taking the values 0-1 and 
el, e2, ... ,em be a sample for them (n « m). They form a hypergraph 
H = (V,E) with vertex-set V = {V1,V2, ... ,vn } and edge-set 
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E = {el,e2, ... ,em}, where I(v E e) = v(e), v(e) being the observed 
value of the variable v on the object e. (When v represents some property, 
v (e) = 1 means the presence, while v (e) = 0 the absence of this property 
on the object e.) 

Let El C E be a sub-sample. The sub-hypergraph HI = (V, El) 
is called the hypergraph of the edge-cluster El. Let us denote by 0 = 
)\1 (HI) :::; A2(HI) :::; .. , :::; An(H') the spectrum of H', while the n X n 
matrix X*(H') contains a whole system of pairwise orthonormal eigenvec­
tors of the connectivity matrix of HI. According to the Representation 
Theorem of Section 2, for any integer d (1:::; d :::; n) the d X n matrix 
X'd(HI) - obtained from (HI) by retaining the eigenvectors correspond­
ing to Al (HI), )\2(HI) ... , Ad(H') - determines an optimal d-dimensional 
Euclidean representation of H'. Furthermore, the sum of the variances of 
edges of E' in this representation is minimal, and it is equal to 

d 

LeX'd(H')) = L L(e, X'dCH')) = L Aj(H'). 
eEE' j=1 

Put K(H') ;= mind=l[c2n-d + L(XdCH'))], where c > 0 is a constant 
(chosen previously according to the size of problem). The dimension d~ 
giving the minimum is called the dimension of the edge-cluster E'. 

Let S denote the set of all partitions of E into non-empty disjoint 
sub-samples. Our purpose is to find a partition S E S consisting of sub­
samples Ei-s for which the objective function K = L K(H;) is minimaL 

i 

where Hi = (V, E i ) is the hypergraph belonging to the edge-cluster Ei. 
Now let k be a fixed integer, (1 :::; k :::; n). We shall define a nu­

merical algorithm converging to a local minimum of the objective function, 
when the minimization takes place over the set of all l~-partitions Sk. Let 
(El, ... , Ed E Sk be a k-partition of the edge-set of H. Applying the 
previous notations for the hypergraphs Hi = (V, E;), C i = 1, ... , k) the 

k 
following cost function is constructed: Q = L Qd;(Hi), where 

i=1 

To minimize the cost function Q - with respect to k-part.itions of the edges 
and dimensions of the edge-clusters - the following iteration is introduced. 
First let us choose k disjoint clusters E 1, ••• , Ek of the objects (e.g. by the 
k-means method, see in [19]). 

I. Fixing the clusters El, ... , Ek; the spectra and optimal Euclidean 
representations of the sub-hypergraphs of the edge-clusters are calcu­
lated. 
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11. The function Q dj (Hi) is minimized with respect to the dimension di, 
(1 :; di :; n) for each i separately. A unique di giving the i-th 
minimum always exists. As for it 

(i=l, ... ,k) 

holds, in this step the cost function Q is decreased. Until this moment 
the minimization took place within the clusters. In the next step the 
objects are relocated between the clusters: 

lll. Fixing the di -dimensional optimal Euclidean representations 
Xd~(Hi)-s: an object e is replaced into the cluster E i , for which 

L(~,Xd~(Hi)) is minimal. If the minimum is taken for more than one 
i, let u~ replace e into the cluster E j with the smallest index i. In 
this step Q is also decreased. In this way a new disjoint classification 
El, ... ,EZ of the objects is obtained. From now on "'le go back to 
step i. with starting classification Ej, ... , EZ, etc. 

As the cost function Q is decreased in each step and in steps ii. and iii. 
discrete minimizations are performed, the algorithm must converge to a 
local minimum of Q in finite steps. It is easy to see that for fixed k the k­
partition to which the iteration converges gives a local minimum of the ob­
jective function K, too. As a new step of the iteration, a minimization with 
respect to k could be introduced, but it would be very time-demanding. 
(The optimal value of k also depends on the constant c.) 

During the iteration some edge-clusters may become empty. Also 
the hypergraph = (V, E i ) may contain isolated vertices (this results in 
additional zero eigenvalues). Let us denote by Vi the set of the non-isolated 
vertices of Provided H has no isolated then 

, ... , are not necessarily disjoint subsets of the vertices. 
the characteristic property-association of the sub-sample 

9. 

= V and 
Vi is called 

For the time being we have investigated Laplacian spectra and Euclidean 
representations of multigraphs merely in connection with the above clas­
sification property. The authors think that these spectral techniques are 
worth for further investigation because of the following reasons: 

In the case of large multigraphs (up to 100 vertices and arbitrary 
number of edges) there are numerical algorithms which can quickly 
perform the spectral characteristics. 
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In low dimensions (mainly in 3 dimensions) and on special fields (e.g. 
in chemistry) relative location of the representatives of vertices real­
izes real spatial arrangement of certain atoms. 
The objective function Q itself has a physical meaning: It gives the 
variance of the whole system which is to be minimized on certain 
constraints. 

The Huckel's theory - see CVETKovrc (1979) - introduces a model of quan­
tum theory where the stationary state of atoms can be obtained via the 
Schrodinger equation (it also contains the Laplacian operator). Describing 
the structure of the atoms the eigenvalues can be represented in special 
cases as energy levels of the electrons (called atomic orbitals). 
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