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Abstract

This investigation addresses the study of the buckling of composite material beams with different stacking sequences using nonlocal 

theory. A rotational field was introduced along the width of the beam, considering Poisson's effect and higher-order transverse shear 

deformation theories with a new warping shape function. The equilibrium equations are derived analytically using the energy principle, 

and the numerical solution of these equations is based on energy minimization using the Ritz method. A comparative study with 

different higher-order deformation theories was conducted to calculate the dimensionless critical buckling of a symmetrically and 

asymmetrically cross-ply laminated composite beam for two types of materials. To examine the influence of the nonlocal effect on 

critical buckling, another study was carried out on an isotropic material beam using nonlocal theory for different slenderness ratios. 

The dimensionless critical buckling results show perfect agreement with and without nonlocal theory compared to previously available 

works in the literature. A detailed investigation of Poisson’s effect on critical buckling demonstrated its significant influence in the case 

of short beams made of unidirectional composites and laminated composites with different fiber orientations.
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1 Introduction
This study aims to contribute by simultaneously explor-
ing the influence of two critical parameters on the buckling 
of composite beams, namely: the non-local effect and the 
Poisson's effect. While previous studies have examined these 
effects separately, no research to date has integrated these 
two parameters simultaneously in the analysis of composite 
beam buckling. Our aim is to provide a robust theoretical 
model for understanding and predicting the buckling behav-
ior of composite beams under realistic conditions, where 
these effects are often present simultaneously.

Composite materials are heterogeneous assemblies of 
at least two immiscible components that exhibit a strong 
interpenetration capability. These components, such as 
polymers, metals, or ceramics, combine their properties to 
form a material that performs better than each component 

individually [1, 2]. The  applications of composite mate-
rials are diverse, spanning sectors such as aerospace, 
automotive, and construction. However, these materials 
often present numerous imperfections or defects that sig-
nificantly reduce their performance [3–5]. Delamination, 
which involves the separation of the layers of the compos-
ite and compromises structural integrity, as well as crack-
ing due to extreme stresses and buckling under normal 
loads, are common issues [6, 7].

The critical buckling behavior of beams is a fundamen-
tal aspect of structural engineering, as it directly influences 
the stability and safety of structures. Many researches have 
put efforts toward understanding the buckling effect of com-
posite beams. Galuppi and Roye-Carfagni [8] investigated 
the buckling behavior of simply supported three-layered 
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sandwich beams with a viscoelastic core subjected to com-
pressive loads. They analyzed the phenomena of glassy, 
rubbery, and creep buckling across a range of load values. 
Eltaher et al. [9] investigated the static stability of unified 
composite beams subjected to varying axial loads, pro-
viding insight into the critical conditions for buckling. 
Sorrenti et al. [10] analyzed the static response and buckling 
loads of multilayered composite beams using the refined 
zigzag theory combined with the higher-order Haar wavelet 
method to improve accuracy in predicting structural behav-
ior. Tiwari and Shaikh  [11] examined the buckling and 
vibration characteristics of shape memory laminated com-
posite beams under axially heterogeneous in-plane loads, 
particularly in the glass transition temperature region. 
Understanding the critical load at which buckling occurs 
is crucial for designing composite beams capable of with-
standing various load conditions without structural failure.

One key factor affecting the buckling behavior of compos-
ite beams is Poisson's effect, which describes the phenomenon 
where materials expand or contract in directions perpendicu-
lar to the direction of loading. Barathan et al. [12] studied the 
nonlinear free flexural vibration behavior of variable stiffness 
composite laminated beams using a sinusoidal-based shear 
flexible structural theory, which incorporates Poisson's effect. 
Li et al. [13] further explored the free vibration response of 
layered composite beams through a refined higher-order 
model that includes transverse normal strain and Poisson's 
effect. The accuracy of their closed-form solution was ver-
ified against existing literature. Jun et al. [14] examined the 
linear frequency behavior of layered composite beams using 
Reddy's shear deformation theory, which accounts for par-
abolic transverse shear strain along the thickness direction. 
Their study analyzed the influence of material anisotropy, 
Poisson's effect, slenderness, and boundary conditions on the 
fundamental frequency of the structure. The consideration of 
these effects, particularly Poisson's effect, is crucial as they 
significantly impact the mechanical response of composite 
materials, especially under compressive loads, and must be 
addressed in buckling analysis.

