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Abstract

QQuite recently, connections of unusual type have been discussed by the author between the
so-called ‘fractional calculus’ as a new branch of analysis and strong summation processes,
furthermore, between fractional integration and certain number theoretic approximation
methods. In the following, two different aspects of these inherences are considered: L
& new verification for the powerful method of (D)-summation in case of irigonometric
series is given; Il. such a generalization of the famous Franel theorem on Riemann’s hypo-
thesis (1924) is presented which shows the deeper background of the topic in the field of
Diophantine approximations.

Keywords: fractional integration. Feurler analysis, summmation methods, zeta-functions,
Diophantine approximations.

Introduction

About thirty years ago, the author published a new theory of ge‘mraﬁzed
ore S

integro-differential operators (called ‘W;-limits’), widening H. WEVYL’s con-

cept of fractional integration. (See MIKOLAS, 1959. } As it is well known,
the Weyl fractional integral of order § > 0 is defined by

folz) = T(8)"! /f(t)(a;-t)"“ldt (0<o<1, 0<z<1), (1)

1
where f denotes a Lebesgue integrable function of period 1 with [ f(t)dt =
0

0. (Cf. WevL, 1917). (1-1) is a pendant of the classical RIEMANN-—
LIOUVILLE fractional integral over (zg, z)

(t)(z—1)""'dt  (Rev >0), (1-2)
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which can be regarded as a natural extension to non-integral order v of
Cauchy’s integral solution for the initial-value problem

y™M(z) = fle) (20 <z < 21); (1-3)
y(zo) = 9'(zo) = -+ = " {zo) = 0,

and has become since the turn of this century — together with (1-1) —
an essential expedient of mathematics, physics and technical sciences. (Cf.
MIkKoLAS, 1975.)

In the above-mentioned theory of generalized Weyl fraciional integrals
of complezr order the following fundamental facts hold: for the ‘W;s-integral’
in guestion we have the representation

1
fola) = j/f(m — D[Zs(t) = Zu(x))dt (Res > 1) (1-4)
4]

7 , . 1 o~ . . .
and the so-called kernel funciion™ Z () occurring here may be written in
the form

Zi(u) = z Tnn)s ces <2n7ru - —2——> (u real, non-integer); (1-5)

n=1

the corresponding fractional (‘W -’) derivatives are received on the basis of
the holomorphy of (1-4) as function of s. Herewith — surprisingly — the
theory is closely connected with properties of an important class of higher
special functions by relation:

o ]

D(s)™'¢(1 = 5. (), (1-6)

)
fE’:
Il

(v) = u — [u] denoting the ‘fractional part’ of u.
On the right of (1-6), {(s,u) means the zeta-funciion of Hurwilz,
familiar in number theory, defined for Res > 1, uw real, v # 0, -1,-2,...

as the sum 5 (m + u)”° and for other s # 1 by analytic continuation
m=0

with respect to the complex variable s. (We know that ((s,1) = {(s) is the
Riemann zeta-function.)
Remark that the main properties of the kernel Z; are:

'For the terms ‘kernel function’ and ‘singuler integral’ we refer e.g. to HaRDY-
RogGosiNsKl (1944) and FEIER (1949).
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(I) For any fixed v € (0,1), Zs(u) is an entire function of s, 1. e.
it is regular everywhere on the s-plane; furthermore for any fixed s and
non-integral real u, the formula ga—u—ZsH(u) = Zs{(u) holds.

(IT) Since Zo(u) = ~1, Z,(uv) = =By(v) (p = 1,2,...), the kernel
Zs(u) can be regarded as a common generalization of the Bernoulli poly-
nomials.?

