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Abstract

Finite Element Method is one of the most important computational tools of modern
statics. The main features of it are application of variational principles on one hand and
discretizing of the domain, fitting at the nodes on the other hand. Both concepts are
classical, their appearance in the mechanics is due to EULER and NAVIER, respectively.

Restricting ourselves to the analysis of bars and bar structures, it can be stated
that EULER was engaged with the differential equation of the elastica and with the general
method of solving variational problems round 230 years ago. In his genuine investigation
he made use of variations being in accordance with the simple base functions of the F.E.M.
Paper shows this derivation.

Navier, whose name is connected with the foundation of the theory of the elastic
bars up to now, reduced the calculation of the deflection of the simply supported beam
to that of the cantilever so as to investigate the sections of the structure always between
two point forces, while fitting the exact solutions valid on separate intervals to each other.
This idea is presented as well and the traditional results are recalled in an up-to-date
symbolism.

Keywords: history of mechanics, Euler, Navier, bars, elastic behaviour, Finite Element
Method, cantilever elements.

Introduction

University-level education of students attending technical schools has to
convey not only practically useful knowledge of the subject matter, but
increase technical and cultural intelligence as well as embed information
into the intellectual behaviour. This aim is reached by discussing history
of mechanics, which — from the point of view of up-to-date research — is
useful by clarifying the roots of some methods that are applied right now
as well as for ages, thus emphasizing their real values, too.

Biography of EULER and NAVIER furthermore their principal ideas
to be treated here are presented in connection with the basic ideas of the
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Finite Element Method. At the same time we are going to make here
an effort to present the Civil Engineering Mechanics in historical aspect,
placing it among the historical eminencies of culture in general, especially
architecture and art.

The paper deals with the outlines of the aforementioned work pre-
pared already, as well.

Investigating Civil Engineering Mechanics
as a Branch of Cultural History

First of all we are going to place mechanics in human experience. Therefore
a genealogical tree of the mechanics has been prepared that depicts the
topic as growing out of particular fields of the cultural history, presents
the connection with special branches of learning and shows the detailed
sciences into which it can be split up. The list of the categories and special
domains is fairly not complete, the aim of the dividing is only a kind of
giving a first idea. Consider Fig. I, where horizontal lines mean proper
relations.

Knowledge of the branches of the genealogy made it possible to com-
pile chronologies in history, science and art. Then we have sketched the
outlines of the history of Civil Engineering Mechanics, dealing particularly
with the trends of the Hungarian science as well. We report hereby just
those tables referring to the most famous scientists and the most ingenious
results of our subject matter.

Both experts dealt with in details were emphasized by writing their
names with capital letters. Report on life, work and importance of the
others will be published elsewhere.

Based on the grouping of the events in history of culture and tech-
nology, as well as comparing simultaneous successes of human spirit we
can prepare further papers as to present the treasures of science, art and
literature connected to each other, in a mutual relation, as different parts
of a common scale of values. This concept tries to consider the culture as
a complete entity.

Further part of the paper contains biographical data about scientists
of mechanics, the most famous Hungarian experts included. Information
about Western scientists is indicated in a form common in travelling doc-
uments or application forms.

The matter concerning EULER and NAVIER is detailed in the next
chapter.

Afterwards some revealing chapters of Civil Engineering Mechanics
have been compiled, following the development trend of graphical statics,
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Fig. 1. Genealogical tree of Mechanics

variational calculus, and the theory of elasticity, potential theory included.
Usually just the outlines of the results have been given, but sometimes
derivations of interesting details have been presented, as well. Also a set of
valuable works of Hungarian experts like professors KHERNDL, EGERVARY,
SziLy, BARTA and CSONKA has been shown. Thus we were going to connect
the graduate studies of mechanics with a historical view. The subject
matter concerned is represented hereby once again by the ideas of EULER
and NAVIER, respectively.
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Table 1
Trend of the science, upto the development of the theory of structures

Archimedes
Leonardo da Vinci
Galileo Gallilei
Robert Hooke

Isaac Newton
Pilerre Varignon
Johann Bernoulli
LEONARD EULER
J. le R. D’Alembert

Joseph L. Lagrange

287-212 B. C.

