SOME RECENT APPLICATIONS OT THE KERNEL FUNCTION OF GENERALIZED WEYI FRACTIONAL INTEGRALS

Miklós Mikolás

Department of Mathematics, Faculty of Civil Engineering, Technical University of Budapest

H-1521 Budapest, Hungary
Received: June 1, 1992

Abstract

Quite recently, comections of unusual type have been discussed by the author between the so-called 'fractional calculus' as a new branch of analysis and strong summation processes, furthermore, between fractional integration and certain number theoretic approximation methods. In the following, two different aspects of these inherences are considered: I. a new verification for the powerful method of (D)-summation in case of trigonometric series is given; II. such a generalization of the famous Franel theorem on Riemann's hypothesis (1924) is presented which shows the deeper background of the topic in the field of Diophantine approximations.

Keywords: fractional integration, Fourier analysis, summation methods, zeta-functions, Diophantine approximations.

Introduction

About thirty years ago, the author published a new theory of generalized integro-differential operators (called 'Ws-limits'), widening H. Weyl's concept of fractional integration. (See Mikolás, 1959.) As it is well known, the Weyl fractional integral of order $\theta>0$ is defined by

$$
\begin{equation*}
f_{\theta}(x)=\Gamma(\theta)^{-1} \int_{-\infty}^{x} f(t)(x-t)^{\theta-1} d t \quad(0<\theta<1, \quad 0<x<1), \tag{1-1}
\end{equation*}
$$

Where f denotes a Lebesgue integrable function of period I with $\int_{0}^{1} f(t) d t=$ 0. (Cf. Weyl, 1917). (1-1) is a pendant of the classical RiemannLiouville fractional integral over $\left(x_{0}, x\right)$

$$
\begin{equation*}
x_{0} I_{x}^{\nu} f=\frac{1}{\Gamma(\nu)} \int_{x_{0}}^{x} f(t)(x-t)^{\nu-1} d t \quad(\operatorname{Re} \nu>0) \tag{1-2}
\end{equation*}
$$

which can be regarded as a natural extension to non-integral order ν of Cauchy's integral solution for the initial-value problem

$$
\begin{gather*}
y^{(m)}(x)=f(x) \quad\left(x_{0}<x<x_{1}\right) \tag{1-3}\\
y\left(x_{0}\right)=y^{\prime}\left(x_{0}\right)=\cdots=y^{(m-1)}\left(x_{0}\right)=0
\end{gather*}
$$

and has become since the turn of this century - together with (1-1) an essential expedient of mathematics, physics and technical sciences. (Cf. Mikolás, 1975.)

In the above-mentioned theory of generalized Weyl fractional integrals of complex order the following fundamental facts hold: for the ' W_{s}-integral' in question we have the representation

$$
\begin{equation*}
f_{s}(x)=\int_{0}^{1} f(x-t)\left[\mathcal{Z}_{s}(t)-\mathcal{Z}_{s}(x)\right] d t \quad(\operatorname{Re} s>1) \tag{1-4}
\end{equation*}
$$

and the so-called kemel function ${ }^{1} \mathcal{Z}_{s}(u)$ occurring here may be written in the form

$$
\begin{equation*}
\mathcal{Z}_{s}(u)=\sum_{n=1}^{\infty} \frac{2}{(2 n \pi)^{s}} \cos \left(2 n \pi u-\frac{\pi s}{2}\right) \quad(u \text { real, non-integer }) \tag{1-5}
\end{equation*}
$$

the corresponding fractional (' $W_{s}-$ ') derivatives are received on the basis of the holomorphy of ($1-4$) as function of s. Herewith - surprisingly - the theory is closely connected with properties of an important class of higher special functions by relation:

$$
\begin{equation*}
Z_{s}(u)=\Gamma(s)^{-1} \zeta(i-s,\langle u\rangle) \tag{1-6}
\end{equation*}
$$

$\langle u\rangle=u-[u]$ denoting the 'fractional part' of u.
On the right of (1-6), $\zeta(s, u)$ means the zeta-function of Hurwitz, familiar in number theory, defined for $\operatorname{Re} s>1$, u real, $u \neq 0,-1,-2, \ldots$ as the sum $\sum_{m=0}^{\infty}(m+u)^{-s}$ and for other $s \neq 1$ by analytic continuation with respect to the complew variable s. We know that $\zeta(s, 1)=\zeta(s)$ is the Riemann zeta-function.)