(111} We have the relations:

(=1)s = Z:(u) foru € (0,1), s arbitrary; (1-7)
1
bed o~ b P an
Zo (w2, (z —u)du = Z, (1-8)
0
for z € (0,1) and Res;,Resy >0
Application of Z,(uv) to New Summation Methods
for Ordinary Fourier Series
In an international congress report held lately (see MIKOLAS, 1990a), a
general idea due to the author has been d1scu55f=d in detail, namely that

ot

he fractional integral (1-2) can be useful for summation of series not only
as function of the variable z (this way was successfully followed in a fa-
mous monograph of HARDY-RIESZ (1915), introducing the so-called ‘typ-
ical means’), but there is also another, alike so fruitful possibility: the
application of fractional integrals as funciions of the order v. The most
comprehensive summation process thus obtained is now called in ‘tbe liter-
ature (M)-summation, and it is defined for any series of functions 7 on(z)

n=1
so that the fractional integrals occurring on the right of (2-1) exist, by the

formula:

o

o0

M 2: . v ¢

(M) Qoﬂ(m) = ,,I_Lm+0 \_\Z l‘oL’:‘Pn- ' (2'1)
n=1

n=1

Let us stress that the method (2-1) is specially fit e. g. for summing trigono-
metric Fourler series of the type

- 1
Z e, cn‘—-'-/f(t)e—znmtdt. (2-2)
0

n=-—-o0

2We denote by Bp(u) (p =0,1.2,...) the coefficients in the expansion
we*¥(e¥ — 1) = By(u) + By(w)w + Balu)w? + ... (ju] < 27).
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In this particularly important case it is suitable to split the definition (2-1)
so to say into two variants:

(M) Z cnel™ ™ = o + hm Z Cn(i2n7ri)_962mir (2-3)
n=-—-oo NI -l
n#o

and to use the terms (M4 )-summation and (M- )-summation, respectively.
(Cf. MIKOLAS, 1960a and 1960b.)

By means of (2-3), considering the closed (integral) form of the sums
on the right and utilizing also some properties of the occurring kernel func-
tion Zs;, we can obtain such results on efficiency of the (M =£)-methods
which highly exceed the corresponding ones in the theory of any classi-
cal summation process. Nevertheless, we want to investigate now another,
similar but simpler method: the Dirichlet [briefly (D)-] summation. Its

definition for an arbitrary series ), Ay is:
k=0

z Ap=Ag+ hm LA; kY (2-4)
-: }__1

where we have to assume the convergence of the right-hand auxiliary serles
for ¥ > 0 small enough.” We shall see that this way implies also the kernel
Zs, but enables us to argue in the most direct manner.

We need an identity and two elementary estimates which can be de-
duced easily from the preliminaries about the Hurwitz zeta-function:

Zn” cosnT = {2-5)
z2=3!
1,\ L‘/ ﬁt?\—lﬁ -—‘— T\x" T |
= ;(27) (cos-—‘?—) (9) 4(1-1}%)Tg<i—u 1—§>J

P .
|2 -
s = i v [ - 1] -
iLn cosnt| < 1—%—;—5)7.—] ' {7‘ "y (2r = 1) Lo(2T)
rn:l i -
(N2>2, 0<7<27)
3The process (2-4) was firstly applied to trigonometric series by the author in

(MIKOLAS. 1960-61). For further special literary references see (ZeLLER. 1058,
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THEOREM 1. The trigonometric Fourier series
x
; \
o + Z(an cosnz + B sin nec)
n=1

with

R 1 _ (2-8)
o= — | f(t)dt, on=={ f(t)cosntdt,
0f /

Sty
o~
4
s
0

a.

i}
3
L 3
2,
&b

of & bounded, 2x-periodic function f is (D)-summable at a point z if and
only if the limit

rs
£llel) = Jim, P [ote08" | dple,0) = (e +0) + Fo - 1) (2-9)
0

(6 > 0, arbitrarily small) exists. The value (2-9) does not depend on 6, and
yields the (D)-sum of (2-8) at z, provided that it exists.

In particular, f([z]] = [f(z + 0) + f(z = 0)] holds at any point z
where both unilateral Iimits of the function exist; furthermore, the (D)-
summability is uniform in each closed continuity interval of the function
(including bilateral continuity at the end-points).