1452-1519

1564-1642

1635-1703

1643-1727

1654-1722

1667-1748

1707-1783

1717-1783

1736-1813

Carl F.Gauss 1777-1855

LOUIS M. H. NAVIER 1785-1836

Augustin Cauchy 1789-1857
Gabriel Lamé 1795-1870
Adhémar Barré 1797-1886
Emile Clapeyron 1799-1864
Karl Culmann 1821-1884
James C. Maxwell 1831-1879
Christian Otto Mohr  1835-1918
Joseph Bc;ussinesq 1842-1929

the cultural history of Mechanics.

Table 2
The milestones of the science, with particular respect to the theory of structures

Gravitation, axioms of mechanics,
speed, acceleration

Principle of virtual displacements

Critical load of a slender column

Dynamics reduced to statics
Basic equations of dynamics

Basic equations of elasticity

Technical theory of bending

Newton

Leonardo da Vinci
John Bernoulli Jnr.
Euler

D’Alembert

Lagrange
Cauchy

Navier

Limiting principle of boundary effects De Saint Venant

Reciprocal theorems of displacements Maxwell

Finally we have collected some interesting pictures and facsimile from
Pictures 1, 2 and 3 prove that the
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Table 3

Basic concepts and principles in the theory of structures.
The explorers of the main ideas

Method of sections Culmann
Concept of the stress resultant Winkler
Bending moment diagram Rebhann

Three-hinged arch, solution
by superposition

Miiller-Breslau

Bar exchanging method Henneberg

Moment of inertia Cauchy
Weyranch

Influence lines Mohr

Miller-Breslau
Concept of the force method Navier

Compatibility equation of the force method Miiller-Breslau

Elastic center Kherndl
. Bendixen

Displacement method Ostenfeld

Moment distribution method Cross

differential equation of the deflection of has become a common property
of the technical culture all over the world. They show the outlines of the
theory in Bulgarian language, written by Cyrillic letters, then in Japanese,
by Japan letters, finally in Swedish, by Latin letters. Picture 4 shows
a page of the mimeographed lecture note of the optional lecture of the
professor at the T.U.B. Joseph Barta (held 1939), dealing with the double
trigonometric series solution of the simply supported elastic plate, due to
the famous theory of Navier.
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462 X1. Mscreanane Ha rpeas npH CTATHYHO HATOBapmaue

Aunng e 0bXarT oxpbxkuocTd. ChUIOTO Ce OTHACH 3a BCAKA MHC/MCHA Ha-
AABKHE JHHMA  8LB BBTPEIIHOCTTZ HA TPelaTa DK/IOYHTEJHO H OCTa Ha
rpenara.
BcHYKH Te3H AHHKH N0 MOBBPXHOCTTA H BBTPE B Ipejara Lie CH Ipeln-
CTaRAME KATO MHOMECTBO HHIUKH, KOHTO Ce HaMHpaT NIBTHO efHa JXO
Apyra, H3nbABafiKkM ILsIaTa rpexa
0 Mskpusenata oc Ha rpejara ce Ha-
& pHYa eNacTHYHA JIMIHS {TepPMHH, Bb-
/\,\4, Beged or S Bepuyau). Ts gexu 8
UMAHHADHYHA TIOBBPXHHHE, KOATO €
nepresiMKyAspHa Ha CHMeTpuiinata
pastiuna. UacTTa OT Tasu MOBBPXHH-
Ha, KOATO NOMNafa B [POCTPAHCTBOTO
Ha rpeaara, ce HapHda 0COB /o
Beuuxy  orceukn OT rpenara,
ycropeAHd Ha OCOBHS CJOH H Ha
ocTa Ha rpegara npegu JAedopuma-
udnaTa, caen nedopmauusra e ce
YyILBIKAT, 8KO NOMajaT oK CJI0%,
HJH Lle Ce CK'BCAT, aKO Monajar Haj
sero. ToBa ce BHM(Ja HarJeHO BBP-
xy nedopMupanata OpTOroHaHa Mpe-
Pur. 318 xa. OTCeukuTe OT CaMHst OCOB CJOH
- (BRIOYMTENHO Te3H OT OCTa) 3amas-
saT CBOMTE ABANHHH npy nedOpMauUATa, NOPAAH TOBA OCOBHAT CAOH- NIPH
GHCTOTO OFbBAHE Ce Hapuua HeyTpajJdeH CJAOH.
Ha pasraenase ase Geswpaiino 0443xH HANPEYHH CeveHHs, OTCTOSILH
Ha pasctoauue dx. fa o3uauuM ¢ db Brea2 HA TAXHOTO PeJATHBHO 3asbp-
Tatie cael pedopMaumsta s na pasraciase psete otceuwdH L{[]" w DD
{sfyar. 318). [TbpBaTa OTCENKA, NeWalla B HEYTPaJHHUA Cnof, L(e 3anasH Abi-
AMHATE CH, 4 BTOPAT4, Je:aula BbB BepTHKAAHA DaBHHHA NOJ MbPBATA,
e ce yanaxi. Jla o3uatds yavamKeunero ua nocaeguata ¢ Adx H oJja
apexapase upasa A”B", ycnopexna wa AB. Or noxzoGuero wa Qurypnre
QULE w L'D'D" caensa

