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Abstract

Enhancing the resolution of point clouds is crucial in achieving detailed and precise 3D representations for various applications. 

Factors such as sensor calibration, scanning range, and environmental capability play a pivotal role in determining the overall quality 

of the captured point cloud data. Moreover, issues related to noise, occlusions, and sensor limitations can further impact the accuracy 

of the modelling outcome, underscoring the importance of optimizing point cloud resolution. Thus, researchers started to build new 

architectures with the aim of produce more dense and complete representation with higher resolution. Different methods have been 

created to achieve successful upsampling, such as interpolation techniques, deep learning strategies, and optimization algorithms. 

In this paper, we take a closer look at this exceptionally fast-developing field of science. According to this aim, the reader will better 

understand point cloud upsampling technology. 
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1 Introduction
The evolution of digital imaging technologies has not only 
improved the quality – especially the resolution – and acces-
sibility of visual content, but has also expanded its appli-
cations in various fields. The resolution of digital images 
can be defined through four key aspects: geometric, radio-
metric, spectral, and temporal resolution. Geometric res-
olution refers to the spatial detail in an image, determined 
by the pixel size and density; higher geometric resolution 
provides finer detail and greater clarity. Radiometric res-
olution indicates the sensitivity of the imaging system to 
variations in light intensity, defined by the number of bits 
per pixel; higher radiometric resolution allows for more 
precise discrimination of subtle differences in brightness. 
Spectral resolution pertains to the ability of the imaging 
system to capture information across different wavelengths 
of light, enabling the differentiation of various materials 
based on their spectral signatures. Temporal resolution 
describes the frequency at which images are captured over 

time, which is crucial for monitoring dynamic processes; 
higher temporal resolution means more frequent image 
capture, allowing for detailed tracking of changes over 
time. Each of these resolution aspects plays a critical role 
in the effective use and analysis of digital images across 
various scientific and practical applications. In the follow-
ing, we will focus on geometric resolution, leaving out the 
word "geometric" to mean resolution. Resolution is essen-
tial in the image processing workflow because it directly 
affects the detail and precision that can be extracted from 
an image. Higher resolution allows for more accurate iden-
tification and analysis of fine features, which is crucial in 
applications such as medical diagnostics, remote sensing, 
and forensic analysis. However, increasing the geometric 
resolution in imaging hardware presents significant chal-
lenges. Enhancing resolution requires more advanced sen-
sors with higher pixel densities, which can be costly and 
complex to manufacture. Additionally, higher resolution 
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images demand greater storage capacity and processing 
power, posing further technical and logistical hurdles. 
Increasing the resolution of a digital image post-capture, 
often called image upscaling/upsampling or super-reso-
lution, involves sophisticated computational techniques 
rather than changes to the original imaging hardware. One 
common approach is to use interpolation methods, such 
as bilinear or bicubic interpolation, which estimate new 
pixel values based on surrounding pixels. More advanced 
techniques include machine learning algorithms, which 
can predict high-resolution details from low-resolution 
images by learning patterns from large datasets. These 
methods can produce significantly enhanced images by 
reconstructing finer details and textures. However, while 
these techniques can improve apparent geometric resolu-
tion, they are limited by the quality and quantity of the 
input data and the algorithm's ability to predict missing 
information accurately. Point cloud (PC) super-resolu-
tion has the same goal: to create high-resolution, fine-de-
tailed, dense, and noiseless point cloud data with uniform 
density [1]. Thus, analyzing and interpreting 3D environ-
ments in LiDAR sensing, 3D mapping, and object recog-
nition becomes easier. 

Several definitions of point cloud have been identified in 
previous researches [2–7]. Point cloud data consists of geo-
metric points, often identified as three-dimensional points 
with coordinates (x, y, z) in a given/chosen coordinate sys-
tem. In theory, it consists of points located in space and 
determining the shape of an object or its distribution in 3D 
space. This collection of points may hold a vast amount of 
data. PCs are typically acquired from different sources like 
laser scanners (or alternatively LiDARs abbreviating Light 
Detection and Ranging), depth cameras, or photogram-
metry methods. PC technology is essential in a variety 
of fields, including geosciences [8–10], 3D reconstruction 
and modelling [11–13] virtual reality [14–16], robotics [17–
19], autonomous driving [20–22], architecture [23–25], 
archelogy [26–28] and agriculture [29–31], bathymetry 
mapping [32]. However, the accuracy of PC data may be 
restricted by distance, angle, overlap ratio, noise, or sur-
face characteristics. These restrictions can lead to a lack of 
precise details and decrease geometric precision. 