Remark that the main properties of the kernel \mathcal{Z}_{s} are:

[^0](I) For any fixed $u \in(0,1), \mathcal{Z}_{s}(u)$ is an entire function of s, i. e. it is regular everywhere on the s-plane; furthermore for any fixed s and non-integral real u, the formula $\frac{\partial}{\partial u} \mathcal{Z}_{s+1}(u)=\mathcal{Z}_{s}(u)$ holds.
(II) Since $\mathcal{Z}_{0}(u) \equiv-1, \mathcal{Z}_{p}(u)=-B_{p}(u)(p=1,2, \ldots)$, the kernel $\mathcal{Z}_{s}(u)$ can be regarded as a common generalization of the Bernoulli polynomials. ${ }^{2}$
(III) We have the relations:
\[

$$
\begin{gather*}
(-1)_{s}=Z_{s}(u) \text { for } u \in(0,1), \quad s \text { arbitrary; } \tag{1-7}\\
\int_{0}^{1} Z_{s_{1}}(u) Z_{s_{2}}(x-u) d u=\mathcal{Z}_{s_{1}+s_{2}}(x) \tag{1-8}
\end{gather*}
$$
\]

for $x \in(0,1)$ and Res $s_{1}, \operatorname{Re} s_{2}>0$.

Application of $\mathcal{Z}_{s}(u)$ to New Summation Methods for Ordinary Fourier Series

In an international congress report held lately (see Mikolás, 1990a), a general idea due to the author has been discussed in detail, namely that the fractional integral (1-2) can be useful for summation of series not only as function of the variable x (this way was successfully followed in a famous monograph of HARDY-RIESZ (1915), introducing the so-called "typical means'), but there is also another, alike so fruitful possibility: the application of fractional integrals as functions of the order ν. The most comprehensive summation process thus obtained is now called in the literature (M)-summation, and it is defined for any series of functions $\sum_{n=1}^{\infty} \varphi_{n}(x)$ so that the fractional integrals occurring on the right of (2-1) exist, by the formula:

$$
\begin{equation*}
\text { (M) } \sum_{n=1}^{\infty} \varphi_{n}(x)=\lim _{\nu \rightarrow+0} \sum_{n=1}^{\infty} x_{0} I_{x}^{\nu} \varphi_{n} . \tag{2-1}
\end{equation*}
$$

Let us stress that the method (2-1) is specially fite. g. for summing trigonometric Fourier series of the type

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} c_{n} e^{2 n \pi i x}, \quad c_{n}=\int_{0}^{1} f(t) e^{-2 n \pi i t} d t \tag{2-2}
\end{equation*}
$$

[^1]In this particularly important case it is suitable to split the definition (2-1) so to say into two variants:

$$
\begin{equation*}
\text { (M土) } \sum_{n=-\infty}^{\infty} c_{n} e^{2 n \pi i x}=c_{0}+\lim _{\theta \rightarrow+0} \sum_{\substack{n=-\infty \\ n \neq 0}}^{\infty} c_{n}(\pm 2 n \pi i)^{-\theta} e^{2 n \pi i x} \tag{2-3}
\end{equation*}
$$

and to use the terms $\left(M_{+}\right)$-summation and (M_{-})-summation, respectively. (Cf. Mkolás, 1960a and 1960b.)

By means of (2-3), considering the closed (integral) form of the sums on the right and utilizing also some properties of the occurring kernel function \mathcal{Z}_{s}, we can obtain such results on efficiency of the ($M \pm$)-methods which highly exceed the corresponding ones in the theory of any classical summation process. Nevertheless, we want to investigate now another, similar but simpler method: the Dirichlet [briefly $(D)-]$ summation. Its definition for an arbitrary series $\sum_{k=0}^{\infty} A_{k}$ is:

$$
\begin{equation*}
\text { (D) } \sum_{k=0}^{\infty} A_{k}=A_{0}+\lim _{\hat{j} \rightarrow+0} \sum_{k=1}^{\infty} A_{k} \cdot k^{-k} \tag{2-4}
\end{equation*}
$$

where we have to assume the convergence of the right-hand auxiliary series for $\vartheta>0$ small enough. ${ }^{3}$ We shall see that this way implies also the kernel \mathcal{Z}_{s}, but enables us to argue in the most direct manner.

We need an identity and two elementary estimates which can be deduced easily from the preliminaries about the Hurwitz zeta-function:

$$
\begin{gather*}
\sum_{n=1}^{\infty} n^{-\vartheta} \cos n \tau= \tag{2-5}\\
=\frac{1}{4}(2 \pi)^{\vartheta}\left(\cos \frac{\pi v}{2}\right)^{-1} \Gamma(\vartheta)^{-1}\left[\zeta\left(1-\vartheta, \frac{\tau}{2 \pi}\right)+\zeta\left(1-\vartheta, 1-\frac{\tau}{2 \pi}\right)\right] \\
(0<\vartheta<1, \quad 0<\tau \leq 2 \pi), \\
|\zeta(\Theta, x)| \leq x^{-\Theta}+(1-\Theta)^{-1}+1 \quad(0<\Theta<1, \quad 0<x \leq 1), \tag{2-6}\\
\left|\sum_{n=1}^{N} n^{-\vartheta} \cos n \tau\right|<\left(1+\frac{1}{1-\vartheta}\right) \pi^{1-\vartheta}\left[\tau^{\vartheta-1}+(2 \pi-\tau)^{v-1}\right] \tag{2-7}\\
\\
(N \geq 2, \quad 0<\tau<2 \pi) .
\end{gather*}
$$