Adx D'D* 2

(40. —Z T
(40.36) ax [l -
Adx .
Ho P OTHOCHTENHOTO YA'b/KEHHE Ha dX, CJAeLOBATENHO
.oz
(40.37) g=— .
r

AKo cif OpejcTasuM BCAKA HHLIKA KATO UMIHHADHYHO Tsiao (,rpenma),
HMAILO CHCTORHHE YHCT OfBH, CBIVIACHO CbC 32koHa Ha Xyk (40.3) umame

<3
z QE H CACROBATENHO

140.38) o="2.

Pic. 1
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121
Vinkeln Am &r liten s& den &r ungefdr lika med tan f8r vinkeln,

som &r Ax/R. Den kan ocksd uttryckas i momentet M, se (17), dvs
(83) Am = Ax/R = MAX/EI

varur

(94) l 1/R = M/ET |

N&r varje balksegment i en rak balk deformeras enligt fig 46 och
Ax -~ 0 antar tyngdpunktslinjen en kontinuerlig, kr#kt kurva,
fig 47. Den kallas elastiska linjen. I figuren visas en fritt

upplagd balk belastad med lika stora dndmoment. Tvdrkraften Ar

déd lika med noll ldngs balken, vilket &r en f8rutsittning fér (94).
UtbSjningen vinkelrdtt x-axeln betecknas w. Om balken 4r j&mnstyv,
dvs EI = konstant, ger (94), eftersom M = MO = konstant, att
elastiska linjen i detta fall &r en cirkelkurva. Vid en annan belast-
ning upptridder i allminhet ocksd tvirkrafter som ger upphov till
ytterligare deformationer. Om vi bortser fran dessa, erhd8lls #ndi
inte en cirkelkurva eftersom momentet och ddrmed M/EI e]j ldngre

dr konstant ldngs balken.
R

Mg

e

SYM
|
|
!

w

<id2w/dx2£rnegaﬁv

Z, W

Fig 47. Elastiska linjen av balk vid ren b&jning
Fr&n matematiken hdmtas fdljande formel £6r krdkningsradien:

d?’w/dx2
[1+ (aw/dx) 21372

(95) 1/R = -

vid smd utbdjningar, som det i allmdnhet &r fréga om vid byggnads-
konstruktioner, kan nidmnaren i (95) approximeras till 1, s& kombi-

nation av (94) och (95) ger

Pic. 8
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Biographical Data of the Scientists Euler and Navier

Entering of the Calculus of Variations into Mechanics

NAME OF THE EXPERT: Leonard EULER
DATE AND PLACE OF BIRTH: April 15, 1707, Basel
DATE AND PLACE OF DEATH: September 18, 1783,

NATIONALITY:
PROFESSION:

St.Petersburg
Swiss
Mathematician, physicist

SHORT SCIENTIFIC BIOGRAPHY:
1723 - magister
1723 - first assistant at the Mathematical Division,
Scientific Academy, St.Petersburg
1727-30 Marine lieutenant at the Tsar’s Navy
1730-41 Professor at the Academy,
Physics first, then Mathematics
1741-66 Member of the Prussian Academy, Berlin
1743 ~ Director of the Division at the same place
1755 — External member of the French Academy
1766-83 Working at the Academy, St.Petersburg