PC upsampling entails producing a more precise and 
elaborate depiction of the initial data points within the PC 
data, essential for creating 3D models and reconstructions 
with increased accuracy. Image super-resolution methods 
cannot simply solve point cloud upsampling tasks due to 
calculation difficulties arising from an extra dimension. 

Moreover, PC data usually do not have any spatial struc-
ture [33]. Thus, the term PC super-resolution is not widely 
used; however, some published works use this name [34–
38]. Instead of super-resolution, the methods' named "point 
cloud upsampling" is becoming more popular in current 
research. In order to enhance a lower-quality input of a 
three-dimensional scene, advanced computational tech-
niques, intricate algorithms, and sophisticated models are 
necessary to produce a more detailed and denser version 
of higher-quality PC data. By applying advanced algo-
rithms and Deep Learning (DL) techniques, super-reso-
lution methods can increase the level of detail, improve 
geometric accuracy, and recover missing information in 
low-quality PCs. This skill offers many possible appli-
cations in 3D reconstruction, object identification, scene 
comprehension, and augmented reality [39–43].

2 Challenges in point cloud data and the importance of 
point cloud upsampling
PC data presents various challenges that impact its qual-
ity, accuracy, and usability. Understanding and address-
ing these challenges are crucial for effectively utilizing PC 
technology. One of the primary challenges in PC data is low 
resolution [44, 45]. PCs acquired from sensors or scanners 
may have limited resolution due to hardware constraints 
or sparse sampling. This results in a lack of fine-grained 
details and an incomplete representation of the underlying 
object or scene (Fig. 1) [46, 47]. PC upsampling methods 
play a critical role in addressing this challenge by enhanc-
ing the resolution and level of detail in PC data [48, 49]. 
Non-uniform sampling patterns (Fig. 2) can also present 
challenges in PC data. PC data are often acquired using 
sensors with varying point densities, resulting in an uneven 
distribution of points across the scene. In some areas, the 
point density may be too sparse, while in others, it may be 
too dense. This inconsistency in point densities can affect 
subsequent processing tasks and lead to inaccuracies in 
the representation of the object's surface. Upsampling 
methods can effectively handle non-uniformly sampled 
PCs by inferring missing points and improving the over-
all density and consistency of the data.  Additionally, the 
computational complexity associated with processing 
large-scale PC data is a significant challenge. PCs can 
contain a vast number of points, especially in complex or 
large-scale environments. Processing and analyzing such 
datasets require efficient algorithms and significant com-
putational resources. Super-resolution techniques need to 
be scalable and computationally efficient to handle large 
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PCs in real-time applications. Upsampling methods play 
a crucial role in addressing the aforementioned challenges 
and unlocking the full potential of PC data. By enhancing 

the level of detail and resolution, super-resolution enables 
more accurate and comprehensive analysis, visualization, 
and reconstruction of 3D scenes [48, 49].