[^2]Theorem 1. The trigonometric Fourier series

$$
\alpha_{0}+\sum_{n=1}^{\infty}\left(\alpha_{n} \cos n x+\beta_{n} \sin n x\right)
$$

with

$$
\begin{gather*}
\alpha_{0}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(t) d t, \quad \alpha_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} f(t) \cos n t d t \tag{2-8}\\
\beta_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} f(t) \sin n t \dot{\alpha} t
\end{gather*}
$$

of a bounded, 2π-periodic function f is (D)-summable at a point x if and only if the limit

$$
\begin{equation*}
f[[x]]=\lim _{\vartheta \rightarrow+0}\left[\vartheta \int_{0}^{\delta} \varphi(x, t) t^{\vartheta-1}\right] d t, \varphi(x, t)=\frac{1}{2}[f(x+t)+f(x-t)] \tag{2-9}
\end{equation*}
$$

($\delta>0$, arbitrarily small) exists. The value (2-9) does not depend on δ, and yields the (D)-sum of (2-8) at x, provided that it exists.

In particular, $f[[x]]=\frac{1}{2}[f(x+0)+f(x-0)]$ holds at any point x where both unilateral limits of the function exist; furthermore, the (D)summability is uniform in each closed continuity interval of the function (including bilateral continuity at the end-points).

In our case, the domain of effectiveness of the (D)-method is greater than that of any Cesàro method or of the Abel-Poisson summation.

Proof: 1° Having in mind the definition (2-4) of the (D)-method, let us form the auxiliary series

$$
\begin{equation*}
\alpha_{0}+\sum_{n=1}^{\infty} n^{-\vartheta}\left(\alpha_{n} \cos n x+\beta_{n} \sin x\right) \quad(0<\vartheta<1, \quad 0 \leq x<2 \pi) \tag{2-10}
\end{equation*}
$$

α_{n}, β_{n} denoting the ordinary Fourier coefficients on $[0,2 \pi]$ of a bounded (L)-integrable function f (with the period 2π).

By the above, the closed integral expression of (2-10) may be written:

$$
\begin{gathered}
\frac{1}{2 \pi} \int_{0}^{2 \pi} f(t)\left[1+2 \sum_{n=1}^{\infty} n^{-\vartheta} \cos n(x-t)\right] d t= \\
=\frac{1}{\pi} \int_{0}^{2 \pi} \varphi(x, u) d u+\frac{1}{\pi} \int_{0}^{2 \pi} f(x-\tau) \sum_{n=1}^{\infty} n^{-\vartheta} \cos n \tau d \tau= \\
=\frac{1}{2 \pi} \int_{0}^{2 \pi} \varphi(x, u) d u+\frac{1}{2}(2 \pi)^{\vartheta-1}\left(\cos \frac{\pi \vartheta}{2}\right)^{-1} \Gamma(\vartheta)^{-1} \\
\int_{0}^{2 \pi} f(x-\tau)\left[\zeta\left(1-\vartheta, \frac{\tau}{2 \pi}\right)+\zeta\left(1-\vartheta, 1-\frac{\tau}{2 \pi}\right)\right] d \tau
\end{gathered}
$$

which by

$$
\begin{aligned}
& \int_{0}^{2 \pi} f(x-\tau)\left[\zeta\left(1-\vartheta, \frac{\tau}{2 \pi}\right)+\zeta\left(1-\vartheta, 1-\frac{\tau}{2 \pi}\right)\right] d \tau= \\
&=\int_{0}^{2 \pi}[f(x-v)+f(x+v)] \zeta\left(1-\vartheta, \frac{v}{2 \pi}\right) d v
\end{aligned}
$$

takes the form

$$
\begin{equation*}
J=\frac{1}{2 \pi} \int_{0}^{2 \pi} \varphi(x, v) Z_{\hat{v}}(v) d v \tag{2-11}
\end{equation*}
$$

with the kernel

$$
\begin{equation*}
Z_{\vartheta}(v)=1+(2 \pi)^{\vartheta}\left(\cos \frac{\pi \vartheta}{2}\right)^{-1} \mathcal{Z}_{v}\left(\frac{v}{2 \pi}\right) . \tag{2-12}
\end{equation*}
$$

[Cf. (1-6).]
Regarding the reverse of order of the integration and summation, we have to stress the following: 1. the existence of the integral (2-11) is assured by the boundedness of f and by the fact that the sum of the series $\sum_{n=1}^{\infty} n^{-\vartheta} \cos n \tau$ as a function of τ belongs to $L(0,2 \pi) ; 2$. the estimate (2-7) for the partial sums $\sum_{n=1}^{N} n^{-\vartheta} \cos n \tau$ justifies the termwise integration carried
out; 3 . this involves simultaneously the convergence of the series (2-10) for every ϑ and x in consideration.

Taking the properties of $\zeta(\Theta, u)$ into account, we see that (2-11) is a so-called singular integral with one single singular (exceptional) point at $v=0$. Namely the kernel function $Z_{v}(v)$ (for any fixed $\vartheta>0$) becomes infinite in order v^{v-1} as $v \rightarrow+0$, but it is continuous and monotonously decreasing at every $v \in(0,2 \pi)$.