DATA OF ACTIVITY:

Books, papers:

Scientific results:

Concepts, principles:

PRIVATE LIFE:

Methodus inveniendi lineas curvas 1744.
Introductio in analysim infinitorum 1748.
Institutiones calculi integralis 1768-70.
(Altogether 756 papers)

Basic equations of hydrodynamics
Differential equation of the calculus of
variations

Critical load of a slender bar
Exploring the formula exp(wi) =—1

The existing world is the best of all worlds
being. The world is generated by the ratio.

He was a good friend of the BERNOULLI brothers, also a co-worker of FRID-
ERICUS the GREAT. He had 12 children of two marriages. His home was
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burnt in 1771. He was gone blind to one eye 1735, afterwards to the other
1767.

Sources of the Theory of Structures

NAME OF THE EXPERT: Louis Marie Henri NAVIER
DATE AND PLACE OF BIRTH: February 15, 1785, Dijon
DATE AND PLACE OF DEATH: August 23, 1836, Paris

NATIONALITY: French
PROFESSION: Civil engineer, mathematician
SHORT SCIENTIFIC BIOGRAHY: )
1802 ~ Entrance examination at the Ecole
Polytechnique

1804-08 Student at the same place
1808 - Diploma in building of bridges and roads
After 1808 activity in engineering practice,
member of the Corps of bridge and road
constructors
1824 — Member of the French Academy
Sept.6, 1826 Building accident of the Paris chain bridge
1829 - Professor of Applied Mechanics at the
Ecole des Ponts et Chaussées
1830 - Professor of Analysis and Mechanics
at the Ecole Polytechnique
After 1834 Supervisor of the bridge and road
building at the Iloyal Ministry

DATA OF ACTIVITY:
Works: Erection of bridges at Choisy, Argenteuil and Asniéres

Books, papers: Editorship of the book ‘Traité des Ponts’ by
Gauthey 1813.
Edition and comments to the books ‘Science des
Ingenieurs’ and ‘Architecture Hydraulique’ by Belidor,
1819.
Mémoire sur la flexion des verges elastiques courbes
1819.
Mémoire sur les ponts suspendus 1823.

Scientific results: Engineering theory of bending of bars
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Solution of simply supported elastic plates.
A general theory of elasticity
Hydrodynamics of viscous fluids

(together with Stokes)

Concepts, principles: Hypothesis of Navier (plain cross section
remains plain in bending).

PRIVATE LIFE:
His uncle, the civil engineer Gauthey of Dijon has been his foster father
from his age 14. Navier was an excellent teacher. His opinion was royalistic.

Basic Concept of F.E.M.
Merits of Buler and Navier with Respect to the Formulation
of the Method

The fundamental idea of F.E.M. is as foliows:

a) Stating either a stationarity or an extremum principle which is gener-
ally the principle of stationarity of the potential energy, utmost useful
in the engineering practice.

b) Splitting up the domain into finite elements, describing the elements
by several coordinate-systems (e. g. local, global, BEuclidean 3D,
Riemann 3D, natural, parametric etc.).

c) Defining the unknown displacement parameters of the elements, as
well as the proper interpolation functions describing the displace-
ments.

d) Corresponding to c), to select the unknown degrees of freedom.

e) Write up and solve the canonical equations.

Considering the aforementioned details, EULER proves to develop out-
standing ideas in

a) analyzing the mathematical form of the extremum principle and for-
mulating the general differential equation of the problem,
while NAVIER is involved in

b) formulating the most important structural element in engineering,
i. e. the bar, making use of local and global frames, respectively,
finally applying the cantilever beam as a part of a structure to be
considered as a finite element.

Also he has established the basic idea of the force method useful at
bars and the displacement method applied in the theory of elasticity.
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Derivation of Euler’s Differential Equation
Using the Original Variations with Finite Elements

Next we reveal a derivation of EULER that analyses the differential equation
of the problem of the bar being in simultaneous bending and compression,
a problem customary in the Elementary Strength of Material. The calcula-
tion differs from the usual deduction of the EULER—~LAGRANGE differential
equation in the assumption of the variation itself. Instead of a complete
variation of the unknown function between the prescribed boundary values,
the function is varied just over two elementary intervals (Fig. 2). This kind
of variation agrees with the use of linear finite elements (spline functions).

