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F.s.bstract 

A typical applied mathematical computation is a blend of symbolic and numerical manipu­
lations. 'With the advent of computers the range of the numerical methodts is dramaticaly 
broadened. The purpose of this paper is not to communicate new mathematical results. It 
is rather to dreW some attention to the symbolic comput2.tions by describing an elemntary 
reduction procedure for systems of multivariate polynomiai equations. 
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Introduction 

After formulating various problems in mathematical terms we often face 
a system of multivariate polynomial equations. It is not a routine com­
putation to solve such a system of multivariate polynomial equations. So 
translating a problem into this form does not seem to be a real progress 
in solving the original problem. As a consequence, there are no instructive 
examples how this setting of engineering problems provides insight into the 
nature of the original problem. 

The recent advances in computer algebra show some promising signs 
that systems of multivariate polynomial might be handled more successfully 
and this approach might be useful in connection with problems of size that 
are interesting from the point of view of real life applications. One purpose 
of this paper is to encourage engineers not to abandon a problem at once 
just because it involves polynomials of several variables some of which, are 
suppose, on fourth power. Of course no one is going to use a technique that 
is absolutely unknown for him or for her. So the second purpose of this 
paper is to get the reader be familiar with the basic ideas. The theory of 
symbolic computations is mathematically very involved. Beside the novelty 
of the approach this also might keep away the potential users. 

We will describe a radically elementary method to treat systems of 
multivariate polynomial equations. This may serve as a gentle introduction 
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into the field. Although nontrivial problems can be solved using this ele­
mentary technique it cannot be compared in power and flexibility with the 
most sophisticated methods based on the so-called Grobner bases technolo­
gies. The interested reader may consult with BOEGE, \\T., GEBAUER, H., 
KREDEL, H. (1986) and CZAPOR, S.R. (1989). 

Mathematical Background 

The most important special case of system of multivariate polynomial equa­
tions is when each equation is linear in each variable. The sound algebraic 
background of the system of linear equations is provided by the linear 
algebra. To attack problems of size of practical interest successfully the 
numerical and computational aspects have to be taken into consideration 
and they play an equally important part of the solution. 

The other extreme case of system of multivariate polynomial equa­
tions is when there is only one polynomial with only one unknown. The 
theoretical frame-,\Tork of this case is the so-called Galois theory. 'While the 
basic concepts and tools of the linear algebra generally are an important 
part of an engineer's arsenal those of the Galois theory are not and this 
standpoint is absolutely justified. This highly sophisticated theory has the 
famous conclusion that the general fifth degree equation cannot be solved 
in a finite number of steps starting from the coefficients of the polynomial 
using only addition, subtraction, multiplication, division and extracting 
roots. 

Beside this pessimistic statement the theory does not really have a 
constructive message to tackle practical problems. So the emphasis in prac­
tically significant cases is shifted to the field of the numerical techniques. 

The prospects of the general case of several multivariate polynomials 
are now looking bleak. The best we can do such a problem is 
to leave it as fast as we can. 

Once again we would like to convince the reader that although the 
situation is really not simple it is not so hopeless either. 

The algebraic geometry deals with high dimensional curves and sur­
faces in a very general sense. As the Galois theory is not an easy subject, 
nor is the algebraic geometry. However, there is a lucky circumstance here. 
The basic idea of simplifying system of multivariate polynomials does not 
require too much from the algebraic geometry. A not too ambitious ap­
proach can be motivated using very elementary concepts. 

As an analogy recall that the essence of the Gauss elimination can be 
explained without any linear algebra. Similarly the intuitive background 
of the theory of multivariate polynomial equations can be described with-
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out the formidable machinery of the algebraic geometry and commutative 
algebra. Of course this approach has severe limitations on the other hand. 
Using our analogy it is hard to imagine that someone can properly under­
stand the conjugate gradient method without any knowledge of the linear 
dependence and independence. 

Some Possible ApI=~liicati~)n,s 

Let us try to prove the following known result from the elementary geom­
etry. This result states that the foot points of the altitudes of a triangle 
and the half of the sides of the are on one circle. 

After introducing a coordinate system the problem can be formulated 
in algebraic terms. The triangle can be given by its vertices and we label 
these vertices by 1,2,3. The foot points of the altitudes and the half point 
of the sides are labelled by 4,5,6 and 7,8,9, respectively. 
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Fig. 1, We have the following information: 7 is the half point of the section 23; 
8 is the half point of the section 13; 9 is the half point of th'e section 12; 
4 is on the line 23; 5 is on the line 13;6 is on the line 12; 
the line 14 is perpendicular to the line 23; 
the line 25 is perpendicular to the line 13; 
the line 36 is perpendicular to the line 12. 

