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Abstract

Accurately predicting the California Bearing Ratio (CBR) of soil is vital for civil engineering projects as it determines soil strength and 

stability, crucial for designing safe and durable infrastructure. Conventional methods for calculating CBR values are both expensive 

and time-consuming, prompting the need for more efficient approaches. This study explores the use of advanced machine learning 

(ML) techniques to improve workflow and productivity in CBR prediction. Specifically, the Improved Arithmetic Optimization Algorithm 

(IAOA) and the Bonobo Optimization Algorithm (SBOA) are applied to enhance the Stochastic Gradient Boosting Regression (SGBR) 

model for predicting CBR values. The SGBR model, known for its ability to handle complex datasets and nonlinear interactions, is 

optimized to improve predictive accuracy. Performance metrics such as the coefficient of determination (R2), n10-index, and Root 

Mean Squared Error (RMSE) are used to assess the model's performance. After training, testing, and validation with relevant data, the 

optimized SGIA model (SGBR enhanced by IAOA) achieves impressive results, including an n10-index of 1.000, a root mean square 

error of 0.161, and an R2 value of 0.981. These metrics demonstrate the SGIA model's capability to accurately forecast CBR values, 

offering a reliable, cost-effective alternative to traditional methods for soil evaluation in engineering applications.
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1 Introduction
Cities have been getting their resources and energy supply 
required for survival as in the case of living beings [1–3]. 
However, more methodical and sustainable resource man-
agement techniques are required because of the increasing 
urban inflows driven by population expansion and tech-
nological advancements [4]. A fundamental theme of this 
discussion is the creation of new, environmentally friendly 
materials that may be used in cities, with a particular focus 
on the building industry, which is one of the industries that 
use the most resources and contribute the most to envi-
ronmental damage. Soil, which is mostly used in building 
projects like roads and pavements, is extremely stressed, 
which highlights how important it is to understand the 
characteristics and behaviors of soil to ensure sectoral sus-
tainability. The CBR value of the subgrade has the possi-
bility of making an extremely huge impact on the overall 
cost of construction by altering the thickness and depth of 
construction in road pavement. By means of evaluating 

material strengths, the CBR penetration test calculates the 
bearing capability of materials that are intended to be used 
as the subgrade for a road during construction  [5]. This 
ratio, which may be stated as follows, is crucial in figuring 
out how thick the pavement and sub-base layers are.

CBR
Test Load

Standard Load
� �100 	 (1)

In this case, the "Test Load" is the force piercing a soil 
sample, while the "Standard Load" is the resistance pro-
vided by a standard crushed aggregate sample that offers 
a CBR of 100% to similar penetration. The larger value 
is taken up for design purposes. CBR values are usually 
tested at penetrations of 2.5 mm and 5 mm [6].

The design and construction of road infrastructure 
depend a lot on the precise evaluation of the geotechnical 
characteristics of the soil [7–10]. As of right now, the CBR 
and adjusted proctor parameters, including the maximum 
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dry unit weight (γd(max)) and optimum moisture content 
(ωopt), still have a significant influence on the character-
istics of subgrades, embankments, and pavement con-
structions. The updated proctor parameters help review 
the mechanical performance of soil regarding density and 
moisture content-soil being important in the design of 
road infrastructure  [11–13]. The values of CBR are con-
ventionally used to determine subgrade bearing capacity 
under various saturation and compaction conditions [14–
16]. This is particularly crucial as a community's level of 
economic development is significantly influenced by its 
transportation infrastructure [17–19].

The main issues in the determination of soil geotech-
nical characteristics, such as CBR and modified proctor 
parameters, are only substantial commitments of time and 
expense for laboratory testing, which delay the process of 
infrastructure design and construction. Therefore, several 
mathematical models using easily measurable information 
such as soil particle size distribution, Atterberg limits, spe-
cific gravity of solids, and plasticity index have been pro-
posed in the literature to predict these attributes, mostly 
based on MLR [20, 21]. However, in cutting-edge research, 
computer models based on AI approaches are progressively 
replacing conventional mathematical models [22–24]. This 
change is explained by the ability of computer methods to 
simultaneously analyze complex correlations across large 
datasets, providing improved predicted accuracy [25, 26]. 

Because of its excellent predictive accuracy and resil-
ience, the SGBR model was used in this work to estimate 
soil CBR values. In this situation, the ML model named 
SGBR is used because, in comparison to conventional 
statistical techniques, it is more accurate at making pre-
dictions and is capable of handling intricate, nonlinear 
interactions between input and target variables. In order 
to further improve the performance of the SGBR model, 
two optimization techniques were introduced: IAOA and 
SBOA. After incorporating this procedure, two new mod-
els were developed labeled as SGIA and SGSB, respec-
tively. These added optimizers have certain merits, in 
that they accelerate convergence, raise the performance 
of the prediction, and obtain the optimal model parame-
ters that reduce overfitting and enhance generalization 
skills. These hybrid models outperform the basic SGBR 
model because of the optimizers modifying model param-
eters adaptively with the aim of increasing accuracy and 
dependability in the forecasted values of soil CBR.