Z\ dy

axjax

Xp

Fig. 2. Euler’s spline variation

The notation is similar to our up-to-date convention rather than the original
one.

To begin the analysis, let us consider the stationarity theorem of the
potential energy used at a simply supported beam with straight axis. The
structure is loaded by a distributed transversal load and pomt forces as
lateral loads as well. The theorem states

! 2 \ 2
:/ ¥+ = (l> —%—{ <—3—£’21> dz = stac! (1)
0

This problem can be written in the more general mathematical form

l

2
J—_-/f (:c, Ys jy jm) dz = min! (2)

0
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By definition, the variation of the functional J reads as

dy d%y
5J<a: v, <X Eﬁ)

d dy d d dy d2
:J(m,y+5y dy~r5y di—%—c?dmy) J(m,y,ﬁ,ﬁ). (3)

(1) becomes really stationary in case the expression (3) disappears at any
variation §y of the function, being arbitrary, but small enough.EULER
proved for the first time that the operations of variation and derivation
are commutable.

El_gi d
dz = dz

Also referring to the second variations and derivatives

5 —&y. (4)

d%y _ddy d.dy d°
dz? 5da‘dm d:z:(sda: da"~6 (5)

Since variation agreeing Fig. £ causes changes of the functional just at the
neighbourhood of place =, due to three functions generated by each other,

87 = {5 o

Oy iz

holds. Interchanging the Operations of variation and differentiation we have

”—{5‘

7
! a?- a . 5y} dz. (7)

Fig. 5. Beam column
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Applying the LEIBNIZ rule of differentiating products of two factors

d /8f _ of| d

dz (5—11_’ z y) ~ dz oy’ oy’ zdm6 (8)
Rearranging formula (8)

of) d d (9f _d9or (

6y zdfs6 dz <6y’ d > dz 9y’ Iz )

The first term of the right side disappears provided the boundary condition
is homogeneous. Then we can repeat our consideration in connection with
the second variation as well:

( 9
. i d 8f of | & ¥
. S 1
67 {Gy z dz 8y’ Izéy + Ay 1z dz 2% e (10)
Rearranging the arbitrary variation &y
of d 1
— R | 1
57 {8]} z dz ay’ z "1y J (1‘)

This expression disappears at the whole interval 0 <z <! in case we have

8f dof  d* @
0 495, 4 0f _, (12)
Oy dzdy'  dz?dy”
in the parenthesis.
Performing the operations by the function contained in the integral
(1), presented like the function of (2), we obtain

y =q. (13)

This is the well-known differential equation of the deflection line of a bar
in simultaneous bending and compression. Thus we have presented one of
the most important fundamental ideas of F.E.M., used already by EULER
in the calculus of variations.

o
iy

ier’s Method of Calculating the Displacement
of Simply Supported Beams

Investigating the simply supported beam, the analysis of the cantilever
serves as a basis. NAVIER has written up the deflection of a cantilever
loaded at the free end by a point load, solving the boundary value problem
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of the differential equation of a bar in bending. Notations are shown in
Fig. 4. The formulae of the solution are

P (2?2 2° Pz? T
e | e ) = _—— 4
y(@) EI( 5 6> 2ET <z 3) ’ (14)
furthermore
Pzt ; P2?
P z
X

Fig. 4. Cantilever beam

Considering the cantilever as a fundamental element, while the simply sup-
ported beam as the ensemble of two different cantilevers having common
clamping-in sections, NAVIER determines the influence line of the simply

supported girder.
Fig. 5 shows the simply supported beam, consisting of two cantilevers.