Actually, the circumstance will be most important for us that after subtracting an appropriate term bearing the 'singularity' at $v=0$, the remaining part of the kernel function Z_{ϑ} tends uniformly to 0 in $0 \leq v \leq 2 \pi$ as $\vartheta \rightarrow+0$. More precisely, by the definition of $\zeta(s, u)$ and using elementary properties of the gamma-function, we can write

$$
\left.\begin{array}{l}
\left|Z_{\vartheta}(v)-2 \pi\left(\cos \frac{\pi \vartheta}{2}\right)^{-1} \Gamma(\vartheta)^{-1} v^{\vartheta-1}\right| \leq \\
\leq\left|1-(2 \pi)^{v}\left(\cos \frac{\pi \vartheta}{2}\right)^{-1} \Gamma(\vartheta+1)^{-1}\right|+ \tag{2-13}\\
+(2 \pi)^{\vartheta}\left(\cos \frac{\pi \vartheta}{2}\right)^{-1} \frac{\vartheta}{\Gamma(\vartheta+1)} ;
\end{array}\right\}
$$

and both terms of the last bound tend to 0 with ϑ, independently of v. 2° Let now split the integral (2-11) into three parts:

$$
\left.\begin{array}{rl}
J & =\frac{1}{2 \pi} \int_{0}^{2 \pi} \varphi(x, v)\left[Z_{\vartheta}(v)-2 \pi\left(\cos \frac{\pi \vartheta}{2}\right)^{-1} \Gamma(\vartheta)^{-1} v^{\vartheta-1}\right] d v+ \\
& +\left(\cos \frac{\pi \vartheta}{2}\right)^{-1} \Gamma(\vartheta)^{-1} \int_{0}^{\delta} \varphi(x, v) v^{\vartheta-1} d v+ \tag{2-14}\\
& +\left(\cos \frac{\pi \vartheta}{2}\right)^{-1} \Gamma(\vartheta)^{-1} \int_{\delta}^{2 \pi} \varphi(x, v) v^{\vartheta-1} d v=J_{1}+J_{2}+J_{3}
\end{array}\right\}
$$

δ denoting a fixed positive number <1.
As far as the first term is concerned, with any given $\varepsilon>0$ a number $\vartheta_{s}^{\prime}<1$ can be associated such that

$$
\begin{equation*}
\left|J_{1}\right| \leq \frac{1}{2 \pi} \int_{0}^{2 \pi}|\varphi(x, v)| \cdot \varepsilon d v=\varepsilon \cdot K \quad\left(\vartheta<\vartheta_{s}^{\prime}\right) \tag{2-15}
\end{equation*}
$$

where $K=\sup _{t \in[0,2 \pi]} f(t)$.
On the other hand, using again the gamma-function we get:

$$
\begin{gather*}
\left|J_{2}-\vartheta \int_{0}^{\delta} \varphi(x, v) v^{\vartheta-1} d v\right|= \\
\left.=\left.\vartheta\left|\left(\cos \frac{\pi \vartheta}{2}\right)^{-1} \Gamma(\vartheta+1)^{-1}-1\right|\right|_{0} ^{\delta} \varphi(x, v) v^{\vartheta-1} d v \right\rvert\,< \tag{2-16}\\
<\left|\left(\cos \frac{\pi \vartheta}{2}\right)^{-1} \Gamma(\vartheta+1)^{-1}\right| \cdot K \vartheta \int_{0}^{1} v^{\vartheta-1} d v= \\
=K\left|\left(\cos \frac{\pi \vartheta}{2}\right)^{-1} \Gamma(\vartheta+1)^{-1}-1\right|<K \varepsilon
\end{gather*}
$$

provided that $\vartheta<\vartheta_{\varepsilon}^{\prime \prime}$.
Finally, there exists a number $\vartheta_{\varepsilon}^{\prime \prime \prime}>0$ such that

$$
\begin{align*}
& \left|J_{3}\right|<\left(\cos \frac{\pi \vartheta}{2}\right)^{-1} \Gamma(\vartheta)^{-1} \cdot K(2 \pi)^{v-1} \int_{\delta}^{2 \pi}\left(\frac{v}{2 \pi}\right)^{-1} d v< \tag{2-17}\\
& <\vartheta\left(\cos \frac{\pi \vartheta}{2}\right)^{-1} \Gamma(\vartheta+1)^{-1} \cdot K \cdot 2 \pi \log (2 \pi / \delta)<K \varepsilon
\end{align*}
$$

if only $\vartheta<\vartheta_{\varepsilon}^{\prime \prime \prime}$.
Summing up, (2-14)-(2-17) yield together

$$
\left|\frac{1}{2 \pi} \int_{0}^{2 \pi} \varphi(x, v) Z_{v}(v) d v-\vartheta \int_{0}^{\delta} \varphi(x, v) v^{v-1} d v\right|<3 K \varepsilon
$$