2 Study methodology
2.1 Data collection
These input variables are also essential to the ML models 
that come into play in predicting the CBR values. Each of 
these variables reveals different physical and chemical prop-
erties of soil, which, when combined, have an impact on the 
ability of the same to carry loads. The characteristics, when 
carefully collected and integrated, will also enable machine 
learning algorithms to predict correct and consistent val-
ues of the CBR. This can help, in geotechnical engineer-
ing, design and analyze soil stabilization and compaction 
processes. The typical input variables are described below: 

•	 Ash type:
The ash used in a soil mixture may be in the form of 
fly ash, bottom ash, or other types of industrial ash. 
There are different kinds of ashes; all have various 
chemical and physical properties that enable them to 
influence the strength of the soil and its compact-
ness, both factors that could alter the CBR values.

•	 Percentage of ash (%):
It is usually expressed in terms of the percentage of 
total weight, and the quantity of ash applied to the 
soil is specified. Since the quantity of ash injected 
into the soil changes the density of the soil, the mois-
ture content, and its compaction, all these changes 
affect the CBR value. With changing types of soil 
and ash, increasing ash percentages will either 
increase or decrease soil stability.

•	 Liquid Limit (LL):
The water content at which the soil changes from 
a plastic to a liquid condition. The liquid limit is one 
of the basic concepts in the mechanics of soil that 
characterize the consistency and the potential of the 
deformation of soil under stress. The behavior of soil 
in cases of high moisture is very important for the 
correct prediction of CBR.

•	 Plastic Limit (PL):
The water in the soil makes it plastic, a term used 
to denote that it may be molded without breaking. 
The plastic limit shows cohesion and workability of 
the soil. It is coupled with the liquid limit to form the 
plasticity index which is a measure of the range of 
soil plasticity. Plasticity index is one of the signifi-
cant tests used in determining soil strength.

•	 Optimum Moisture Content (OMC):
It is the percentage of moisture in a soil that is mixed 
with water to attain its maximum dry density upon 
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compaction. OMC will be important in soil compac-
tion works as it gives the optimum moisture content 
which yields maximum density. Compaction at OMC 
has to be done properly to achieve high CBR values, 
which imply improved load-carrying capacity.

•	 Maximum Dry Density (MDD):
Maximum density of a soil achieved for an opti-
mum level of compaction. MDD is the measurement 
that gives the degree of compaction and load-carry-
ing capacity of soil. The higher MDD values corre-
spond to more compact and stable soil structure, and 
thus normally higher CBR values will correspond to 
higher MDD values.

Table  1 provides minimum, maximum, average and 
standard deviation of the input and output data in order 
to give the complete statistical representation of dataset 
used in this research. The data dissemination and distribu-
tion could also be visually assessed through the histogram 
plot depicted in Fig. 1 for each input and output parameter. 
The most important observation from the histogram is the 
distribution frequency of soaking CBR values. It peaks at 
about 45 occurrences in the 4 to 4.5 range. This suggests 
that a sizable number of the soil samples have compara-
ble load-bearing capacity when wet. It also shows a con-
centration of soaked CBR values around this period. Such 
in-depth statistical and visual assessments support the 
trustworthiness of predictive models by evaluating the 
consistency of model inputs and assisting in the under-
standing of underlying data patterns.

2.2 SGBR
Breiman  [27] first proposed that function estimation 
procedures could perform better if they included ran-
domness. He called this procedure the "bagging" proce-
dure. Random sampling was also used in early AdaBoost 
implementations  [28], but this was regarded as a work-
around for deterministic weighting in cases where the 

base learner's implementation did not support observation 
weights, rather than a necessary component. Following 
that, Breiman  [29] suggested adaptive bagging, a hybrid 
bagging-boosting technique meant for least-squares fitting 
of additive expansions. This is accomplished by replacing 
the base learner in standard boosting processes with the 
matching bagged base learner that uses "out-of-bag" resid-
uals at each step of boosting instead of the usual residuals.

Inspired by Breiman  [29], to make randomization 
an essential part of the process, a minor adjustment was 
made to gradient boosting. To be more precise, a random 
subsample of the training data is selected from the entire 
training data set for each iteration. The base learner and 
the model update for the current iteration are then fitted 
using this randomly selected subsample rather than the 
entire sample.