Fig. 1 Incomplete representation

Fig. 2 Uneven density
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3 Point cloud upsampling methodologies
3.1 Non-deep-learning based upsampling methods
Numerous publications in PC upsampling established the 
groundwork for subsequent researches. The pioneering 
work of Alexa et al. [50] suggested increasing the density 
of point clouds by creating a Voronoi diagram on a smooth 
moving least squares (MLS) surface and placing points 
at the diagram's vertices. This technique depends on the 
assumption that the surface is smooth in order to interpo-
late points efficiently. Denser point cloud representations 
were achieved by placing points at the vertices of a struc-
tured Voronoi diagram. Later, Lipman et al. [51] published 
a new operator called locally optimal projection (LOP) 
that is a parameterization-free method for point resam-
pling and surface reconstruction. This technique effectively 
estimates surfaces in point cloud data and can increase 
the density of the starting points by carrying out multiple 
LOP iterations. By utilizing the L1 norm, the LOP oper-
ator efficiently samples and rebuilds surfaces. This model 
was extended by Huang et al. [52] introducing a weighted 
version of the locally optimal projection (WLOP) operator, 
which improves the original LOP by incorporating local 
density weights for a more evenly distributed point cloud. 
This enhanced WLOP operator is more capable of manag-
ing sharp edges, outliers, and non-uniformity, overcoming 
some constraints of LOP when dealing with smooth sur-
faces. Huang et al. [53] introduced the edge-aware resam-
pling method (EAR) for point cloud upsampling. It involves 
initially resampling points based on normal information, 
moving them away from edges, before gradually upsam-
pling points near edge singularities. EAR adds position and 
normal details to ensure the operator is symmetrical and 
sensitive to edges, maintaining crisp features while being 
resistant to interference. Yet, the effectiveness of EAR is 
greatly influenced by the provided baseline data and adjust-
ment of parameters. Preiner et al. [54] introduced a variation 
of the weighted locally optimal projection operator called 
Continuous LOP (CLOP). CLOP employs a Gaussian mix-
ture model for representing the density of the input point 
cloud, which enables quick and effective surface reconstruc-
tion. This method is appropriate for producing a PC repre-
sentation that is more compact and seamless. Wu et al. [55] 
introduced a successful deep point representation method 
aimed at filling in large gaps in PC data, but the lack of 
global smoothness enforcement made it sensitive to noise.  
Dinesh et al. [38] suggested a method for enhancing 3D 
PCs by utilizing graph total variation (GTV) with surface 
normals. New points were created at the centroids of the 

triangles formed by Delaunay triangulation, while main-
taining the original 3D coordinates. The issue was resolved 
through a GTV optimization technique using the alternat-
ing method of multipliers (ADMM) and proximal gradient 
(PG) methods. The validity of the method was confirmed 
using Stanford 3D data [56], showing improved PC resolu-
tion without sacrificing geometric accuracy through point-
to-point and point-to-plane metrics. Also, Dinesh et al. [57] 
proposed a graph total variation approach for enhancing 
the resolution of colored PCs by utilizing a voxelized PC. 
Borges et al. [58] introduced a PC upsampling technique 
named SRLUT that leverages self-similarity in the PC. This 
method utilizes lookup-tables (LUTs) to connect a vox-
el's downsampled neighborhood with its children's occu-
pancy for achieving super-resolution at any fractional scale. 
Assuming self-similarity across different scales, the tech-
nique predicts child occupancy using downscaled iterations 
of one input PC, resulting in improved outcomes compared 
to methods such as nearest-neighbor interpolation [58].

3.2 Deep-learning based upsampling methods
Deep learning approaches have revolutionized the field 
of PC upsampling by leveraging the power of DL mod-
els. With their ability to learn complex patterns and rela-
tionships from large-scale datasets, these techniques have 
shown remarkable success in enhancing the resolution 
and level of detail in 3D PC data. DL techniques in the 
field of 3D vision signify a significant shift towards devel-
oping neural networks capable of autonomously extract-
ing data to enhance the quality of upsampling processes 
from initiation to completion. This trend underscores the 
increasing focus on leveraging sophisticated algorithms 
to improve the accuracy and efficiency of reconstructing 
high-resolution 3D. Pioneer approaches to deal with PC 
upsampling were brought in by groundbreaking studies 
such as PU-Net [33] and EC-Net [59]. Yu et al. [33] intro-
duced PU-Net, which utilizes the PointNet++ framework 
to capture diverse scale features for individual points and 
expands the point cloud through multi-branch MLPs, lead-
ing to the conversion of sparse point clouds into dense ones. 
Despite PU-Net surpassing previous optimization-driven 
techniques, its reliance on downsampled input results in 
an unnecessary reduction in resolution, resulting in point 
clouds lacking sharp edges and potentially introducing 
inconsistencies due to the neglect of spatial point relation-
ships. However, the outcome frequently seems coarse and 
lacks well-defined boundaries when enlarged, leading to 
objects with uneven edges and irregular protrusions. This 
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limitation arises from the need for PU-Net to decrease 
input size to capture multi-scale features, resulting in 
undesired resolution reduction and overlooking spa-
tial relationships among points, potentially resulting in 
uneven sample distribution. Furthermore, PU-Net faced 
challenges during training because it did not leverage 
the similarities between low and high-resolution PC data 
when predicting point coordinates.  Later, Yu et al.'s [59] 
EC-Net includes a combined loss that considers the prox-
imity of points and edges to maintain edge clarity; how-
ever, it necessitates labeled edge and surface information 
for training. EC-Net was created to improve PC resolu-
tion by considering edges and using a combined loss func-
tion to preserve sharp edges, but it necessitates meticu-
lous annotation of edge and surface data in the training 
phase. EC-Net focuses on detecting edges and reducing 
the distance between points and edges using an edge joint 
loss function. Yet, the approach is limited due to the need 
for costly edge annotations and extended training periods, 
making it impractical for extensive datasets. 