To accurately predict the critical buckling behavior of 
composite material beams, advanced theoretical frame-
works are necessary. Thai et al. [15] conducted a size-de-
pendent isogeometric analysis of laminated composite 
plates using the nonlocal strain gradient theory, offering 
valuable insights into the influence of small-scale effects. 
Similarly, Thang  et  al.  [16] applied nonlocal strain gra-
dient theory to analyze functionally graded carbon nano-
tube-reinforced composite nanoshells, highlighting the 

significance of size effects in structures with double 
curvature. Moayedi  et  al.  [17] explored the thermo-vi-
brational responses of laminated composite nanoshells 
using the nonlocal strain–stress gradient theory, com-
bined with the generalized differential quadrature element 
method (GDQEM), to account for small-scale phenomena. 
Additionally, Li et al. [18] examined the vibration behav-
ior of rotating composite nano-annular plates, employing 
nonlocal theory alongside various plate theories to cap-
ture the impact of size effects. Collectively, these studies 
underscore the crucial role of nonlocal theory in providing 
a more comprehensive understanding of material behavior, 
especially in materials where size effects are particularly 
pronounced. Additionally, higher-order shear deformation 
theories  (HSDT)  [19–25] offer improved accuracy over 
classical beam theories by accounting for transverse shear 
deformations and providing a more realistic representation 
of the beam's mechanical response.

Despite the advancements in the theoretical understand-
ing of buckling phenomena, there remains a significant gap 
in research regarding the critical buckling of composite 
beams under the influence of Poisson's effect. The objective 
of this article is to investigate the influence of the Poisson 
effect on the critical buckling of short and long beams made 
of unidirectional and layered composite materials using non-
local theory. A high-order shear deformation theory with a 
new shape function is developed without the use of a shear 
correction factor. Numerical solutions of the equilibrium 
equations are presented for a simply supported beam using 
the Rayleigh-Ritz method. The effects of fiber orientation, 
beam slenderness, and transverse shear are examined in 
detail to assess the significance of the proposed model.

2 Mathematical formulation
The higher-order shear models discussed in this study are 
defined based on a variational methodology and are subse-
quently variationally consistent.

Consider a rectangular beam with length 'L' and width 
'b' and a constant thickness 'h' as represented in Fig. 1.

The chosen coordinate system (x, y and z) is positioned 
at the center of the beam, with the coordinate parameters 
defined such that:

0 0 2 2� � � � � � �x L y b h z h, / /and

In the following development, elastic behavior of the 
materials is assumed, along with small displacements, rota-
tions, and deformations, and a perfect bond between the lay-
ers. Based on plate theory, the assumed displacement field for 
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the composite beam, derived from a first-order shear defor-
mation theory, can be expressed as shown in Eq. (1). These 
expressions have been previously stated by Jun et al. [14]:
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where U, V, and W are the displacements of an arbitrary 
point of the beam according to coordinates x, y, and z 
respectively. u and w are the displacements of a point on 
the mid-plane along the x and z directions respectively, 
and φ and ψ are the rotations of the normal to the mid-
plane around the x and y axes respectively. The specified 
function f(z) will determine the distribution of the shear 
stress across the thickness. The Euler-Bernoulli beam the-
ory is a special case based on the kinematic function that 
cancels out, that is, f(z)  =  0. The  Timoshenko theory is 
simply obtained from the linear relationship:

f z z� � � 	 (2)

In this case, the shape factor κs is equal to one. As sug-
gested, for example, in the literature, a factor κs close to 
5/6 would be more relevant for Timoshenko beam theory. 
The  higher-order shear beam model considered in this 
article develops a new shear function f(z) proposed by 
Mechab et al. [26], which satisfies the following conditions:

f z f z dzand
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where (') indicates differentiation with respect to z. 
The new shear strain function is presented below:
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The strains associated with the displacements 
in Eq.  (1) are:
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2.1 Nonlocal elasticity theory and constitutive relations
In local elasticity theory, the stress tensor at a material 
point is assumed to depend on the strain tensor at that 
point. However, in non-local elasticity theory, it is assumed 
that the stress tensor at a point depends on the strain ten-
sor at all points in the continuum. According to Eringen's 
non-local elasticity theory [27], the non-local constitutive 
relations of a Hookean nanomaterial can be represented by 
the following constitutive differential relationship:

1
2 2 2 0� �� � � � ��

�
�

�

�
�� � � � �



ij
NL

ij
L C

e a
: , 	 (6)

For i, j = x, y, z.
The double dot represents the product, ε and C rep-

resent the components of strain and elastic constants, 
respectively. � � � �� �2 2 2

/ x is the Laplacian operator. 
The  non-local parameter e0a has a dimension of length 
and can be greater than 1.