for ϑ sufficiently small; this is equivalent to the statement that the limits

$$
\lim _{v \rightarrow+0}\left[\frac{1}{2 \pi} \int_{0}^{2 \pi} \varphi(x, v) Z_{v}(v) d v\right], \quad \lim _{v \rightarrow+0}\left[\vartheta \int_{0}^{\delta} \varphi(x, v) v^{j-1} d v\right]
$$

can exist only simultaneously, and in case of existence they are equal.
3° Assuming that both of the limits $f(x+0)$ and $f(x-0)$ exist, we obtain for $0<\eta<\delta<1$:

$$
\begin{aligned}
& \left.\left|\left.\right|_{\mid}\right|_{0}^{\vartheta} \varphi(x, v) v^{\vartheta-1} d v-\frac{1}{2}[f(x+0)+f(x-0)] \right\rvert\, \leq \\
& \leq \frac{\vartheta}{2} \int_{0}^{\delta}\left[|f(x+v)-f(x+0)|+|f(x-v)-f(x-0)| \mid v^{\hat{v}-1} d v+\right. \\
& +\frac{1}{2}|f(x+0)+f(x-0)|\left|v \int_{0}^{\delta} v^{\hat{\imath}-1} d v-1\right| \leq \\
& \leq \frac{1}{2}\left\{\sup _{v \in[0, \eta]}[|f(x+v)-f(x-v)|]+\sup _{v \in[0, \eta]}[|f(x-v)-f(x-0)|]\right\}+ \\
& \\
& +\frac{\vartheta}{2} \int_{\eta}^{\delta}[|f(x+v)-f(x+0)|+|f(x-v)-f(x-0)|] v^{-1} d v+ \\
& +\frac{1}{2}|f(x+0)+f(x-0)|\left(1-\delta^{\hat{v}}\right) .
\end{aligned}
$$

The last upper bound becomes plainly as small as we please, if first η, next (after fixing η) the number ϑ is chosen small enough. Since the bounds in (2-15)-(2-17) are independent of x, also the assertion on uniform summability follows.
4° In order to show that the (D)-method is more effective than any Cesàro or the Abel-Poisson process, we refer to the well-known fact that the divergent series $\sum_{n=1}^{\infty} n^{-(1+i \tau)}(\tau \neq 0)$, by a Tauberian theorem of HARDY and Littlewood, is summable by none of the methods just mentioned. Nevertheless, this series is plainly summable in the (2-4) sense, because the continuity of $\zeta(s)$ for $s \neq 1$ implies

$$
\begin{equation*}
\lim _{\vartheta \rightarrow+0} \sum_{n=1}^{\infty} n^{-(1+i \tau)} \cdot n^{-\vartheta}=\lim _{\vartheta \rightarrow+0} \zeta(1+\vartheta+i \tau)=\zeta(1+i \tau) \tag{2-18}
\end{equation*}
$$

Thus the verification of the theorem is completed.

Connection of the Integro-Differential Operator \mathcal{Z}_{s} with Diophantine Approximations and the Riemann Hypothesis

Let us denote by $\langle x\rangle$, as earlier, the difference $x-[x]$, i.e. the so-called 'fractional part' of a real number x. According to a classical theorem of

Kronecker (1884), which is of fundamental significance in the theory of Diophantine approximations, the sequence $\langle n x\rangle(n=1,2, \ldots)$ lies everywhere densely on the real line in case of any fixed irrational x; furthermore, these points are at the same time uniformly distributed modulo 1 in H. Weyl's sense. (See e.g. Weyl, 1916.)

After a further important result of SIERPINSKI, namely that

$$
\begin{equation*}
\lim _{N \rightarrow \infty} N^{-1} \sum_{n=1}^{N}\langle n x\rangle=\frac{1}{2}, \quad \text { i.e. } \quad \sum_{n=1}^{N} B_{1}(\langle n x\rangle)=o(N) \tag{3-1}
\end{equation*}
$$

for every fixed irrational x, since the twenties, numerous applications of Diophantine (ordinary or integral) mean estimates relating to Bernoulli polynomials have been found in number theory, analysis, television and radio technology. (Cf. e.g. Hardy-Littlewood, 1922a, 1922b, GÁL, 1949; GÁl-Koksma, 1950; Mikolás, 1957, 1960c, 1990b; Mordell, 1958; Van der Pol, 1953).

This situation and the fact that recently the kernel function $\mathcal{Z}_{s}(u)$ turned out to be a natural extension of all Bernoulli functions $B_{r}(\langle n x\rangle)$ together (see the introduction), suggested looking for deeper connections between the 'fractional' operator \mathcal{E}_{s} and the theory of Diophantine approximations. In the sequel, we shall deal with such a contribution to the problem which concerns Riemann's famous hypothesis (1859): each complex zero of the function $\zeta(s)$ has the real part $1 / 2$.