Multi-Step Patch Upsampling (MPU) [60] replicates 
point patches at various stages and is recognized for its 
high computational cost because it advances step by step. 
Additional data is also required to monitor the outputs of 
the intermediate stage. However, MPU also employs a 
progressive upsampling method, but varies by utilizing 
varying numbers of neighbors in each subsequent upsam-
pling unit. AR-GCN was introduced by Wu et al. [36], an 
initial endeavor to represent point cloud upsampling with 
a Graph Convolutional Network (GCN). AR-GCN consid-
ers each point and its surrounding points as an undirected 
graph, extracting local characteristics through graph con-
volution operations and enhancing point feature vectors to 
expand the points' quantity. Nevertheless, it is created for 
a specific increase in size during upsampling, requiring 
retraining for varying scales. The model employs resid-
ual graph convolution blocks and unpooling blocks to 
gradually increase the resolution of the point cloud, uti-
lizing similarities between input and output point clouds 
to achieve quicker convergence and better performance.

Li et al. [61] presented PU-GAN, which is also a GAN 
to enhance the numerical outcomes of enlarged PCs. The 
primary innovation is found in the competitive struc-
ture, highlighting the importance of the discriminator 
in improving performance. A uniformity loss was intro-
duced by PU-GAN to generate more uniform PCs, how-
ever it remains less effective with sparse and non-uniform 
input. Qian et al. [62] proposed PUGeo-Net; their network 

is designed to improve PC upsampling by training on local 
geometric features, estimating the augmented Jacobian 
matrix, and refining based on estimated tangent plane 
normals. The first step in the process involves PU-GeoNet 
parameterizing the 3D surface to a 2D domain, fol-
lowed by sampling within the parametric domain, and 
ultimately mapping the 2D samples back to the 3D sur-
face. Nevertheless, their approach necessitates further 
oversight via typical estimation. PUGeo-Net employs a 
distinct up-down-up module for adjusting features and 
starts by creating points in 2D space before converting 
them to 3D space. Qian et al. [63] presented PU-GCN, 
using graph-based network to improve the aggregation 
of locally multi-scale point information for cloud sam-
pling purposes. Their technique effectively integrates two 
GCN-based modules, Inception DenseGCN for feature 
extraction and NodeShuffle for feature expansion. Thus, 
the efficient encoding of local features and point genera-
tion with no supplementary resource is enabled. However, 
slightly coarse outputs may result from the potential sacri-
fice of some global PC structure information by the model. 

Dis-PU [64] disentangles the upsampling process into 
two sequential sub-networks: a more concentrated gen-
erator for creating a rough PC and a spatial refiner for 
improving it. Even with both global and local refinement 
units, the end result usually appears too polished, lead-
ing to a lack of texture details. However, Dis-PU focuses 
on resolving this issue by separating upsampling tasks 
and reaching cutting-edge outcomes, although current 
approaches still depend on flawless, noiseless low-reso-
lution PC inputs, restricting their effectiveness in point 
completion missions. MAFU [65] expands linear interpo-
lation to generate additional points and utilizes an adapt-
able training approach to accommodate varying upsam-
pling factors. MAFU uses linear approximation theory to 
interpolate nearby point coordinates and forecast offsets 
at individual points in order to reduce high-order approx-
imation errors. Furthermore, MAFU creatively adjusts 
interpolation weights and high-order approximation errors 
using a minimal neural network to understand the local 
structure of the input point cloud and produce consistent 
points for the upsampling objective. 