In the expression � � � � �e a
0

1/  , the value of a 
depends on the internal length (granular distance, lat-
tice parameter, distance between C-C bonds as molecular 
diameters, etc.), and   is the external characteristic length 
(crack length or wavelength). e0 is a constant specific to 
each material to adjust the model to obtain reliable results 
through experiments or other theories. σ ij

NL  and σ ij
L  rep-

resent the components of the non-local and local stress 
tensors, respectively, in the Cartesian coordinate system. 
By neglecting the components of transverse normal stress, 
the local constitutive relations can be expressed as follows:
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The material is orthotropic with respect to the original 
coordinate system; it follows that, under a rotation of an 
angle θk around the z-axis in the x-y plane, the transforma-
tion formulas for the stiffnesses Cij

k� �  are of the form given 
by Zenkour [28]:

Fig. 1 Geometry of the beam
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where c = cos(θk) and s = sin(θk). Cij are the material stiff-
nesses (reduced to plane stresses) of the laminate:
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In which Ex and Ey are the Young's moduli in the x and 
y directions of the material; vxy and vyx are the Poisson's 
ratios, and Gxy, Gyz, Gxz are the shear moduli in the x-y, y-z, 
and x-z planes, respectively.

The constitutive equations of laminated plates based 
on the higher-order shear deformation theory can be 
expressed as follows:

where Nxx, Nyy and Nxy are in-plane forces, Mxx, Nyy and 
Mxy are the basic components of the stress resultants and 
moments, Sxx, Syy and Sxy are additional moment compo-
nents associated with transverse shear effects, and Qxy, 
Qyz are the transverse shear stress resultants. The stiffness 
coefficients of the laminate Aij and Bij, etc., are defined in 
terms of the reduced stiffness coefficients Cij

k� � for the lay-
ers k = 1, 2…n.
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For (i, j = 4, 5)
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The mid-plane strains εε y
0  and γγ xy

0 , the bending curva-
ture ky

b , and the higher order bending curvature ky
s  in 

Eq.  (10) are not zero. Their expression is identified by 
assuming that Nyy, Nxy, Myy, Syy and Qyz are equal to zero. 
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Then, these strain components have been substituted into 
the expression of the non-zero forces (Nxx, Mxx, Mxy, Sxx 
and Sxy). Thus, Eq. (9) can be written as follows:
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where:

In the case of laminated composite beams, the trans-
verse shear force Qyz = 0 can be neglected. Using Eq. (10), 
the relationship between the transverse shear force and 
the deformation for the laminated composite beam can 
also be expressed as follows:
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Using the non-local and local constitutive relations (6) 
and (7), the displacement relation (5), as well as the stress-
strain relations based on linear elasticity theory, the 

resulting non-local stresses can be expressed in terms of 
the displacement and rotation components as follows:
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And:
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2.2 Differential equations governing nonlocal elasticity
The differential equations governing equilibrium can be 
derived using the virtual displacement principle. The prin-
ciple of virtual work in this case gives:
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π is the elastic energy, T is the buckling energy, and P is 
the critical buckling load. The equilibrium equations for 
buckling are derived using the principle of conservation of 
energy as applied to a conservative system. The principle 
can be formulated as follows:

t

t
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0� �� � �� � 	 (20)

By substituting Eqs. (5), (12), (18), and (19) into Eq. (20) 
and integrating across the thickness of the beam, Eq. (20) 
can be reformulated as follows:
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Integrating Eq. (16) with respect toz gives:
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The equilibrium equations can be derived from Eq. (22) 
by integrating the displacement gradients by parts and set-
ting the coefficients δu, δφ, δw and δψ to zero separately:
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With the boundary conditions:
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The in-plane force, the bending moment, and the additional stress couples associated with transverse shear effects are 
then given by:
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By substituting the above equations into the governing equations, we obtain the equilibrium equations associated with 
the present displacement field for the non-local beam:
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This tenth-order differential equation can also be expressed in matrix form as:
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[L] is the matrix of differential operators where:
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where r
d
dx

n
n

n= � �  is the differential operator.