First of all, we recall a few concepts and theorems from the analytic theory of numbers. Let $M(N)=\sum_{n=1}^{N} \mu(n)$ denote the well-known summatoric Möbius function, $\Phi(N)=\sum_{n=1}^{N} p(n)$ the summatoric pendant of Euler's function. Then $\Phi(N)$ gives simultaneously the number of all fractions (rational numbers) h / k with $0<h \leq k \leq N,(h, k)=1, k=1,2, \ldots, N$ in ascending order, i.e. of the so-called Farey series of order N. The usual notation for the ν-th term of this sequence is $\varrho_{i}^{N}(\nu=1,2, \ldots$, $\bar{\Phi}(N))$.

A classical theorem of Littiewood (1912) which has been later strongly generalized by Mikolás (1949, 1950, 1951a, 1951b) asserts that the validity of the estimate

$$
\begin{equation*}
\mathcal{M}(N)=\sum_{\nu=1}^{\Phi(N)} \cos 2 \pi \underline{Q}_{v}^{(N)}=O\left(N^{\frac{1}{2}+\xi}\right), \quad \forall \varepsilon>0 \tag{3-2}
\end{equation*}
$$

is equivalent to the Riemann hypothesis. On the other hand, we have the nice theorem of FRANEL (1924) saying that Riemann's hypothesis is true if and only if

$$
\begin{equation*}
\mathcal{Q}(N)=\sum_{\nu=1}^{\Phi(N)}\left(\varrho_{\nu}^{(N)}-\frac{\nu}{\Phi(N)}\right)^{2}=O\left(N^{-1+\varepsilon}\right), \quad \forall \varepsilon>0 \tag{3-3}
\end{equation*}
$$

We remark at once that the proof of Franel's theorem is based on an important expedient of the theory of Diophantine approximations, a formula due to Landau:

$$
\begin{equation*}
\int_{0}^{1}\left(\langle a u\rangle-\frac{1}{2}\right)\left(\langle b u\rangle-\frac{1}{2}\right) d u=\frac{1}{12} \frac{(a, b)}{\{a, b\}}=\frac{(a, b)^{2}}{12 a b} \tag{3-4}
\end{equation*}
$$

Where a, b are natural numbers and $(a, b),\{a, b\}$ denote the greatest common divisor and the least common multiple of this couple, resp.

For our purposes, it is also essential that Franel's sum (3-3) has an alternative representation (ĉ. e.g. LANDAU, 1927, pp. 172-173):

$$
\begin{equation*}
\mathcal{Q}(N)=\frac{1}{\Phi(N)}\left\{\int_{0}^{1}\left[\sum_{n=1}^{N}\left(\langle n x\rangle-\frac{1}{2}\right) \mathcal{M}\left(\frac{N}{n}\right)\right]^{2} d x-\frac{1}{12}\right\} \tag{3-5}
\end{equation*}
$$

which indicates by the occurrence of $B_{1}(\langle n x\rangle)$ on the right explicitly the 'Diophantine approximatic' background of $\mathcal{Q}(N)$. So we are led to the idea: a strong generalization of the square-integral in (3-5) with the kernel function $\mathcal{Z}_{s}(u)$ instead of $B_{1}(\langle u\rangle)$, i.e. the study of

$$
\begin{equation*}
\mathcal{H}_{s}(N)=\int_{0}^{1}\left[\sum_{n=1}^{N} \mathcal{Z}_{s}(n x) \mathcal{M}\left(\frac{N}{n}\right)\right]^{2} d x \tag{3-6}
\end{equation*}
$$

could yield maybe a corresponding extension of Franel's result (3-3). The conjecture is correct, since
Theorem 2. The Riemann hypothesis is true if and only if in the case of any fixed $\varepsilon>0$ for $s>1 / 2$ we have the relation

$$
\begin{equation*}
\mathcal{H}_{s}(N)=O\left(N^{1+\varepsilon}\right) . \tag{3-7}
\end{equation*}
$$

Proof: 1° Suppose that Riemann's hypothesis holds. Then, by the abovementioned theorem of Littlewood, to any fixed $\varepsilon>0$ there exists a $C=$ $C(\varepsilon)$ positive constant for which

$$
\begin{equation*}
|\mathcal{M}(N)|<C(\varepsilon) N^{\frac{1}{2}+\frac{5}{2}} \quad(N=1,2, \ldots) . \tag{3-8}
\end{equation*}
$$

On the other hand, an extension of (3-4) according to the author yields (cf. Mikolás, 1957, p. 46; and 1960c, p. 159):

$$
\begin{equation*}
\int_{0}^{1} \mathcal{Z}_{s}(a u) \mathcal{Z}_{s}(b u) d u=\frac{2 \zeta(2 s)}{(2 \pi)^{2 s}}\left(\frac{(a, b)}{\{a, b\}}\right)^{2} \quad\left(s>\frac{1}{2}\right) . \tag{3-9}
\end{equation*}
$$