Ye et al. [66] introduced Meta-PU, a graph convolution 
network inspired by Meta-SR, which is widely used in sin-
gle-image super-resolution. Meta-PU utilizes a meta-sub-
network to adapt weights in a residual graph convolution 
(RGC) and incorporates farthest point sampling (FPS). 
Meta-PU uses a combination loss function to guarantee 
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that the resulting points are evenly distributed on the 
underlying geometry surface and are smoothly spread 
out, regardless of the scale factor. The results show that 
Meta-PU can handle various upsampling scales and per-
forms better than current methods designed for particu-
lar scale factors. However, Meta-PU encounters obstacles 
like high computational demands, inefficiency with sub-
stantial point clouds, and unevenly distributed results with 
potential local gaps. In addition, instability and decreased 
efficiency may be caused by having to anticipate a large 
number of convolution weights during training, particu-
larly with higher upscale factors. Luo et al. [67] designed 
PU-EVA that transforms point cloud upsampling by 
unlinking the upsampling rate from the network structure, 
allowing streamlined one-shot training for any rates with 
the use of edge vectors. The approach utilizes edge-vec-
tor-based affine combinations to achieve varying upsam-
pling rates, utilizing neighboring connections and limit-
ing approximation errors within second-order terms of 
Taylor's Expansion. However, PU-EVA is limited by net-
work size and running memory, restricting the range of 
upsampling rates they can manage. 

Zhao et al. [68] presented SSPU-Net, a self-supervised 
PC upsampling network that includes a neighbor expan-
sion unit (NEU) which dynamically learns weights for 
point interpolation based on local geometric structures. 
The system also consists of a differentiable rendering unit 
(DRU) that converts the PC into multiple images, allow-
ing for seamless training from start to finish. In order to 
facilitate self-supervised learning, shape-consistent and 
image-consistent losses were implemented, which guaran-
tee that the resulting dense PC retains identical 3D shapes 
and local geometric structures as the original input. 
Liu et al. [69] presented a methodology called PU-Refiner, 
which uses GAN architecture, working step-by-step from 
coarse to fine. The generator includes a feature expansion 
module for coarse features, a module for generating geo-
metric shapes from coarse point clouds, and a refinement 
module for creating dense point clouds. The discriminator 
helps the generator create detailed point clouds with high 
resolution by using various levels of features, improving 
the quality and precision of the enlarged PC data.

PU-Dense, developed by Akhtar et al. [70], utilizes 
a unique feature extraction module to extract PC data and 
a multi-scale U-Net structure with sparse convolutions 
for efficacious PC upsampling. It fixes PC data by creat-
ing many points and removing superfluous points, surpass-
ing methods based on voxel convolution. Nevertheless, 

indicating areas that could be enhanced, PU-Dense does not 
examine varying density properties of compressed point 
clouds or changes in density during processing. SAPCU 
by Zhao et al. [71] utilizing implicit neural representation, 
allowing for self-supervised and flexible upsampling at 
any scale. The approach transforms upsampling into locat-
ing the closest projection points on a hidden surface for 
initial points, using two neural networks trained without 
accurate dense PCs. The method has been proven through 
experiments to generate dense PC data that are high in 
quality, uniform, and complete. It attains competitive goal 
accomplishment and superior visual outcomes when com-
pared to top supervised methods available. Liu et al. [72] 
presented SPU-Net, the method that employs a rough-to-
precise reconstruction approach to efficiently extract and 
expand point features, and also utilizes self-projection 
optimization to improve upsampling quality by projecting 
noisy points onto the object's surface. This self-attention 
module is integrated with a network of graph convolution. 
Zhou et al. [73] introduced the ZSPU, a network inspired 
by ZSSR [74] that was designed for single-image Super-
Resolution (SR). The self-aware representation of the com-
plete point cloud is internally acquired using the ZSPU 
technique. This approach involves training the network 
from the scratch during testing by using augmented pairs 
of sparse-dense point clouds from the test data, eliminat-
ing the need for complicated setup and patch preprocess-
ing like patch-based methods. Although ZSPU effectively 
utilizes internal characteristics, it has a lengthy inference 
time and does not use data from external datasets. ZSPU 
applies this internal learning method to point cloud upsam-
pling, performing well in addressing areas with high cur-
vature and producing strong results on standard datasets. 