The most important idea of the analysis is that the displacement of the

cross-section below the load is common, irrespective of whether it is cal-

culated from the left or from the right. Thus it is possible, first of all, to

describe the angular rotation of the cross-section below the load (Fig. 6).
The geometrical condition of the joining is

€14 t+ €24 = €15 — €3B, (16)

where obviously

I — 3
€14 = P Z'E—“ €24 = ZQS) (17)
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Fig. 5. Simply supported beam

|
L

AN
z l-2z ES
L
!
S %
ylz)| 4= y(z)
&2 Q
¢ I S
€
\
Fig. 6. Compatibility condition
furthermore
z(l—2)? _ ,
€1B=P7 3R] e = (I —2)0. (18)

The formulae have been developed by assuming small displacements.
Replacing (17) and (18) in (16) and rearranging the result
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|
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(v)
y(z)|€u, ! yiz)
ug . )
b/ /LP !
¢ \ e, vy

Fig. 7. Coupled cantilevers

P
¢ = 3Eﬂz(l—z)(l——2z). (19)

Making use of the local frames presented in Fig. 7 we can describe the
displacement functions of both parts of the bar, distinguished by the load.
On the left side, starting from the fictitious clamping in:

_ 2 3
y() = ¥(z) — 6 — ew = (2) — s — =2 (3’“-2& - %) . (0)
Since at the left support we have
y(u=—z)=0, (21)
the deflection at the cross-section containing the load is
—_ p 2 \
y(z) = 3—51—1(1 —z)(dz - 1)z". (22)

On the right side, also starting from the fictitious clamping in,

zZ 'U2 - Z 'U3
y(v) = y(z) +vé —ev = y(2) + v — Efiﬁ {——(12—2 ~ —3—} . (23)
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Applying the reference frame of Fig. 8 we can describe the suitable forms
of the deflection function at both intervals:
If 0<z<z then

y(z) =y(z) - (2 —=z)¢ -

P(l—2)[(z-2)?2 (z2-2)
EIl [ R } » (242)

while if z<2z<! then

21—z z—2)°
mwzy@y4z~@¢—£;[@‘zéu ) _ 3)]. (24.b)

Finally, by selecting

P=1, v =y(z, 2) (25)

we obtain the deflection influence function of the cross-section z as well,
due to the theorem of MAXWELL.

P
o z -z
X
N
X=z -
z=x=l|
yv

Fig. 8. Green-functions

The flexibility as well as the stiffiness parameters of the simply supported
bar can be obtained from the results of NAVIER, too. Thus, first of all we
have to determine the angular rotation of an arbitrary cross-section due to
a couple acting upon it. This latter can be treated as the entity of two
equal and opposite forces, so the former results can be used.

M =pP, p— 0, P — 0. (26)
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b‘; 2+p

c. 9] |

Fig. 9. Couple loading on the simply supported beam

The forces are presented in part a) and b) of Fig. 9, respectively. The
deflection graph containing the rotation as the fundamental point of the
solution is shown in Fig. 9c.

Due to the force showing upwards

. —-P
¢ = 3EIlz(l-—z)(Z——Qz), (27)
while in the presence of the force showing downwards
b1= sp=(z+p) 0~ 2~ p) I~ 2= +p)] (25)
2T 3En TP Fpv TPl

The result looked for is obtained by the limit of the sum of these latter
angular rotations.

, . M 22

= ;I_I“I(l) (¢1+¢2)—-§—E—I <3z—3—l—-—l> ) (29)
Pesco
pP=Af

We also need the angular rotation caused by the point force at the right
support of the simply supported beam. The calculation can be carried out
by making use of a cantilever element, considering that the load of the
cantilever is just the right-side reaction of the beam.

The cantilever is presented in Fig. 10a, while the geometry is shown
in Fig. 10b. Hence

Pz (i-2)’
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or in detail

P la(i-2@z-1) =z(l-2"|_ P 2 2
5 =TI 31 [z | Temr\MF 0T
31
) Pz (31)
a, L

Fig. 10. Right side cantilever

This formula is suited to the determination of the right support’s angular
rotation due to a concentrated couple acting at the cross-section of coordi-
nate z. Similarly to the operation (29), we obtain from the left-side force
showing upwards,

P / 9 723 \ Pz P
= - — e e 1 —_ s B
$15 12z SZZ) Yol 122 -7 51 (32)

6B7 \ 1 ;

while from the right-side force showing downwards

¢2B-_—‘—

(z+p) [1'2(z+p) ~ 7-(—3—“%11)3 - 51} . (33)
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Thus as a result of the concentrated couple we have

, . M z2
¢p = ’1)1_13) (615 + b25) = 6ET (22 T l) . (34)
2P

Thereafter the flexibility coefficients can also be written, since they are
defined as angular rotations due to unit couples acting at the ends of the
beam (Fig. 11).