Assume that {π(i)}1
n represents an arbitrary permutation 

of the numbers {1, …, n} and that {yi, xi}1
n is the complete 

training data sample. Then, {yπ(i), xπ(i)}1
n ̃ gives the random 

subsample of size n ̃ < n. Additionally, Algorithm 1 shows 
the procedure for stochastic gradient boosting.

The smaller the percentage f  =  n/n,̃ the more random 
samples which will be used in subsequent iterations will 
differ, hence the more overall unpredictable the process 
will be. Using the value f = 1/2 is more or less the same as 
taking bootstrap samples at each iteration. Computation 
is also lowered by a factor of f when n ̃  =  f  ×  n is used. 
Reducing the value of f however, results in less data being 
available for training the base learner during each itera-
tion. The variation linked to each base learner estimate 
will rise as a result. 

2.2.1 Regression
This section examines how randomization affects the 
(Huber) M_TreeBoost process. M_TreeBoost was regarded 
as the preferred method among the regression procedures 
derived in Friedman  [30] because it had the best overall 
performance. The default value of α = 0.9 was assigned to 
the break-down parameter. For small datasets (n = 500), 
the shrinking parameter ν (Algorithm 1) was set at 0.005. 
The  same was done for the bigger ones: (n  =  5000), 
ν  =  0.005. Six terminal node best-first regression trees 
were considered as the base learner.

Each of the two error distributions pertains to a com-
parison of performance across the 100  target functions 
using different randomization levels. One hundred {yi, xi}1

n 
data sets were produced in accordance with 

y F xi i i� � � �* � .	 (2)

Table 1 The statistical properties of the input variable CBR

Variables
Indicators

Category Min Max Avg St. Dev.

Ash type Input 3 1 2 0.816497

% of ash Input 60 0 14 16.49242

LL Input 64 17 39.28452 10.5037

PL Input 30.1 12.8 20.59186 4.547399

OMC Input 32.5 8.91 17.70795 5.101843

MDD Input 1.88 1.37 1.614429 0.102775

Soaked CBR Output 6.46 1.86 3.780714 0.984408
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Fig. 1 A histogram plot illustrating both input and output variables
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Where every one of the 100 target functions created at ran-
dom is represented by F*(x). In the initial investigation, the 
variance was adjusted and zero mean in a Gaussian distri-
bution was used to generate the errors εi.

E E F x F xx x� � � � � � �* *
median 	 (3)

Providing a signal-to-noise ratio of 1/1. In the second 
study, u  ~  n(0,  1) and υ  ~  U[0,  1], and the errors were 
derived from a "slash" distribution, εi  =  s  ×  (u/υ). From 
Eq.  (3), the signal-to-noise ratio is 1/1 after allowing for 
the scale factor s. The slash distribution is sometimes used 
as an outlier with its very heavy tails to test robustness. 

2.3 Optimizers
2.3.1 SBOA
The SBOA is an evolutionary optimization technique. 
The behavior and mating habits of bonobos in social set-
tings serve as its model. SBOA is distinguished by its 
capacity to adaptively modify its search parameters in 
response to population performance, allowing it to effec-
tively achieve a balance between execution and explo-
ration. 4 basic mating strategies are used by bonobos to 
create offspring: promiscuity, consortship, limited, and 
extra-group mating. SBOA is particularly effective in 
solving problems requiring the exploration of complicated 
nonlinear search spaces, difficult or impossible for other 
optimization techniques to consider  [31]. Using a fixed 
population size and random population initialization, 
the SBOA is a population-based technique. The solution, 
known as a bonobo in the population, is used to calculate 
the fitness values of all bonobos. The alpha bonobo (αb), 

the highest rank in the social hierarchy of a bonobo com-
munity, is chosen because it is more fit than other bono-
bos in the group. Consequently, it is now considered the 
best option. Along with this process, SBOA parameters 
are also kept to their defaults. Furthermore, since bonobos 
oscillate between the positive and negative phases of their 
phase probability pp, speculations can be drawn regard-
ing the population diversity or selection pressure  [31]. 
The two major governing parameters prescribed by SBOA 
are pp and the sharing co-efficient (β). The aforemen-
tioned parameters may update and self-correct through 
repulsion-based learning in every iteration. This method 
relies solely on the data gathered during the search proce-
dure. The values of both pp and β can be found in the range 
0–1. N is the quantity of answers to pp or β from the pres-
ent populace that is provided in each cycle. It is expected 
that these parameters will have a range of values. First, N 
created these parameters from a normal distribution, each 
having a mean (μ) and standard deviation (σ) equal to 0.5. 
The maximum and lowest values of the parameters can 
be altered. They are set to their maximum value initially. 
Then, they are changed, according to the requirements of 
the search procedure, in their range [32]. 