PU-Flow by Mao et al. [75] leverages normalizing flows 
(NFs) and weight prediction techniques. Using the invert-
ible nature of NFs, the method can transform PCs between 
Euclidean space and latent distribution in a lossless man-
ner. Upsampling is formulated as a local ensemble of 
latent variables, with interpolation weights learned adap-
tively from the local neighborhood. While it demonstrates 
high-quality results, limitations include handling non-uni-
form data and inferring global shapes. Liu et al. [76] intro-
duced PUFA-GAN, a GAN that is conscious of frequency 
for upsampling 3D point clouds, aimed at producing dense 
point cloud data on the surface below by effectively reduc-
ing high-frequency noise. The generator consists of three 
components: a feature extraction module using dynamic 
graph hierarchical residual aggregation (DGHRA) for 



Oláh et al.
Period. Polytech. Civ. Eng.|7

acquiring descriptive features at the point level, a feature 
expansion module based on cascaded hierarchical residual 
aggregation (HRA) to enhance feature intricacies, and a 
geometry generation module for translating features back 
to the geometry domain. The frequency-aware discrimi-
nator, consisting of a global discriminator and a high-fre-
quency discriminator, enhances the quality of upsampled 
PC data by taking into account overall context to enhance 
skeleton recognition and reduce high-frequency noise. 
Furthermore, any potential noise is specifically eliminated 
while testing with the use of a graph filter. 

PU-Transformer, the initial transformer model devel-
oped by Qiu et al. [77] for upscaling point clouds, show-
cases substantial enhancements both quantitatively and 
qualitatively compared to leading CNN-based approaches 
on different datasets. It displays excellent performance by 
successfully competing with top methods across various 
benchmarks. He et al.'s [78] network, presented Grad-PU, a 
method that interpolates a lower-resolution point cloud and 
enhances it through iterative optimization, enabling the use 
of any upsampling rates. This method uses a trained model 
to predict variances between interpolated and high-resolu-
tion target points. It utilizes the midpoint algorithm within 
neighborhood features; this network also attains great 
results because it converts the upsampling task into a prob-
lem of approximating coordinates, eliminating the neces-
sity for designing explicit upsampling modules. Zhong and 
Bai [79] utilized PSR-GAT as a method for improving PC 
upsampling through utilizing local geometric character-
istics. The method presents the P-GAT model, allowing 
for unlimited-scale super-resolution using a single model 
through meta-learning. It utilizes both residual connections 
and a graph attention network to merge different levels of 
features, decrease network deterioration, and enhance the 
quality of point cloud generation. Experimental results 
from benchmark datasets demonstrate that PSR-GAT 
attains the highest level of performance. Kumbar et al. [80] 
published ASUR3D a method for upsampling 3D PC data 
at any scale by utilizing Local Occupancy Representation 
and a trigonometric feature extractor as a universal surface 
approximator. ASUR3D, in contrast to traditional deep 
networks, employs the marching cube algorithm for effec-
tively increasing the resolution of PCs at specified speeds 
using only one trained model. ASUR3D surpassed current 
methods in analyzing heritage data, proving its accuracy 
and efficiency in practical scenarios. 

PU-SSAS by Zhao et al. [81] describes PC upsampling 
as locating the closest projection points on an implicit 
surface for seed points by employing two implicit neural 

functions trained via pretext learning activities. The tech-
nique is adaptable in terms of magnification, enabling 
training just once to tackle different scaling factors, and 
it is the initial method to merge self-supervised learning 
with upsampling at any scale. Zhao et al. [82] introduced 
APUNet a method that utilizes DisTransformer to simulate 
relationships between points while considering distance 
limitations. A network for extracting features combines 
patch and point correlations for overall object representa-
tion. An initial PC is optimized by a point set prediction 
module to generate an upsampled cloud, avoiding nearby 
points. This method changes from expanding features to 
predicting features, enhancing performance on sparse 
and non-uniform point clouds. Li et al. [83] introduced 
PU-CTG, which extract and integrate features across mul-
tiscale blocks efficiently, with the use of position encoding 
to assist in learning spatial relationships. The system uses 
a hierarchical upsampling technique before applying a 2D 
grid to improve feature variety and optimize point cre-
ation. The advanced DCD loss is employed in the train-
ing process to guarantee that created points match the 
desired surface. Results from experiments demonstrate 
that PU-CTG boosts upsampling and improves perfor-
mance in classifying point clouds. Liu et al. [84] intro-
duced PU-Mask an innovative method for upsampling PC 
that approaches the task as a problem of "local filling". 
A virtual mask is applied to each point, then filled with an 
auto-encoder to predict local point distribution and finally 
refined using a pseudo-Laplacian operator. PU-Mask 
excels over other methods by generating high-quality PC 
data that are evenly distributed and free of local noise or 
geometric inconsistencies, making it a top choice for sur-
face reconstruction projects. 