2.3 Rayleigh-Ritz method
In this study, simply supported boundary conditions are 
examined. These boundary conditions are as follow:
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The solution to the previous equations can be of the fol-
lowing form:
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Moreover, the axial mode shape function must satisfy 
the boundary conditions applied at the ends of the beam, 
which are x = 0 and x = L (See Table 1).

3 Results and discussion
A study of the dimensionless critical buckling for a beam 
made of isotropic material without the Poisson effect and 
with the nonlocal effect is conducted. The beam is pre-
sented with different slenderness ratios (see  Table  2). 
The present study was compared with different beam the-
ories mentioned in Reddy's works [29]. The results show 
good agreement with the RBT model. The maximum error 
for a beam subjected to significant shear effects, with a 
ratio L/h  =  10, does not exceed 1.59% for any nonlocal 
parameter. The error gradually decreases in proportion to 
the increase in slenderness and reaches a negligible value 
of 0.01%, with all results converging toward Euler's theory.

Another study on the dimensionless critical buckling of 
beams made of two symmetric composites of type (0/90/0) 
laminated in three layers and antisymmetric in two layers 
(0/90) is presented (see Tables 3 and  4). This study, utilizing 
a new warping shape function, was compared with different 
theories: The Parabolic Shear Deformation Theory (PSDT), 
the  Hyperbolic Shear Deformation Theory  (HSDT), 
the Exponential Shear Deformation theory (ESDT), and the 
First-Order Shear Deformation Theory (FSDT). The chosen 
shape functions are provided as follows:

•	 FSDT: f z z� � �

•	 PSDT: f z z z
h

� � � �
�

�
�

�

�
�1

4

3

2

2

•	 HSDT: f z h z h z� � � � � � � �sinh / cosh /1 2

•	 ESDT: f z z z h� � � � � ��
�

�
�exp /2

2

The results of this study for the two materials pre-
sented in Tables 3 and 4 show good agreement with the 
various deformation theories, with an error not exceeding 
0.06% for the short beam (L/h = 5) and 0.04% for the slen-
der beam (L/h = 20).

The properties of the chosen materials are as follows:
•	 Material I: E1/E2  =  Open, G12  =  G13  =  0.6  ×  E2, 

G23 = 0.5 × E2, ν12 = 0.25.
•	 Material II: E1/E2  =  Open, G12  =  G13  =  0.5  ×  E2, 

G23 = 0.2 × E2, ν12 = 0.25.

A detailed study using the new shear function to 
demonstrate the influence of the Poisson effect on the 
critical buckling load of a unidirectional orthotropic 
composite beam with the material listed below as mate-
rial 3: G11 = 144.80 GPa; E22 = 9.65 GPa; G23 =3.45 GPa; 
G12 = G13 = 4.14 GPa; ν12 = 0.3 et L = 381 mm.

For different ply orientations from 0° to 90° (see Fig. 2), 
the critical buckling load decreases non-linearly, both with 
and without Poisson's effect, depending on the ply orien-
tation, with maximum and minimum values observed 
at 0° and 90°, respectively. This  observation holds true 
for the different slenderness ratios studied. The  curves 
clearly illustrate the Poisson effect, especially at θ = 20°. 
The amplitude of variation is maximal at 50.34% for the 
short beam (L/h  =  5) and lower at 1.62% for the slender 
beam (L/h = 20). The superposition of the curves at 0° and 
90° ply orientations is due to the null values of the stiffness 
terms C C C

16 26 45
= = . The discrepancy in critical buckling 

Table 1 Boundary conditions

Boundary 
conditions Bi Φm μm

(S-S) B1 = 0, B2 = 0
B3 = 0, B4 = −1 mπ 1

(C-C) B1 = 1, B2 = −1
B3 = 1, B4 = −1 (2m + 1)π/2  cos cos

sin sin

h
h
� �
� �
m m

m m

�
�

(C-S) B1 = 1, B2 = −1
B3 = 1, B4 = −1 (4m + 1)π/4  cos cos

sin sin

h
h
� �
� �
m m

m m

�
�

(C-F) B1 = 1, B2 = −1
B3 = 1, B4 = −1 (2m − 1)π/2  sin sin

cos cos

h
h
� �
� �
m m

m m

�
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loads with and without the Poisson effect is caused by the 
introduction in this study of the combined deformation of 
transverse shear in the yz-plane and transverse shear defor-
mation in the xz-plane. Additionally, the axial deformation 
along the y-axis, as well as the bending moment curvature 
and additional moments with respect to the yy-axis, con-
tribute to the development of this discrepancy.