From this we would like to draw the conclusion that 7,8,9 are on the circle 
which passes through 456. 
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If (Xi, Yi) are the coordinates of the point i, 1 - i - 9, then the above 
conditions can be written in the form 

2Xi = X2 + X3, 2Yi = Y2 + Y3, 

2X8 = Xl + X3, 2Y8 = Yl + Y3, 

2X9 = Xl + X2, 2Y9 = Yl + Y2, 

X4 Y4 1 X5 Y5 1 X6 Y6 1 
X2 Y2 1 = 0, Xl YI 1 = 0, Xl Yl 1 = 0, 
X3 Y3 1 X3 Y3 1 X2 Y2 1 

(X4 - XI)(X3 - X2) + (Y4 - yI)(Y3 - Y2) = 0, 

(X5 - X2)(X3 - xI) + (Y5 - Y2)(Y3 - YI) = 0, 

(X6 - X3)(X2 - xJ) + (Y6 - Y3)(Y2 - yJ) = O. 

The conclusion can be written in the form 

X9 + Y? Xi Yi 1 x~ + Y§ X8 Y8 1 
x~ + y~ 1 2 ') 

1 X4 Y4 X .J... Y- X4 Y4 = 0, 4 I 4 =0, 
xg +yg X5 Ys 1 x~ + yg X5 Y.5 1 
x~ + Y€ X6 Y6 1 2 2 

X6 + Y6 X6 Y6 1 

2 I 2 Xg ,- Y9 xg Y9 1 
2 2 1 X4 +Y4 X4 Y4 = O. 

xg +yg X5 Y5 1 
~2.J... y2 
.!-6 I 6 X6 Y6 1 

Ivlultiplying out and expanding the determinants we have 12 polynomial 
equations as conditions and 3 equations as conclusions. VVe can simplify 
the problem a bit. First X7, Y7, X8, Ys, Xg, Y9 can be substituted into the 
conclusion directly eliminating these variables. Then we can identify the 
x-axis of the coordinate system with the line 12 and the y-axis with the 
line 36. The result is twofold since this results Yl = Y'2 = X(j = YG = X3 = ° 
and we get rid of the condition which expresses the fact that the line 12 
is perpendicular to the line 36. This sort of algebraic reformulation of 
elementary geometry problems is applicable in a variety of problems. The 
main question is whether there is a systematic way to verify if a polynomial 
equation is a consequence of other given equations or not. Further if there 
is such a systematic method and if this verification can be carried out by 
a computer efficiently, then we are in position to verify certain elementary 
geometry results with the assistance of a computer. 

Not everyone gets excited by the possibility of mechanical theorem 
proving. Therefore we list further possible applications having the same 
flavour. 
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A mechanical structure made up of segments of given length joined at 
given points is defined by certain number of variables and polynomial equa­
tions. Every movement of this object must take these equations into ac­
count. As a consequence manipulating polynomials we may check whether 
a robot arm can reach a given point or not. 

Probably a more realistic area of application is the field of differential 
equations. We shortly mention two straightforward ideas. Consider for 
example the next explicit system of ordinary differential equations 

dx p dy _ dz _ h 
dt = J, dt - g, dt - , 

v\There j, g, h are of the variables x, y, z, t and certain param-
say Oi, (3. 'We may be interested in the steady state solution of this 

system. In this case the left hand sides are equal to zero and so the steady 
state solution is the one of the resulting polynomial equation system. 

Working with functions (one or several variables) we often replace 
the functions by a truncated power series. This is a common idea in the 
catastrophe theory or in finite element computation or solving differential 
equations. The vanishing of the coefficients of the corresponding powers is 
a necessary condition for the power series to constitute a solution of the 
problem. In the case these cofficients are polynomials, the original problem 
leads to a system of polynomial equations. 

Eudidean Algorithm 

We have already mentioned Gauss' elimination procedure as an illustration. 
In fact the origin of the method we would like to sketch goes back to Euclid. 

In order to find the greatest common divisor of two integers, say 525 
and 231 following Euclid we may proceed in the following way. Suppose 
that d is a common divisor of these numbers. As d divides 525 and 231, it 
must divide 525 - 2 -,231. Thus the common divisors of the pair (525,231) 
coincide with the common divisors of the pair (63,231). Of course we can 
swap here to get the pair (231,63). Continuing in this fashion we get 

(42,63), (63,42), (21,42), (42,21), (0,21), (21,0). 

from which we can read off the information that the greatest common 
divisor of 525 and 231 is 2l. 

We can apply this idea to find the greatest common divisor of two 
polynomials. Although Euclid did not work with polynomials we also call 
this method Euclidean algorithm. 
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Consider the polynomials 

.i 3 '> 3? 
X - + 3x - x~ - 4x - 3, 3x + 10x- + 2x - 3 

and suppose that d is a common divisor of these polynomials. Here d is 
a polynomial of x. We are looking for a polynomial that divides both of 
the given polynomials and whose degree is as large as possible. Clearly d 
divides 

( 4 2 2 ) 3 2 ) 3 x + 3x - x - 4x - 3 - x(3x + 10x + 2x - 3 . 