In our case, the domain of effectiveness of the (D)-method is greater
than that of any Cesaro method or of the Abel-Poisson summation.

PROOF: 1° Having in mind the definition (2-4) of the (Dj-method, let us
form the auxiliary series

0
g + Zn—‘}(an cosnz + fpsinz) (0<d<1l, 0<z<2w), (2-10)

n=1}

an, Bn denoting the ordinary Fourier coefficients on [0, 27] of a bounded
(L)-integrable function f (with the period 27).
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By the above, the closed integral expression of (2-10) may be written:

-2%:; / FO1+2 Z nY cosn(z —t)]dt =
3 n=1

27 27

1 1 <,
= ;/Gﬂ(ﬂi,u)du%-;/f(m-T)Zn cosntdT =
0 0 n=]
1 7 1 9\ !
= 57 [elewdu+ m" 7 (c0s ) T@)
27 : 2 2

which by

27
£ R NI R Y
gf,(.b ) [c (1 9, %) +¢(1-9 QW)}d, =

takes the form

with the kernel

gy =1
Zg(v) =1+ (277)9 <cos 2—12> Zy <1—> . (2-12)
2 27
[Cf. (1-6).]
Regarding the reverse of order of the integration and summation,
we have to stress the following: 1. the existence of the integral (2-11) is
assured by the boundedness of f and by the fact that the sum of the series

o
> n~Y cosnr as a function of 7 belongs to L(0, 27); 2. the estimate (2-7)
n=1

N ‘
for the partial sums 3 n~? cosnr justifies the termwise integration carried
n=1
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out; 3. this involves simultaneously the convergence of the series (2-10) for
every ¥ and z in consideration.

Taking the properties of ((©@,u) into account, we see that (2-11) is a
so-called singular integral with one single singular (exceptional) point at
v = 0. Namely the kernel function Zy(v) (for any fixed ¥ > 0) becomes
infinite in order v? ! as v — +0, but it is continuous and monotonously
decreasing at every v € (0,27).

Actually, the circumstance will be most important for us that after
subtracting an appropriate term bearing the ‘singularity’ at v = 0, the
remaining part of the kernel function Z; tends uniformly te 0in 0 < v < 2«
as ¥ — -+0. More precisely, by the definition of {(s,u) and using elementary
properties of the gamma-function, we can write

and both terms of the last bound tend to 0 with *}, independently of v.
2° Let now split the integral (2-11) into three parts:

AN -1 91
J= ~/<p(m,v) Zy(v) = 2= cos re) v dv+
AN 6
+ (cos -T—;—) INCO N /tp(m,v)vv’ldv—}- (2-14)
0

27

-1 ’
+ <cos 7r219> NG /go(m,’u)v”']dv =Ji+h+Js

6 denoting a fixed positive number < 1.
As far as the first term is concerned, with any given € > 0 a number
9. < 1 can be associated such that

27
7l < —;—/w(m,vn edv=e K (9< L), (2-15)
™
0
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where K = sup f(t).
tef0,27]

On the other hand, using again the gamma-function we get:

s
Jo —19‘/50(:0,1))7)‘3_1&0
0

-1 ]
= <cos7r—;i> re+1)"' -1 /go(m,v)v"“d,«u <
4]
9\ 7! 1
< (cos%) T9+1)"" -Kﬁ/vo”ldv:
3}

=K I‘(cos %12>_1 Tw+1)"" - 11 < Ke

provided that 9 < 9%.
Finally, there exists a number 92 > 0 such that

if only ¥ < 7.
Summing up, (2-14)—(2-17) yield together
gl =]

2w &
—L-/g,o(z,v)Zg(v)dr - z?/go(m,v)*vu'ldvi < 3Ke
0

27

(2-16)

for ¥ sufficiently small; this is equivalent to the statement that the limits

27 ]
. 1 . J-1
I T o z ¥ )
Jim l:%_ /cp( ,v)Za(v)dv] , olir_nw {fz‘/«p(w,v)v dv}
0