The updating of the phase probability, pp, with the 
repulsion approach, follows the process given in Eq. (4).

p p
p p

e
p p

p p

p pp p
modified better

better worse

better
better wo

� �
� �

�

�
rrse� �2

	 (4)

Generating new bonobos through different methods of 
mating
The mating behavior of bonobos is determined by the 
phase probability (pp) parameter. The pp has an initial 
value of 0.5 and is changed after each iteration. 

Restrictive and promiscuous mating techniques
As Eq. (5) shows, the next generation of bonobos is gen-
erated by both promiscuous and limited mating strategies.
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Where the ith new solution is depicted by the newbi
.  

Furthermore, the ith, pth, and k1th solutions for the current 
population are bi, bp, and bk1, respectively. In the same way, 
the solutions for oldpopk2 and oldpopk3 are k2th and k3th, 
respectively. The third population to be memorized is called 
badpopk4, and it contains the 4th solution of the badpop 
population. The ith-sharing coefficient has value βi. It is 
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important to note that the 4 values, k1, k2, k3, and k4, were 
chosen at random from the space (1,  N)  [31]. Restrictive 
and promiscuous mating techniques are described below:

1.	 Extra-group mating technique
The solution is updated by extra-group mating if the 
random number is smaller than or equal to the prob-
ability of extra-group mating (pxgm), determined by 
Eqs. (6)–(8).

C eo

r
r�

�
�

�
��

�

�
��1

1

1

	 (6)
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An intermediary parameter is Co. 2 unique random 
numbers, r1 and r1, were produced in the interval 0 to 
1. The jth factors of the provided solution and the ith 
bonobo of the current populace is newb

j
i
 [32].

2.	Consort ship mating technique
To produce new offspring, the consort ship mating 
strategy is employed when the value of r2 exceeds 
the value of (pxgm). Equations (9)–(15) illustrate this 
procedure. 
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The maximum size of a group is denoted by 
tsgsmax, whereas C1, C2, C3, and dv are intermediate 
parameters [33].

3.	 Adapted boundary management methodology
The maximum bound value is assigned to the gen-
erated bonobo if it crosses with a probability of 0.5 
over the top variable limit. If not, it is modified using 
Eqs. (16) and (17) with a 50% chance. 
Similarly, if a new discovery of a bonobo is found to 
pass the lower bounds of the variables, then modifica-
tions will be carried out using those very equations. 

newb
j
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j j

i
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max

	 (16)
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i
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i
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1
min

	 (17)

The following is a summary of the steps involved in 
implementing the SBOA:
•	 setting up the SBOA's population size and 

parameters; 
•	 an analysis of the fitness levels of every bonobo; 
•	 the αb's identification; 
•	 randomly selecting the pth bonobo from the 

well-chosen answers. 
•	 Is (0, 1) ≤ pp a random number? 
•	 If so, create a new bonobo by using either the 

restricted or promiscuous mating technique.
•	 If untrue, create a new generation by consort ship 

or extra group mating. 
•	 Determine the alpha bonobo's fitness value and 

that of the new bonobos. 
•	 Repulsion-based learning is used to update the 

populations' parameters that have been commit-
ted to memory.

•	 Select the mixed population based on fitness. 
•	 Determine the objective function and show it.

2.3.2 IAOA
Summary of AOA
The foundation for basic mathematical operations, such as 
addition, subtraction, multiplication, and division, is arith-
metic, a fundamental idea in modern mathematics rooted in 
number theory. These operations are used to assess numer-
ical values and identify the maximum element within a set 
of solutions based on particular criteria [34]. These math-
ematical operations serve as the basis for the AOA, which 
is a tool for solving mathematical problems. AOA adheres 
to the standard population-based algorithm optimization 
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procedure, which includes the phases of exploration and 
exploitation. While exploitation concentrates on improving 
the accuracy of the solution, exploration attempts to thor-
oughly explore the search space [35]. The 3 main phases of 
AOA are explained in detail in the following sections.

Initialization
The first step in the optimization process of AOA involves 
creating a set of potential solutions (referred to as X) 
by chance. Each successive iteration is to result in that 
one candidate solution which is expected to be either 
the optimum solution, or at least the closest to it within 
a neighbourhood.

X
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It is necessary to choose in advance of beginning the 
AOA process, whether to start with either the explora-
tion or exploitation phases. The function value at the ith 
iteration is then calculated using the Math Optimizer 
Accelerated (MOA) function, which is defined by Eq. (19). 