PU-Ray by Lim et al. [85] tackle the domain depen-
dency issue of current end-to-end PC upsampling meth-
ods. PU-Ray utilizes the sphere tracing algorithm with a 
neural implicit surface to accurately predict depth for rays 
being queried. It creates a varying number of inquiry rays 
through an innovative rule-driven method that tackles the 
problem of uneven distribution, making use of trained 
models with reconstruction loss functions based on near-
est neighbors. The approach also utilizes precise ground 
truth information for training in supervised and self-su-
pervised learning, making it appropriate for real-world 
Intelligent Transportation Systems (ITS) situations. Very 
recently, RE-PU by Han et al. [86], an innovative method 
for increasing PC density using self-supervised PC recon-
struction, has been able to increase density at any desired 
rate. The process involves two steps: first, training a model 
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with original PC data and a prior distribution, and second, 
increasing the number of sampled points through upsam-
pling with the trained model. The research emphasizes 
the significance of dynamic graph and offset attention 
components, along with the influence of previous distri-
butions on network effectiveness. In the future, research 
will investigate how point cloud reconstruction is related 
to upsampling, and how it can be applied in completing 
and generating point clouds.

3.3 Systematic classification of upsampling methods
In Section 3.2, we have introduced non-deep-learning and 
deep-learning-based upsampling methods for point clouds. 
Based on the detailed description, it is obvious that a con-
sistent classification based on common features should be 
established, and then the described methods should be clas-
sified accordingly. In total, 40 methods were subjected to 
a thorough analysis, and then, by progressively refining 
the classifications, five main categories were established. 
Sections 3.1 and 3.2 described the classification of methods 
based on traditional (non-deep learning) and artificial intel-
ligence (deep learning). In Section 3.3, we have categorized 
them according to the technology implemented by the algo-
rithms of the methods. Table 1 summarizes and illustrates 
the five main groups that have been established and which 
procedures are operational according to each aspect. For 
ease of reading and retrieval, references to the methods in 
the literature are included.

4 Conclusions
In summary, after a thorough review of the literature in the 
field, it can be stated that deep learning methods appeared 
after the initial statistical methods, which proved to be 
pioneering in the development of the scientific field. DL 
processes can be grouped according to their architectures. 
Based on this, PC upsampling seems to be dominant in 
three main directions in the future. The solutions relying 
on feature learning are likely to be the most prominent. 
Improved feature extraction solutions are credited for the 
advancement of deep learning networks in computer vision 
(CV). The feature processes consist of two main parts: the 
layers for extracting numerous features and the final classi-
fication neural network in the network structure. 

The second component is a basic neural network designed 
for classification, which plays a crucial role in computer 
vision (CV) tasks. The feature processes consist of two 
main parts: the layers for extracting numerous features 
and the final classification neural network in the network 

structure. The second one is a basic neural network that 
is simple and has complete connectivity. Nevertheless, as 
CV evolved, the number of layers preceding it grew, lead-
ing to the emergence of increasingly intricate structures, 
resulting in the gradual enhancement of recognition capa-
bilities in feature method networks in recent years. Based 
on our assumption, we can anticipate a similar develop-
ment curve in advancing upsampling techniques based 
on feature extraction. Another potential approach in PC 
upsampling is GAN and graph networks.  Significant prog-
ress in GAN technology has been evident, with the emer-
gence of new versions like Conditional GAN (CGAN), 
Deep Convolutional GAN (DCGAN), Wasserstein GAN 
(WGAN), and Mutual Information GAN (MIEGAN). 

Significant advancements like DALL-E in image gen-
eration applications illustrate notable progress in this 
field, building on past innovations. The ongoing advance-
ment in GAN technology has the immense potential to 
change the field of image production. In tasks such as 
PC upsampling, the ability of generative network models 
in the GAN framework to create high-quality images is 
vital, leading to promising results for future applications. 
Combining the advancing abilities of the GAN model with 
the upscaling procedure could potentially lead to a signifi-
cant increase in performance in the near future, ultimately 
paving the way for improved image generation methods 
and uses. The combination of GAN and graph technolo-
gies forms a strong synergy that is expected to expand the 
limits of what can be accomplished in the exciting realm 
of artificial intelligence and image processing. The third 
category, Edge-Aware Methods, holds lesser potential but 
is still noteworthy. Edge-aware networks are planned to 
tackle these particular difficulties by integrating edge data 
into the upsampling process. Utilizing the knowledge of 
edge patterns in the PC, these networks help produce more 
precise and detailed points during the upsampling pro-
cess. Edge-aware networks are a major step forward in PC 
upsampling technology, tackling the key issue of main-
taining intricate geometric features and edges. These net-
works achieve excellent performance by including edge 
information in the upsampling process, which is crucial 
for applications needing detailed 3D representations. 