0 J

can exist only simultaneously, and in case of existence they are equal.
3° Assuming that both of the limits f(z + 0) and f(z — 0) exist, we

obtainfor 0 < n < é6 < 1:
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|

é
9 [ plevp’du - 3o +0) + fo - ) <
0

&
9 L
<3 /ﬁf($+v) — flz+0)|+]f(z —v) = f(z = 0)|Jv" ' dv+
“ 0
- |
+;ﬁa+m+f@-onP/vav—Jg
I 0
1 o
5‘{$mﬂﬂTTU-I@—MH+Qm[ﬂz~ﬁ-fm—OM}+
2 vE[0.7] ve 0.3
&
+2f”ﬂ:+v%~ﬂ:+mw+fh—w)—ﬂa~0mv”m%

+Sf(z+0)+ F(z - 0)|(1-6).

The last upper bound becomes plainly as small as we please, if first 77, next
(after fixing n) the number ¥ is chosen small enough. Since the bounds in
(2-15)—(2-17) are independent of z, also the assertion on uniform summa-
bility follows.

4° In order to show that the (D)-method is more effective than any
Cesaro or the Abel-Poisson process, we refer to the well-known fact that
the divergent series i n~UF) (7 £ 0), by a Tauberian theorem of HARDY
and LITTLEWOOD, ?s 1sun'n’na,ble by none of the methods just mentioned.
Nevertheless, this series is plainly summable in the (2-4) sense, because the
continuity of {(s) for s # 1 implies

oC
Ii =(i+ir) =0 = | 1499 ) = (1 7). 2-18
Jim Yo n U= dim (149 4in) = C(144r). (2:18)

n=1

Thus the verification of the theorem is completed.

Connection of the Integro-Differential Operator Z;
with Diophantine Approximations and the Riemann Hypothesis

Let us denote by (z), as earlier, the difference z — [z], i.e. the so-called
‘fractional part’ of a real number z. According to a classical theorem of
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KRONECKER (1884), which is of fundamental significance in the theory of
Diophantine approzimations, the sequence (nz) (n = 1,2,...) lies every-
where densely on the real line in case of any fixed irrational =z; further-
more, these points are at the same time uniformly distributed modulo 1 in
H. WEYL’s sense. (See e.g. WEYL, 1916.)

After a further important result of SIERPINSKI, namely that

. A
;\11131@ N 1;(713) =g le ), Bi{{nz)) = o(N) (3-1)

n=1

for every fixed irrational z, since the twenties, numerous applications of
Diophantine (ordinary or integral) mean estimates relating to Bernoulli
polynomials have been found in number theory, analysis, television and
radio technology. (Cf. e.g. HARDY-LITTLEWOOD, 1922a, 1922b, GAiL,
1949; GAL-KoxKSaiA, 1950; MiKoLAS, 1857, 1960c, 1990b; MORDELL, 1958;
VAN DER Poi, 1953).
This situation and the fact that recently the kernel function Z;(u)
rned out to be a natural extension of all Bernoulli functions B.({nz))
ogether (see the introduction), suggested looking for deeper connections
between the ‘fractional’ operator Z; and the theory of Diophantine ap-
roximations. In the sequel, we shall deal with such a contribution to the
problem which concerns Riemann's famous hypothesis (1859): each com-
the function ((s) has the real pa t1/2.

ot o

First of all, we -:ecail a few concepts and theorems from the analytic
N
theory of numbers. Let M(N) = 3 u(n) denote the well-known summa-

notation for the v-th term of this sequence %s

A classical theorem of LITTLEWOOD (1
strongly generalized by MIKOLAS (1949, 1950,
the validity of the estimate

) ,
M) = 3 cos2mol™ =0 (N77F), ve>o0 (3-2)

p=1

is equivalent to the Riemann hypothesis. On the other hand, we have the
nice theorem of FRANEL (1924) saying that Riemann’s h} pothesis is true
if and only if
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B(N) ’_ 9 '
QN)= Y <g£‘” - é(”N)> =0 (N“-*f), Ve > 0. (3-3)
v=1 -