MOA Min
Max MinC C
MIt It
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��

�
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�
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The symbol MIt denotes the maximum number of repeti-
tions. According to the accelerated function, Max and Min 
represent their highest and lowest values, respectively. 

Exploration
In the research step, using Division (DO) or Multiplication 
(MO) operators, mathematical operations executed pro-
vide conclusions or judgments that are widely dissem-
inated. While these actions perhaps do not approach 
the objective efficiently and can only converge toward 
a near-optimum solution after several rounds, they may 
simplify the shift to the exploitation phase. Equation (20) 
provides formulas for updating positions and outlines the 
2 main search tactics used during exploration.
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It gives a straightforward method of creating neighbor-
ing solutions. Here, xb,j is the position at the jth location of 
the presently best-acquired solution, x'i,j is the position at 
the jth location of the ith solution, ε is a small integer, and μ 
is a control parameter.

MOP(CIt) is indicated as follows: 
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In subsequent iterations of the exploitation process, the 
precision attained is controlled by a key parameter, repre-
sented by α.

Exploitation
The mathematical computations make use of operators like 
Subtraction (SO), and Addition (AO), to generate results of 
targeted outcomes during the exploitation phase. Through 
several iterations, these operators allow for efficient tar-
geting of the desired outcome. The main search tactics 
and position update equations for this stage are given in 
Eq.  (22). Meanwhile, the exploitation operators (SO and 
AO), help the implementation in finding the best solutions 
within related search techniques so that the system would 
not get trapped into local search areas.
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 (22)

A random quantity that is evenly split across [0,1] is 
denoted by r3.

Improved AOA (IAOA)
This conservative constraint can cause large movements 
in the solutions outside of the search space, where tight 
bounds are based on minor movements, risking early con-
vergence into mediocre solutions. Moreover, when all the 
design variables take the same upper and lower bounds, 
as it is the case in discrete structural optimization using 
standard sections, AOA is confronted with some serious 
problems, which will be discussed in more detail.

An extensively known issue of the original AOA pre-
maturely converges to poor solutions  [36,  37]. Despite 
this, the AOA is still useful for examining search spaces. 
Because of the need for more  investigation in the early 
phases of the search, variety is rapidly reduced, which 
is why this problem occurs  [38]. Kaveh and Biabani 
Hamedani  [38] created an enhanced version known as 



558|Wu et al.
Period. Polytech. Civ. Eng., 69(2), pp. 551–566, 2025

IAOA in response to these drawbacks. The IAOA clearly 
distinguishes between the exploration and exploitation 
stages, each subject to different regulations regarding 
position updates, in contrast to the original AOA. As can 
be derived by Eq.  (20), in AOA, during the exploration 
phase, most efforts will focus on the best-known solution 
that results in fast reduction of population diversity at the 
early stages of the search process. Furthermore, the effi-
ciency of AOA during the exploration phase is strongly 
related to design variable constraints, which can cause 
problems with convergence when these bounds are very 
tight or wide. Large solution steps that may extend beyond 
the search space result from too conservative boundar-
ies. However, modest steps produced by near constraints 
raise the possibility of an early convergence to unsatis-
factory solutions. If all the design variables have the same 
bounds, as in discrete structural optimization involving 
standard sections, then an important problem that the 
original AOA faces will be discussed shortly.

The same adjustments are made to every fea-
ture of the best solution that has been found in 
each iteration, if r2  >  0.5, as shown by Eq.  (21) 
MOP ub lbj lbj j�� �� �� �� �� �� � . Similarly, in the best 

solution found so far, each design variable is scaled by the 
same factor MOP ub lb lbj j j�� �� �� �� �� . The research of 
AOAs is confined to a narrow region, as only two param-
eters drive all the design variables in the optimal solu-
tion during the first generation. It is quite common that 
because of the limited diversity, poor solutions converge 
slowly and prematurely  [38]. This limitation also affects 
the original AOA throughout its exploitation phase (see 
Eq.  (23)). IAOA has introduced a new position updating 
technique that makes use of division and multiplication 
operations [38] to address these problems in the explora-
tion phase of the original AOA.
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A pseudorandom number in [0–1] with a uniform dis-
tribution is represented by rand. For the ith candidate solu-
tion, the present value of the jth design variable is denoted 
by x'i,j. A pseudorandom scalar number, 1 or 2, is produced 
by the function randi 1 2,� �� � . The parameter-free version 
of the function MOP, denoted by MOP , is defined as fol-
lows [38]: The MOP function has a variation called MOP  
that operates without the need for any further parameters. 
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1

1 2rand ,

	 (24)