Fig. 3 shows the variation of the dimensionless critical 
buckling load of the unidirectional orthotropic composite 

material made from Material  I, as a function of slender-
ness ratio for different nonlocal parameters, considering 
the Poisson effect. The critical buckling load increases pro-
portionally with the geometric ratio L/h and tends toward 
the limiting value of Euler's critical buckling. For a signifi-
cant shear effect (L/h = 2.5), the critical buckling load with 
a nonlocal parameter  varying from 1 to 5 decreases pro-
gressively by 61% to 89% compared to the critical buck-
ling load without the nonlocal effect (μ = 0).

Table 2 Dimensionless buckling loads for a pinned-pinned beam (L = 10, E = 30 × 106, v = 0.3, N P L EIcr
0 2� � ( / ) )

Nonlocal Theories

L/h µ = (e0a)2 EBT TBT LBT RBT Present Error (%)

10

0 9.8696 9.6227 9.6630 9.6228 9.6242 1.47%

0.5 9.4055 9.1701 9.2085 9.1702 9.1716 1.54%

1 8.9830 8.7583 8.7949 8.7583 8.7597 1.56%

1.5 8.5969 8.3818 8.4169 8.3819 8.3831 1.48%

2 8.2426 8.0364 8.0700 8.0364 8.0376 1.55%

2.5 7.9163 7.7183 7.7506 7.7183 7.7195 1.56%

3 7.6149 7.4244 7.4555 7.4245 7.4256 1.46%

3.5 7.3356 7.1521 7.1820 7.1521 7.1532 1.58%

4 7.0761 6.8990 6.9279 6.8991 6.9001 1.51%

4.5 6.8343 6.6633 6.6912 6.6633 6.6644 1.59%

5 6.6085 6.4431 6.4701 6.4432 6.4442 1.48%

20

0 9.8696 9.8067 9.8171 9.8067 9.8071 0.38%

0.5 9.4055 9.3455 9.3554 9.3455 9.3459 0.40%

1 8.9830 8.9258 8.9352 8.9258 8.9261 0.34%

1.5 8.5969 8.5421 8.5512 8.5421 8.5424 0.37%

2 8.2426 8.1900 8.1988 8.1900 8.1904 0.44%

2.5 7.9163 7.8659 7.8742 7.8659 7.8662 0.35%

3 7.6149 7.5664 7.5744 7.5664 7.5667 0.36%

3.5 7.3356 7.2889 7.2966 7.2889 7.2891 0.33%

4 7.0761 7.0310 7.0385 7.0310 7.0312 0.35%

4.5 6.8343 6.7907 6.7979 6.7907 6.7910 0.41%

5 6.6085 6.5663 6.5733 6.5663 6.5666 0.44%

100

0 9.8696 9.8671 9.8675 9.8671 9.8671 0.01%

0.5 9.4055 9.4031 9.4035 9.4031 9.4031 0.04%

0.1 8.9830 8.9807 8.9811 8.9807 8.9807 0.03%

1.5 8.5969 8.5947 8.5950 8.5947 8.5947 0.01%

2 8.2426 8.2405 8.2408 8.2405 8.2405 0.02%

2.5 7.9163 7.9143 7.9146 7.9143 7.9143 0.01%

3 7.6149 7.6130 7.6133 7.6130 7.6130 0.03%

3.5 7.3356 7.3337 7.3340 7.3337 7.3337 0.06%

4 7.0761 7.0743 7.0746 7.0743 7.0743 0.03%

4.5 6.8343 6.8325 6.8328 6.8325 6.8325 0.05%

5 6.6085 6.6068 6.6070 6.6068 6.6068 0.04%

Error (% ) = 100*(Present- RBT)/ RBT, µ = (e0a) 2 is nonlocal parameter, (EBT: Euler-Bernoulli beam theory, TBT: Timoshenko beam theory, 
RBT: Reddy beam theory, LBT: Levinson beam theory) see [29]
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This variation is significant due to the warping effect of 
the beam's cross-section in both the xz and yz planes.

