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Suppose that X is an arbitrary non negative random variable with three given moments 
E(X). E(X2) and Lower bounds will be given for the tail probabilities PU:: > al· 
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One of the most classical and most investigated class of probability in
equalities gives bounds on the expected value EJ(X) given Egi(X) = Ci, 

i = 1,2, ... ,m where X is a real valued random variable, Ci E R, f and gi E 
R -+ R such that the expectations above exist. In case gi (x) xi this is a 
modification of the moment problem (see SHOHAT and T.A.IIIARKIN,(1943) 
Ch.HI). The best known special case for X ~ 0 is P(X ~ a) ::; Eg(X)/g(a} 
(m = 1, f(x) = Ia.(x), the indicator function of [a, 00)) which is Ivfarkov's 
inequality for g( x) = x and Chebyshev's inequality for g( x) = x2

• These in
equalities can be found in most introductory texts (for more information on 
their history and recent advances see the References). On the other hand it 
is hard to find in the literature lower bounds on P(X ~ a). LOEVE (1977, 
p. 159) gives one for bounded random variables: if P(O S X S c) = 1 then 
P(X ~ a) ~ [Eg(X) - g(a}J/c. If only a > E(X) > 0 is given then clearly 
the best lower bound is trivial (=0). The same holds if both a > E(X) > 0 
and E(X2) (or VarX) are given. In case a < E(X) = 1 FELLER (1966, p. 
152) provides the inequality P(X > a) S (1- a )2/ E(X2). To get nontrivial 
bounds in general case suppose that E(X), E(X2) and E(X3) are given 
and we seek a Markov-Chebyshev type lower bound in the form 
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THEOREM. If X ~ 0 and E(X3) is finite then 

P(X > a) ~ 

(20: - 30:2 )E(X)ja + (30:2 - 1)E(X2)ja'2 + (1 - 20:)E(X3 )ja3 (2) 
sup 2( )? a> 1 0: 1 - 0: -

and if there exists a random variable X supported on {O, a, b} for some 
b > a with prescribed first, second and third moments then for this random 
variable X (2) is an equality (thus in many cases (2) cannot be improved). 

RE:VIARKS. Observe that on the right-hand side of (2) the sum of the coef
ficients is O. 

The explicit value of the best 0: is not simple, it is a solution of a cubic 
equation, and depends on E(Xt i = 1,2,3 and a. However, we need not 
use the best value. E.g. if we choose 0: = 2 we get a simple nontrivial (but 
not necessarily best) bound 

THE PROOF OF THE THEOREM If (1) holds for all X ~ 0 with finite E(X3) 
then it surely holds fOT all random variables degenerate at x ~ O. Thus for 
the indicator function Ia(x) of [a, (0) we have 

(4) 

Since p(x) ::; 0 on (0, ,bounded from above on (a,co), there exists an 
Xo < 0 such that p(xo) = O. p(x) < 0 on [a, then (4) does not 
give any nontrivial bound. Therefore there must exist an Xl ~ a such that 
p(Xl) = O. Denote by b E (a, co) the unique number where p(x) takes its 
maximum in (a, co). To get the best possible lower bounds we may suppose 
that p(b) = 1. For simplicity put Xo = 0 and Xl = a. Then we have the 
following conditions 

p(O) = p(a) = 0, p(b) = 1, p'(b) = 0. 

Using the notation 0: = bja we get 
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therefore Ia(X) ~ p~(X) for every 0:: > 1. Taking expectations on both 
sides and then supremum for 0:: > 1 on the right hand side we get (2). We 
get equality in (2) if X is supported on {O, a, b}. 

REMARK. The restriction X ~ 0 is essential. If X may take any x E R 
then (4) cannot hold since on R the right hand side of (4) is not bounded. 
Therefore noniriviallower bounds on P(IXI > a) require at least four mo
ments E(Xti = 1,2,3,4. 

1. X is a random variable having the same momenisi = 1,2,3 
as the uniform random variable on (0,1) then E(Xi) = (i + 1)-1 and 
thus (3) gives P(X > 1/2) ~ 1/6. This bound is shaTp and is achieved 
for the random variable P(X 0) = 1/6, P(X = 1/2) = 2/3 and 
P(X = 1/6) = 1/6. Loeve's bound with g(x) = x 3 and c = 1 is 1/8. 

2. If X is a random variable having the same moments as the exponential 
distribution with mean 1/)", then EX2 = 2/)..2 and EX 3 = 6/)..3. 

Thus the lower bound (2) for P(X ~ c\) is 1/12 for c = 1, 27/120 

for c = 2, and 125/688 for c = 3. For the exponentially distributed X, 

the corresponding exact p1'Obabilities aTe e- I .3679, e- I
/

2 = .6065, 
and e- I / 3 = .7165. Loeve's inequality does not cover this case. 
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