So, on the basis of (3-6) and (3-8), (3-9), we can write with $K_{s}=2 \zeta(2 s)(2 \pi)^{-2 s}$:

$$
\begin{gathered}
\left|\mathcal{H}_{s}(N)\right|=\left|\sum_{a, b=1}^{N} \mathcal{M}\left(\frac{N}{a}\right) \mathcal{M}\left(\frac{N}{b}\right) \int_{0}^{1} \mathcal{Z}_{s}(a u) \mathcal{Z}_{s}(b u) d u\right| \leq \\
\leq K_{s} \sum_{a, b=1}^{N}\left|\mathcal{M}\left(\frac{N}{a}\right)\right|\left|\mathcal{M}\left(\frac{N}{b}\right)\right| \frac{(a, b)^{s}}{\{a, b\}^{s}} \leq \\
\leq K_{s} C(\varepsilon)^{2} \sum_{a, b=1}^{N}\left(\frac{N}{a}\right)^{\frac{1+\varepsilon}{2}}\left(\frac{N}{b}\right)^{\frac{1+\varepsilon}{2}} \cdot \frac{(a, b)^{2 s}}{(a b)^{s}}= \\
=K_{s} C(\varepsilon)^{2} N^{1+\varepsilon} \sum_{a, b=1}^{N} \frac{(a, b)^{2 s}}{(a b)^{s+\frac{1+\varepsilon}{2}}}
\end{gathered}
$$

and hence, using the notations $(a, b)=c ; a=\alpha c, b=\beta c$:

$$
\frac{\left|\mathcal{H}_{s}(N)\right|}{K_{s} C(\varepsilon)^{2} N^{1+\varepsilon}} \leq \sum_{\substack{\alpha, \beta, s=1 \\(\alpha, \beta=1}}^{\infty} \frac{c^{2 s}}{(\alpha c \cdot \beta c)^{s+\frac{1+\varepsilon}{2}}} \leq \sum_{\alpha, \beta, c=1}^{\infty} \frac{1}{\alpha^{s+\frac{1+\varepsilon}{2}} \cdot \beta^{s+\frac{1+\varepsilon}{2}} \cdot c^{1+\varepsilon}}
$$

Since the triple series in the last term is plainly convergent, if $s+\frac{1+\varepsilon}{2}>$ $1+\varepsilon>1$, for every $s>1 / 2$ we obtain (3-7).
2° Conversely, assume that in the case of each $s>1 / 2$, to any given $\varepsilon>0$ a number $N_{0}=N_{0}(\varepsilon)$ and a constant $A=A(\varepsilon)$ can be found for which we have the inequality

$$
\left|\mathcal{H}_{s}(N)\right|<\Lambda(\varepsilon) N^{1+\varepsilon} \quad\left(N \geq N_{0}(\varepsilon)\right)
$$

Then putting $s=1$, we get specially that for any fixed $\varepsilon>0$, and at suitable choice of certain constants $N_{0}=N_{0}(\varepsilon), \Lambda=\Lambda(\varepsilon)$, it holds [cf. (3-4) and the positivity of the integrand]:

$$
\begin{gathered}
\left|\mathcal{H}_{1}(N)\right|=\int_{0}^{1}\left[\sum_{n=1}^{N}\left(\langle n u\rangle-\frac{1}{2}\right) \mathcal{M}\left(\frac{N}{n}\right)\right]^{2} d u= \\
=\frac{1}{12} \sum_{a, b=1}^{N} \mathcal{M}\left(\frac{N}{a}\right) \mathcal{M}\left(\frac{N}{b}\right) \frac{(a, b)^{2}}{a b}<\Lambda(\varepsilon) N^{1+\varepsilon} \quad\left(N \geq N_{0}(\varepsilon)\right)
\end{gathered}
$$

Hence it follows by $(3-5)$ and $\Phi(N) \sim \frac{3}{\pi^{2}} N^{2}(N \rightarrow \infty)$:

$$
\begin{equation*}
\mathcal{Q}(N)=\frac{1}{\Phi(N)}\left(\mathcal{H}_{1}(N)-\frac{1}{12}\right)=O\left(N^{-1+\varepsilon}\right) \tag{3-10}
\end{equation*}
$$

But a well-known inequality for $|\mathcal{M}(N)|$ yields

$$
M(N)=O(N \sqrt{Q(N)})
$$

so that the application of (3-10) leads to

$$
\mathcal{M}(N)=O\left(N^{\frac{1}{2}+\frac{5}{2}}\right)
$$

Taking stili into account Littlewood's theorem (3-2), we can conclude the validity of Riemann's hypothesis.

Peferences

Fejér, L. (1949): Intégrales singuliers à noyau positif. Commentaví Maih. Helvetici, Vol. 23, pp. 177-199.
Franel, I. (1924): Les suites de Farey et le problème des nombres premiers. Göttinger Nachrichten, Jahrg. 1924, pp. 198-201.
GÁL, I. S. (1949): A Theorem Concerning Diophantine Approximations. Nieuw Archief Wisk., Vol. 23, pp. 13-38.
GÁl, I. S. - Korsma, J. F. (1950): Sur l'ordre de grandeur des fonctions sommables. Indagationes Malh., Vol. 12. pp. 192-207.
Hardy, G. H. - Littlewood, J. E. (1922a): The Lattice Points of a Rightangled Triangle, I. Proc. London Math. Soc., Ser. 3, Vol. 20, pp. 15-36.