In the case of the two-layer antisymmetric composite 
shown in Fig. 4, the dimensionless critical buckling load 
decreases non-linearly for all beams with the slenderness 
ratios studied, with a maximum variation at the  0°  ply 
orientation and tending toward a limit at the  90°  ply. 
The nonlocal effect tends to become insignificant for slen-
der beams, with the curves overlapping for the different 
values of the nonlocal effect.

Fig. 5 represents the dimensionless variation of the criti-
cal buckling load as a function of the central ply orientation 

of a four-ply composite, considering the Poisson effect, for 
different slenderness ratios and nonlocal effect parame-
ters. It is observed that the buckling load decreases lin-
early for short beams (L/h  =  5 and 10), with constant 

Table 3 Critical buckling loads λ for three-layer (0/90/0) symmetric 
cross-ply beams with different theories

Type Theories
L/h = 5 L/h = 20

Material
I

Material
II

Material
I

Material
II

E1/E2 = 10

Present 4.734 3.653 7.666 7.437

PSDBT 4.726 3.728 7.666 7.459

HSDBT 4.727 3.731 7.666 7.461

ESDBT 4.733 3.652 7.666 7.437

FSDBT 9.797 7.605 27.854 26.500

Error(%) 0.02% 0.03% 0.00% 0.00%

E1/E2 = 40

Present 8.699 5.803 27.092 24.450

PSDBT 8.613 5.896 27.084 24.685

HSDBT 8.611 5.902 27.087 24.696

ESDBT 8.699 5.803 27.084 24.449

FSDBT 9.797 7.605 27.854 26.500

Error(%) 0.00% 0.00% 0.03% 0.00%

Error (%) = 100* (Present-ESDBT)/ESDBT

Table 4 Critical buckling loads λ for two-layer (0/90) antisymmetric 
cross-ply beams with different theories

Type Theories
L/h = 5 L/h = 20

Material
I

Material
II

Material
I

Material
II

E1/E2 = 10 Present 1.929 1.779 2.242 2.228

PSDBT 1.919 1.765 2.241 2.226

HSDBT 1.919 1.765 2.241 2.226

ESDBT 1.928 1.778 2.241 2.228

FSDBT 1.945 1.800 2.243 2.228

Error(%) 0.05% 0.06% 0.04% 0.00%

E1/E2 = 40 Present 3.976 3.461 5.304 5.237

PSDBT 3.906 3.376 5.296 5.225

HSDBT 3.903 3.372 5.296 5.224

ESDBT 3.976 3.461 5.304 5.236

FSDBT 3.891 3.349 5.296 5.224

Error(%) 0.00% 0.00% 0.00% 0.02%

Error (%) = 100* (Present-ESDBT)/ESDBT

(a)

(b)

(c)

Fig. 2 Poisson's effect influence on the critical buckling load 
of a unidirectional orthotropic composite beam for different 

slenderness ratios, (a) L/h = 5, (b) L/h = 10, (c) L/h = 20
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differences between the nonlocal curves and the reference 
curve (μ = 0), ranging from 28% to 68% and 9% to 33%, 
respectively. The decrease is almost linear for the slender 
beam (L/h = 20), varying from 2% to 11%. The nonlocal 
effect is significant for short beams and less pronounced 
for slender beams across all central ply orientations.

Fig. 3 Critical buckling variation load for different slenderness ratios 
considering different nonlocal coefficient and Poisson's effect

(a)

(b)

(c)

Fig. 4 Critical buckling variation load as a function of ply orientation 
for an antisymmetric composite beam (θ, -θ) for different nonlocal 

coefficient and slenderness ratios considering Poisson's effect, 
(a) L/h = 5, (b) L/h = 10, (c) L/h = 20

(a)

(b)

(c)

Fig. 5 Critical buckling variation load as a function of the central 
ply orientation in a four-ply composite beam for different nonlocal 

coefficient and slenderness ratios considering Poisson's effect, 
(a) L/h = 5, (b) L/h = 10, (c) L/h = 20
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