Thus from the pair 

( 4 I 3 3 2 A 3 3 3 I 10 2 '2 3) x I X - X - '±x - , X I X T x-

we have the new pair 

., 2 3? 
(-XV - 5x - 9x - 9, 3x + lOx- + 2x - 3). 

Now d has to divide 

-3( _x3 
- 5x2 

- 9x - 9) + (3x 3 + lOx2 + 2x - 3) 

which produces the pair 

(3x
3 + 10x2 + 2x - 3, 5x£ + 25x + 30). 

Of course in this kind of computation we may replace 5xL + 25x + 30 by 
x 2 + 5x + 6. Next d must divide 

(3x 3 + 10x2 + 2x - 3) - 3x(x£ + 5x + 6). 

This gives the pair (x 2 + 5x + 6, 9x + 27) or the pair (XL + 5x + 6, x + 3). 
Finally, we have the pairs (0, x + 3) and (x + 3, 0). Thus x + 3 is a 
greatest common divisor of the original two polynomials. \Ve can see that 
the greatest common divisor is not uniquely determined since for instance 
2x + 6 and -x - 3 are also common divisors with maximal degree. 

This technique also works in connection with multivariate polynomi­
als. Consider the polynomials. 

2 2 'J :2 
X - 2xy + y - 1, x~ + 3xy - 4x - 5y + 3. 
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These can be viewed as polynomials in the variables x and y or they can be 
viewed as polynomials in the variable x, where the coefficients themselves 
are polynomials in y. From this point of view the polynomials are 

" 2 ,) ,) 
x-+(-2y)x+(y -1), x-+(3y-4)x+(-5y-+3). 

Suppose that d is a common divisor of the polynomials. Here d is a polyno­
mial of x, where the coefficients are polynomials of y. The common divisor 
we are looking for is the greatest in the sense that its degree (in x) is the 
greatest possible, 

As d is a common divisor it must divide 

which focuses our attention on the pair 

(x
2 + (-2y)x + C/--l), (-5y + 4)x + (6y~ - 4)). 

Hence d has to divide 

(5y - 4) [x 2 + (-2y)x + cl - 1)] + x [-(5y - 4)x + (6l- 4)] 

which gives the pair 

((_ 4y2 + 8y - 4);2; + (l- 1)(5y - 4), (-5y + 4)x + (6l- 4)). 

Therefore d divides 

(-5y + 4) [( -4112 + 8y - 4)x + (y2 - 1)(5y - 4) 1 
v J 

-(-l + 8y - 4)[(-5y + 4)x + (6y2 - 4)]. 

From the resulting pair 

(( -5y +4)(l-1)(5y - 4) - (_4y2 +8y - 4)(6yL - 4), (-5y+4)x+ (6y2 - 4)) 

or from the pair 

we have the new pair 
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-(y- 1)(5y-4) +8(y-1) (3y -2), 4(y-1) (6y -4)-(5y-4t(y -1) . (
? 2 22 22 ')2) 

Even if we do not finish the computation we can see that the degree (in x) 
of the greatest common divisor of the original two polynomial is at most 
zero. In other words the greatest common divisor cannot contain x. 

The essence of the procedure we worked with so far consists of con­
structing pairs of polynomials, where the first pair is formed from the given 
two polynomials. Another key observation we will use in connection with 
these pairs beside the previous ones is that each polynomial occurring in 
any of these pairs is a linear combination (with polynomial coefficients) of 
the original polynomials. To make this statement clearer suppose that 9 
and h are the original polynomials and p is a polynomial occurring as a 
member of one of the pairs. Then there are polynomials 11 and v such that 
p = ug + vh. 

This claim clearly holds for 9 and h the members of the initial pair 
since 9 = 1 -g + 0 -h and h 0 - 9 + 1 - h. Following the way we construct 
the next pair we can verify the claim for the members of this pair as well 
and we can continue our argument as long as Vie need. 