There is great potential in the future of edge-aware 
networks for PC upsampling, with anticipated improve-
ments in algorithm efficiency, real-time processing, reli-
ability, and integration with various data modalities. 
These advancements will enhance the quality and usabil-
ity of upsampled PCs as well as broaden their usage in 
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different industries, resulting in notable technological and 
societal advantages. It should be noted that current tra-
ditional Convolutional Neural Networks (ConvNets) do 
not significantly impact upsampling point cloud data pro-
cessing. This restriction is a result of the pooling oper-
ations being computationally intensive for processing 
three-dimensional data. The complexity of pooling in a 

three-dimensional space makes it difficult for traditional 
ConvNets to manage PC upsampling tasks, leading to this 
problem effectively.  The failure to incorporate ConvNets 
in this particular task exposes a deficiency in the cur-
rent methods for manipulating PC data. The efficiency 
and effectiveness of ConvNets for upsampling are often 
limited by the high computational demand of pooling 

Table 1 Clustering point cloud upsampling methods

Cluster Technology Methodology

Surface and projection-based methods

Voronoi diagram [50] Surface-based

LOP [51] Projection-based

WLOP [52] Enhanced projection-based

CLOP [54] Continuous

GTV [38, 57] Surface-based

SAPCU [71] Neural representation

PU-SSAS [81] Implicit neural functions

PU-Ray [85] Sphere tracing algorithm

Edge-aware methods

EAR [53] Edge-aware

EC-Net [59] Edge-aware learning

PU-EVA [67] Edge-vector based

SRLUT [58] Self-similarity

Feature learning and upsampling methods

PU-Net [33] Multi-scale feature learning

MPU [60] Progressive upsampling

Dis-PU [64] Progressive upsampling

Meta-PU [66] Arbitrary-scale upsampling

MAFU [65] Linear approximation

Grad-PU [78] Gradient descent

PU-Dense [70] Sparse tensor-based

PU-Transformer [77] Transformer-based

PU-Flow [75] Flow-based 

ASUR3D [80] Local occupancy representation

SSPU-NET [68] Neighbor expansion

APUNet [82] DisTransformer

Graph and GAN-based methods

AR-GCN [36] Graph convolution

PU-GCN [63] Graph convolution

PU-GAN [61] GAN-based

PU-Refiner [69] GAN-based

PUFA-GAN [76] Frequency-aware GAN

PSR-GAT [79] P-GAT model

RE-PU [86] Offset attention component

Specialized and hybrid methods

Deep point representation [55] Gap-filling

PUGeo-Net [62] Geometry-centric

SPU-NET [72] Hierarchical folding

ZSPU [73] Zero-shot learning

PU-CTG [83] 2D grid

PU-Mask [84] Pseudo-laplacian operator
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operations in 3D space. Recently, there has been a signif-
icant increase in the number of networks being published 
in the field, leading to a call for a detailed examination 
of the impacts of upsampling methods. Thus, it would be 
advantageous and pertinent to carry out a thorough com-
parative analysis to measure the results obtained from uti-
lizing upsampling techniques. With the network architec-
ture evolving rapidly and data analysis tasks becoming 
more complex, it will be essential to assess the effects and 
efficacy of upsampling on network performance to guide 
future research efforts. By methodically examining the 

outcomes of various upsampling methods, and researchers 
can understand how these techniques impact network per-
formance and capacity to deal with different data types. 
This comparative analysis will not just provide insight into 
the advantages and constraints of upsampling, but also 
enhance comprehension of the significance of data aug-
mentation in network training and validation. In the end, 
this research will open the door for better approaches and 
tactics in designing networks, resulting in stronger and 
more precise models that can address the challenges of 
various datasets and real-world scenarios more effectively.
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