In contrast to original AOA, in the IAOA exploration 
phase, as represented by Eq. (20), it emphasizes the pres-
ent position of the solutions. Essentially, the position of 
each solution is updated with respect to its current status 
in the IAOA exploration phase. This allows full explora-
tion of the search space and avoids loss of diversity during 
the processes of the search  [38]. Besides, using random 
numbers in Eqs. (23) and (24) results in the generation of 
various step sizes for moving solutions in the search space. 
The diversity of the population can be preserved and explo-
ration is encouraged by this variation in step sizes  [38]. 
The convergence-related problems may reduce as Eq. (22) 
is independent of the limits of design variables  [38]. As 
demonstrated by Eq. (22), the original AOA's exploration 
and exploitation phases are centered on the best solution to 
date. When every design variable has the same upper and 
lower bounds during the exploitation phase, the primary 
issue occurs. The best solution lacks diversity because the 
same adjustment factor is applied to all design variables 
in each iteration, as shown by Eq.  (22). This shows that 
the original AOA's exploitation phase, with equal limits of 
design variables, is not that efficient in investigating the 
search space. In order to overcome this limitation, IAOA 
uses subtraction and addition operators to develop a new 
position updating algorithm for the exploitation phase [38].

� �

� � � � �� � � �� �
�

� � � � ��
x

b x b x MOP UB LB

r

b x b x
i j

j j j j

j j

,

,

.

rand

ran

3
0 5

dd

otherwise

� � �� �

�

�

�
�

�

�
�

MOP UB LBj j ,

	 (25)

By generating variable step sizes for solution move-
ment, Eqs.  (24) and  (25) enhance the use of the optimal 
solution. On the other hand, each application requires the 
original AOA to be tuned for 4 different parameters (Min, 
Max, α, and μ), and b(xj) denoted the best xj. The imple-
mentation of IAOA is remarkably made simpler by elimi-
nating the terms α and μ from its formulation.

2.4 Evaluation metrics
Regression models are evaluated using a number of mea-
sures that quantify their performance and accuracy. 
The R2 has values between 0 and 1, where 1 denotes a per-
fect fit, and it quantifies how well the independent fac-
tors account for the variability of the dependent variable. 
There are two measures to quantify the prediction error, 
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namely RMSE and MAE. Because the RMSE represents 
the square root of the average squared differences between 
the observed value and projected value, this is sensitive 
to outliers, while the MAE returns a more robust mea-
sure of the metric. The n10-index, sometimes referred to 
as top-decile lift, in general use in marketing and finance 
to identify best performers, relates to a measure of a mod-
el's performance to predict the top 10 percent of the values. 
Finally, MARE (Mean Absolute Relative Error) normal-
izes errors by taking the mean of the absolute values of the 
relative errors, which makes it possible to make compari-
sons across different scales or different models. Each one 
of these indicators brings different information on model 
performance and thus can be useful for a range of evalua-
tion purposes according to the specific goals and charac-
teristics that a regression problem might have:
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n
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n
n
10 	 (29)
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�1
1n
b a
a
i i

ii

n
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where n is the number of data points, a is the measured 
data, b represents the predicted data, ā is the average of the 
measured data and b̄ is the forecasted data, respectively.

3 Results and discussion
Fig.  2 presents the convergence curve graph of RMSE 
from two hybrid models: SGSB and SGIA. The graph plots 
the RMSE with respect to iterations: green corresponds to 
the SGIA method, while pink corresponds to the SGSB 
algorithm. Both algorithms show a decreasing RMSE 
with more iterations, showing an improvement in their 
predicting accuracy. Additionally, after about 125 cycles, 
both algorithms converge to their lowest RMSE values. 
The SGSB algorithm converges to a little higher RMSE 
of 0.150, whereas the SGIA algorithm's ultimate RMSE 
is 0.114. The SGIA algorithm works better than the SGSB 
algorithm, achieving a lower error rate, since a lower 
RMSE denotes better model performance. Based on its 
lower final RMSE, SGIA emerges as the better model, 
effectively highlighting the convergence behavior and rel-
ative accuracy of the two algorithms in this graph.

Of the three models examined in Table  2, the SGIA 
model performs the best according to a number of 

Fig. 2 The convergence curve of the 4 hybrid models presented
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assessment indicators (SGSB, SGIA, and SGB). By ana-
lyzing the training phase SGIA has the highest R2 value 
(0.991), which indicates that it has an exceptional predictive 
ability (99.1% of the variability in the dependent variable is 
explained by it). SGIA likewise has the highest n10-index 
(1.000), demonstrating its exceptional capacity to identify 
the top 10% of values. With the lowest error metrics values 
throughout the article, SGIA performs exceptionally well. 
It attains an RMSE of 0.093, indicating low average predic-
tion error and a high degree of accuracy. Similarly, by aver-
aging the absolute differences between predicted and actual 
values, SGIA's MAE of 0.080 highlights its robust perfor-
mance. To highlight the accuracy of the model, the MARE 
for SGIA is 0.023, which normalizes the errors in relation 
to the real values. SGIA has a total ranking score of 15, 
which places it third overall. Because of its exceptional per-
formance in important metrics like R2, RMSE, MAE, and 
MARE, it is regarded as the best model in this article. Out 
of the 3 models that were evaluated, SGIA was found to be 
the most reliable and accurate due to its combined high R2 
and n10-index, as well as its lowest error values.