Hardy, G. H. - Littlewood, J.E. (1922b): The Lattice Points of a Rightangled Triangle, II. Abhandl. Math. Sem. Uni. Hamburg, Bd. 1, pp. 212-249.

Hardy, G. H. - Riesz, M. (1915): The General Theory of Dirichlet's Series. Cambridge Tracts in Math., Nr. 18.
Hardy, G. H. - Rogosmski, W. W. (1944): Fourier Series. Cambridge Tracts in Math.. No. 38.
Landav, E. (1927): Vorlesungen über Zahlenthorie II. Leipzig. Hirzel.
Littlewoon, J. E. (1912): Quelques conséquences de Thypothèse que la fonction く(s) de Riemann n’a pas de zéros dans to demiplan $R(s)>1 / 2$. Comples Rendus Acud. Sci. Paris, Vol. 154, pp. 263-266.
Mikolás, M. (19-49): Sur Phypothèse de Riemam. C'omptes Rendus Acail. Sci Paris. Vol. 22s, pp. 633-6336.
Mholás, M. (1950): Farey Series and Their Comection with the Prime Nimber Problem. I. Acha Sci. Math., Vol. 13, pp. 93-117.

Mholis. M. (1951a): Farey Series and Their Connection with the Prime Number Problem, II. Acta Sci. Math., Vol. 14, pp. $5 \cdots 21$.

Mikolás, M. (1951b): Über summatorische Funktionen von Möbiusschem Charakter. Comptes Rendus Acad. Sci. Bulgare, Vol. 4, pp. 9-12.
Mikolás, M. (1957): Integral Formulae of Arithmetical Character Relating to the Zetafunction of Hurwitz. Publicationes Math., Vol. 5, pp. 44-53.
Mikolás, M. (1959): Differentiation and Integration of Complex Order of Functions Represented by Trigonometrical Series and Generalized Zeta-functions. Acta Math. Acad. Sci. Hung., Vol. 10, pp. 77-124.
Mikolás, M. (1960a): Applications d'une nouvelle méthode de sommation aux séries trigonométriques et de Dirichlet. Acta Math. Acad. Sci. Hung., Vol. 11, pp. 317334.

Mikolás, M. (1960b): Sur la sommation de la série de Fourier au moven de l'intégration d'ordre fractionnaire. Comples Rendus Acad. Sci. Paris, Vol. 251. pp. 837-839.
Mikolás, M. (1960c): On a Problem of Hardy and Littlewood in the Theory of Diophantine Approximations. Publicationes Math, Vol. T, pp. 158-190.
Mikolás, M. (1960-61): Über die Dirichlet-Summation Fourierscher Reihen, Annales Univ. Sci. Budapest, Sectio Math., Vol. 3-4 (in mem. L. Fejér). pp. 189-195.
Minolás, M. (1975): On the Recent Trends in the Development, Theory and Applications of the Fractional Calculus. Berlin-Heidelberg-New York, Springer, Lecture Notes in Math., Vol. 457, pp. 357-381.
MikolÁs, M. (1990a): A New Method of Summation Based on Fractional Integration and Generalized Zeta-functions. Proc. III. Int. Conf. 'Fractional Calculus', Tokyo, May 29-June 1, 1989. The 100th Anniversary of Nihon University, College of Engineering. Koriyama, pp. 106-109.
Mikolás, M. (1990b): Einige neuere Aspekie und analytisch-technische Anwendungen Diophantischer Approximationen. Results in Mathematics - Resullate der Mathematik, Vol. 18, pp. 298-305.
Mordell, L. J. (1958): Integral Formulae of Arithmetical Character. Joumal London Math. Soc., Vol. 33, pp. 371-375.
Van der Pol, B. (1953): Radio Technology and the Theory of Numbers. Joumal Franklin Inst. Vol. 255, pp. 475-495.
Weyı, H. (1916): Über die Gleichverteilung von Zahlen mod. Eins. Math. Arnalen, Bd. 77. pp. 313-352.
Weys, H. (1917): Bemerkungen zum Begriff des Differential-Kocfizienten gebrochener Orcinung. Vierteljahrsschrifl Naturf. Ges. Zürach, Bd. 62, pp. 29(i-302.
Zeller, K. (1958): Theorie der Limitierungsverfahren. Berlin-Götingen-Heideberg, Springer.

[^0]: ${ }^{1}$ For the terms 'hernel function' and 'singular integral' we refer e.g. to HardyRogosinski (1944) and Fejér (1949).

[^1]: ${ }^{2}$ We denote by $B_{p}(u)(p=0,1,2, \ldots)$ the coefficients in the expansion $w \epsilon^{u w}\left(\epsilon^{w}-1\right)^{-1}=B_{0}(u)+B_{1}(u) w+B_{2}(u) w^{2}+\ldots(|w|<2 \pi)$.

[^2]: ${ }^{3}$ The process (2-4) was firstly applied to trigonometric semes by the anthor in (Mholás. 1960-61). For further special literary reformess see (7matir, 195s).