A Naive Reduction Procedure 

The tools now are together to sketch an elimination pr'Ocedure. Let 1, g, 
h, k be polynomials of the variables x, y, ;:; and consider the system of 
equations 

1 = 0, 9 = 0, h = 0, k = O. (1) 

First view 1 Q, h, f-: as polyn'Omials 'Of x, where the coefficients are polyno­
mials of y and z. Starting with the pair (j, g) using the Euclidean algorithm 
\\'e construct newer and newer pairs of polynomials. Suppose that p is one 
of the elements of such a pair. \Ve know that there exist polynomials u 
and v so that p = u1 + vg. Thus if (0:, /3, ~r) is a solution of the system (1), 
then (0:, ,6, ~t) satisfies both 1 = 0 and 9 = 0. Therefore (0:, /3, -)') satisfies 
p = 0 as well. Conversely if (0:, ,6, ,) satisfies f = 0 and p = 0, then it must 
satisfy 9 = 0 as well. This means that the original (1) system is equivalent 
to the new system 

1 = 0, p = 0, h = 0, k = O. (2) 

If by chance we detect a p that does not contain x, then the second equation 
of the corresponding (2) system does not contain x. In other words we 
eliminated successfully x from the second equation. 



REDUCING MULTIVARIATE POLYNOMIAL EQUATIONS 445 

In case the polynomial f admits a nontrivial factoring, say f = TS, 

where rand S are not constant polynomials, then the original system of 
equation (1) forks into two simpler systems of equations 

r = 0, g = 0, h = 0, k = ° 
and 

S = 0, g = 0, h = 0, k = 0. 

The Euclidean algorithm can reveal such a nontrivial factoring. For in­
stance this is the case when the degree of the greatest common divisor of 
f and g is at least one. Of course we can detect nontrivial fadoring by 
inspection. 

It is beyond the scope of this paper to show that the elimination procedure 
we described always works and terminates in finitely many steps. Neither 
we have the slightest intention to classify the resulting reduced system 
in order to decide whether it is consistent or inconsistent or in case it 
is consistent how can we read off the dimension of the solution set and 
the solutions themselves. Rather we illustrate the procedure with some 
examples of small size. 

First consider the system of equations 

f x +y + z = 0, 

g = xy + xz + yz = 0, 

h = xyz + 1 = 0. 

Consider f, g, h as polynomials of x, where the coefficients are polynomials 
of y and z. Starting with f and g using the Euclidean algorithm we find 
the polynomial y2 + yz + z2, which does not contain x. Similarly starting 

'2 2 with f and h we find y z + yz - 1. Hence the system 

f 0, g = 0, h = ° 
IS equivalent to the system 

f = x + y + z = 0, 
.) .) 

gl = y- + yz + z- = 0, 
'2 '2 

hi = Y z + y:: - 1 = 0. 
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Here x is eliminated from the second and third equation. 
Now consider m and h1 as polynomials of y, where the coefficients are 

polynomials of z. From the (gl, h1) pair the Euclidean algorithm gives the 
polynomial z3 + 1. Therefore the system f = 0, gl = 0, hI = ° is equivalent 
to 

f =x + y +:; = 0, 
2 2 g1 =y + y:; +:; = 0, 

h2 =:;3 + 1 = O. 

The solutions of :;3 + 1 = 0 are 

1 v'3 1 v'3. 
-1. -- + -i. - - -l. 

. 2 2 2 2 

The values of y and x can be determined by substituting back to the second 
and first equations. 

As our next example consider the system of equations 

f = x 2 
- 2xy + y2 - 1 = 0, 

9 = :r2 + 3;-cy - 4x - 5y2 + 3 0. 

Vie\v f and 9 as polynomials of x, where the coefficients are of polynomials 
of y. \Ve haye seen in the previous section that the Euclidean algorithm 
gives 

91 = [8(3 yL -- 2)(y - 1) - (y + 1J(5y - 4)2](y - 1). 

The system f = 0, 9 = () is equivalent to the system f = O. 91 = O. The 
solutions of 91 = 0 are 

9 0,1.--+ 
2 2 

9 
2 2 

The values of .r can be determined from the first equation USlllg these 
values. 

In the last example we illustrate how to detect a naIl trivial factoriza­
tion effecting the solution procedure. Let us solve the system of equations 

f =x + y + :; + t = 0. 
9 =xy + xt + yz + zt = O. 
h =xyz + ;Tyt + xzt + yzt = 0, 
k =xyzt + 1 = 0. 
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By inspection we find the factorization 

xy + xt + yz + zt = X(y + t) + Z(y + t) = (x + Z)(y + t). 

As g = 0, either x + z = 0 or y + t = O. On the other hand since f 0 
from x + z = 0 it follows that y + t 0 and conversely from y + t = ° it 
follows that x + z = O. 

Substituting z = -x and t = -y into hand k we have 

2 ? 2 ? 22 -x y - xy- + x y + xy- and x y + 1. 

Therefore the system f = 0, g = 0, h = 0, k = 0 is pnll1V"'PTlT to the system 

? .) 
X + z = 0, y + t = 0, x-y- + 1 = 0. 

For each given (complex) value of x we can compute the corresponding 
value of y from the last equation and then the value of z and t from the 
first and second equations. Thus the solution set is one dimensional and 
can be parameterized by x. 
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