In Fig.  3, a diagonal line appears in all three models, 
symbolizing the optimal situation in which R2  =  1 and 
RMSE  =  0 signify flawless alignment of prediction and 
measurement. Furthermore, two lines are shown with a 
10% error margin at +10% and −10% from this baseline. 
The better model is the one with more data points that are 
nearer this baseline. SGIA is the most excellent model 
among those evaluated; it is evident from the large concen-
tration of data points it has close to the baseline. During the 
training phase, SGIA specifically achieves an R2 value of 
0.991 and an RMSE of 0.093. SGIA is the best model in the 

study because its data points are close to the ideal diagonal 
line, which highlights its low error rate and high reliability.

The data points are graphically represented in Fig. 4 so 
that the degree of agreement between the measured and 
predicted values for each parameter can be evaluated. 
A greater degree of consistency between the measured val-
ues and the predicted data points is a sign of a better-per-
forming model. Fig. 4 makes it clear that the single SGB 
model is the weakest of the models examined because it 
shows notable differences between predicted and mea-
sured values. The greatest degree of agreement between 
predicted and measured data points, however, is shown by 
the SGIA model. The SGIA model is the most successful 
model in the study, as further proof of its superior perfor-
mance comes from its alignment with the measured data. 
This consistency, both quantitatively and visually, estab-
lishes SGIA as the best model, surpassing other models in 
terms of overall efficacy and predictive accuracy.

Sample numbers are represented on the X-axis and error 
percentages are represented on the Y-axis in the error plots 
for the 3 models (SGSB, SGIA, and SGB) that show the 
error percentage over various data samples in Fig. 5. Each 
plot uses different colors to indicate which data are test, 
validation, and training. The maximum error of 11.76% is 
found in Fig. 5 (a), which shows the SGSB model's error 
percentage, and it happens close to sample number 150. 
This suggests that even though the SGSB model functions 
well most of the time, there is a noticeable peak in error 
around this sample, which represents a brief loss in accu-
racy. Fig. 5 (b) displays the SGIA model's error percent-
age. The highest error that has been noted in this case is 
13.29%, and it occurs at sample number 190. The robust 

Table 2 The result of developed models for SGB

Phase Model
Index values Ranking the predicted model

Total ranking score
RMSE R2 MAE n10-index MARE RMSE R2 MAE n10-index MARE

Train

SGSB 0.136 0.983 0.119 0.980 0.034 2 2 2 2 2 10

SGIA 0.093 0.991 0.080 1.000 0.023 3 3 3 3 3 15

SGB 0.188 0.964 0.156 0.952 0.043 1 1 1 1 1 5

Validation

SGSB 0.198 0.970 0.144 0.969 0.035 2 2 2 2 2 10

SGIA 0.161 0.981 0.119 1.000 0.031 3 3 3 3 3 15

SGB 0.265 0.960 0.209 0.875 0.052 1 1 1 1 1 5

Test

SGSB 0.161 0.974 0.128 0.968 0.036 2 2 2 2 2 10

SGIA 0.144 0.980 0.113 0.968 0.033 3 3 3 3 3 15

SGB 0.227 0.949 0.197 0.903 0.059 1 1 1 1 1 5

All

SGSB 0.151 0.977 0.124 0.976 0.035 2 2 2 2 2 10

SGIA 0.114 0.986 0.091 0.995 0.026 3 3 3 3 3 15

SGB 0.208 0.959 0.170 0.933 0.047 1 1 1 1 1 5
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performance and consistency in prediction accuracy of the 
SGIA model are demonstrated by its ability to maintain 
a relatively low and stable error percentage across differ-
ent samples, even in the face of this peak. The SGB model, 
which has the largest maximum error of the 3 models at 
18.22%, likewise around sample number 190, is repre-
sented by the error percentage for the model in Fig. 5 (c). 
This notable error peak highlights the relative weakness 
of the SGB model by showing that it struggles with accu-
racy more than the SGSB and SGIA, especially around 
this sample. The SGIA model outperforms the others in 
terms of predictive accuracy, as demonstrated by these 

plots, which show that although each model has occasional 
periods of greater error, overall performance is generally 
more stable and error rates are lower. In comparison to the 
SGB model, which shows the highest error and thus a rela-
tively poorer performance, the SGSB model performs rea-
sonably well but has a less clear error peak.