We remark at once that the proof of Franel’s theorem is based on an im-
portant expedient of the theory of Dicphantine approximations, a formula
due to Landau:

/ ((au} _> <<au> _ %) du = l{(z 2 = (;322, (3-4)

where a, b are natural numbers and (a, b}, {a, z’)} denote the greatest com-
mon divisor and the least common multiple of this couple, resp.
MR

For our purposes, it is also essential that Franel’s sum (3-3) has an
alternative representation {cf. e.g. LANDAU, 1927, pp. 172-173):

{ 1

AN) = @(17\/') }[/{
Y 0

which indicates by the occurrence of By({nz)) on the right explicitly the
‘Diophantine approximatic’ background of Q(#&). So we are led to the
idea: a strong generalization of the square-integral in (3-5) with the kernel
function Zs(u) instead of Bi({u}), i.e. the study of

A

nz==1 n

1

= J[$ znerin (1] 55)
g Ln=1

could yield maybe a corresponding extension of Franel’s result (3-3). The
conjecture is correct, since

THEOREM 2. The Riemann hypothesis is true if and only if in the case of
any fixed € > 0 for s > 1/2 we have the relation

Hs(N) =0 (N'F). (3-7)

PROOF: 1° Suppose that Riemann’s hypothesis holds. Then, by the above-
mentioned theorem of Littlewood, to any fixed ¢ > 0 there exists a C =
C(e) positive constant for which

£

IM(N)| < Cle)NTTE (N =1,2,...). (3-8)
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On the other hand, an extension of (3-4) according to the author yields (cf
MIKOLAS, 1957, p. 46; and 1960c, p. 159):

jZS(au)Zs(bu)du - 2¢6(2s) <(“’ ) )2 <s > ;) |
0

= @m® \{ab) (3-9)

So, on the basis of (3-6) and (3-8), (3-9), we can write with
Ks = 2¢(2s)(27) 7%
i N AW,
[Hs(N)| = aélM <71.) M (?) O/Zs(au)Zs(bu)du <
N
- N N\| (a,b)®
5 () ()22
a;bzﬂ a b/l {ab}
\ it iz 5
, NN /Ny (a,b)”
< Kc ‘\2 o i 3 —
< KsO(e) a%(d <b) (ab)*
‘\' 2\
= K.C(e)’N'* 3 (a’vb)lw ;
ab=1 (ab)b R
and hence, using the notations (a,b) = ¢; a = ac, b = S
[Hs (V)] %ﬁ c* > 1
T A ND AT e = __dm’-—“"-_rg ED ite o
KSC(EJ)"N] T ”f,)_f_’ (QC~,BC\)5""T a.%:l QST L B8t . ole

Since the triple series in

the last term is plainly convergent, if s + %
14> 1, for every s > 1/2 we obtain {3-7).

\

2° Conversely, assume that in the case of each s > 1/2, to any given
¢ > 0 a2 number Ny = Ny(¢) and a constant

Y
which we have the inequality

A=

Alg) can be found for

[Ho (M) < A(e)N'F (N > Ng(e)).

Then putting s = 1, we get specially that for any fixed ¢ 0, and at
suitable choice of certain constants Ng = Ny(¢), A = A(eg), it holds [cf.
(3-4) and the positivity of the integrand]:

=X
’I_\;
l
o\_‘
[ —
/:\\
3
\E:’/
|
| =
N
<
SN
|=
N’
| S
a.
I~y
Il
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Hence it follows by (3-5) and ®(N) ~ ;3—2]\72 (N — oco):

Q(N) = () (HI(N) - 11~2> =0 (N‘“f). (3-10)

But a well-known inequality for |M(N)| yields

so that the application of (3-10) leads to

M(N) =0 (f\g}z-?"’;') .

Taking still into account Littlewood’s theorem (3-2), we can conclude the
validity of Riemann’s hypothesis.
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