The distribution of errors for three ML models is shown 
in Fig. 6. To show these errors as percentages, violin plots 
are created by blending box plots with density plots. 
The width of each violin plot creates a dramatic picture of 
the distribution of error in each model's performance by 
essentially reflecting the density of data points showing up 

Fig. 3 The dispersion of evolved hybrid models
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around a specific percentage of error. First of all, the SGIA 
model's violin plot illustrates high density within the zero 
error percentage, with most of the model's predictions 
being extremely accurate. The violin plot of the SGIA 
shows that the concentrations of low error levels are high, 
reflecting that this algorithm performs well and is reliable 
on all datasets when it comes to reducing prediction error. 
Whereas SGSB and SGB models showed a wider range in 
the violin plots with a fewer numbers of data points clus-
tered around zero, indicating that because these models 

have larger variable error rates, their prediction accuracy 
is not that reliable. Fig. 6 has the highest density of data 
points at low error percentages and therefore represents 
the best error distribution for SGIA overall.

Fast Sensitivity Analysis (FSA) is a simplified technique 
of how the outputs of a model would be affected by changes 
in input parameters. Because it is highly effective and scal-
able, FSA can be nicely applied to complicated models that 
contain large numbers of parameters. FSA employs math-
ematical processes to measure the sensitivities of each 

Fig. 4 The metric of predicted and measured values
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input parameter using standardized regression coefficients 
or partial derivatives. Its ease of execution and interpreta-
tion means key factors possibly having the most substan-
tial impact on model outcomes can quickly be identified. 
Applications that FSA finds in engineering, economics, 
and environmental sciences are employed to make better 
decisions, validate models, and optimize them.

While the total effect index, ST, considers interaction 
effects in addition to the direct influence of that input vari-
able, the first-order sensitivity index, S1 in quick sensitiv-
ity analysis characterizes the variance in output that can 
be directly related to a single input variable. The present 
study identifies the most vital elements needed for the pre-
diction of the CBR values. As can be seen from Fig. 7, the 

Fig. 5 The error percentage of the models (a) SGSB, (b) SGIA, and (c) SGB is based on the vertical plot

(c)

(b)

(a)
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Maximum Dry Density (MDD) parameter has the highest 
ST value of 0.353, indicating that it has the greatest overall 
impact on the output, including interactions. The high S1 
value of 0.332 corresponds to the ash percentage, which 
has a large effect on the CBR estimate. The second highest 
values of both ST and S1, with 0.310 and 0.274 respec-
tively, correspond to ash percentage and the MDD param-
eter. To  develop effective strategies for modeling and 
optimization, an understanding is required about which 
variables provide the most impacts on the CBR values.

4 Conclusions
This paper proved that advanced machine learning algo-
rithms work in the estimation of CBR values, which are 
significant in civil engineering, especially in road and 

pavement construction. Two hybrid models, SGIA and 
SGSB, were advanced through IAOA and SBOA optimi-
zation procedures, respectively, for building and assess-
ment using the SGBR model. These included the n10-in-
dex, Mean Absolute Error (MAE), RMSE, R2, and MARE. 
Testing consisted of (15%), validation was (15%), while 
training consisted of (70%) of the dataset. This form of 
segmentation has been crucial in ensuring that the models 
are well trained to capture all the important features of the 
data and that they are well tested for their accuracy and 
strength. Numerically and visually, too, the SGIA model 
outperformed the SGSB model. That means the perfor-
mance of the SGIA model outperformed the SGSB model 
by 0.92%, with its R2 score at 0.986. The model also pro-
duced an n10-index of 0.995 for the SGIA model, which 
was 1.95% higher than the SGSB model. The model fur-
ther presented the minimum error metrics with RMSE of 
0.114 and MAE and MARE of 0.091 and 0.026, respec-
tively, showing that the model carried out its predictions 
of CBR values with excellent accuracy and reliability. It is 
expected that the outcome of this work will provide a reli-
able and rapid method of calculating the CBR values of 
soil, which considerably affects civil engineering. Thus, 
accurate CBR estimates are of high importance to better 
planning and construction of pavement and road struc-
tures, hence stability and lifetime under optimized use of 
resources. The hybrid models developed in this research, 
especially the SGIA, can be utilized by engineers in mak-
ing better decisions, cutting costs, and further increasing 
the sustainability of building projects.

Fig. 6 The box with symbol plot errors of proposed models

Fig. 7 The fast sensitivity analysis of the best-performed model
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