M=1 <)
i L ﬁi/j(/fBA

fan |
Fig. 11. Definition of the flexibility
faa=d(z=0)= o, fou=a(z=0) = = (35)
TP T VT 3ED RS Y T
Finally the flexibility and the stiffness matrices, respectively, read as
l 2 -1 EIf2 1
F“@f[—l 2}’ K‘2T[1 2}' (36)

The Force Method of Navier

The principle of the force method, the selection of a redundant force and the
stating of a compatibility equation having geometrical content — all these
are explored also by NAVIER. Certainly this idea was missing before his
activity since even the model of the bar was also not existing. Performing
the solution, NAVIER starts from the elastic deflection line of the beam in
bending, applying the usual differential equation. However, he does not
use the superposition principle, instead he applies the boundary conditions
belonging to the differential equation as well as the transition conditions
valid there at the reference point of the load. Thus he obtains five unknown
quantities, included the redundant point force. These can be determined
directly one after the other.

The problem itself is presented in Fig. 12a. The primary structure is
shown in Fig. 12b. Derivation of the right side reaction Q as an influence
function reads as follows:
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a., b.,
gp P
] X 4 A X
A ey 4
pi % 4
l Q
y

Fig. 12. Indeterminate beam

The differential equation of the deflection curve of the girder in elastic
bending is

1 M{ lrd

v =57 (37)

Since we have different expressions for the bending moment depending on

whether the cross-section is situated at the left or at the right side of the

load, respectively, (37) has to be written up with respect to two different

intervals

z

il

z1 < z, z=z9 < z,
(38)
EIy{ = P(z~21)-Q(~=z),  Ely=-Q(~-=),

@ being unknown. Boundary conditions generated by the geometry read
as

yi(0)=0, 3(0)=0, w(()=0, (39)

while the transition conditions are

vi(2) =w(2),  ¥i(z) =va(2). | o (40)

Boundary conditions

n i
Q

due to statics are fulfilled automatically.
Integrating the differential equation (38) twice yields altogether four
indefinite constants. The fifth unknown is the redundant Q itself. On the
other hand (39) and (40) deliver just five independent conditions, so the

unknown quantities can be determined.

(41)
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Referring to (38) and (39)

Z3
Ci=0, Cy =0, C3l+c4=Q"?;‘a (42)
while from (38) and (40) we have
Pz P2’
=z =z 43
Cs 5 Cy 5 (43)
Finally
Q=52 -2). (44)

The influence line of Q is presented in Fig. 13.

7(0) 7=

ENE

Fig. 13. Influence line of the redundant

eneralization of Navier’s Cantilever Method

[t is interesting to investigate the ability of the method used originally
by NAVIER in order to solve simply supported beams, with respect to the

application to indeterminate beams, e. g. continuous structures as well.
Also we are looking for the reason why this latter problem has been solved
just many vears later by CLAPEYRON who was a successor of NAVIER at
the French Academy.

Thus the generalization of NAVIER’s method has been analyzed first
in case of beams clamped at one end, and simply supported at the other
one. Afterwards beams clamped at both ends were investigated, as well.
This is a simple matter of fact, just we have to extend the compatibil-
ity equations of the basic solution to both cases of more complicated bound-
aries by applying further geometrical conditions at the inflexion points of
the deflection lines that are still unknown. The calculation results in a
mixed method, containing compatibility equations(s) as canonical equa-
tions, while possessing the position of the inflexion point(s) as unknown
quantity. Thus we obtain cubic algebraic equations, so the fundamental
idea is not too suitable for generalizing.

+

=
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The application of the cantilever-like finite elements at the calculation
of bars, clamped at one end while supported at the other end is shown in
Fig. 14. The structure consists of three finite elements. The first extends
from the wall to the inflexion point of the deflection line. The second holds
from this point to the action point of the point load, while the third one
extends to the right support. The abscissa of the inflexion point, the shear
force at the same place finally the angular rotation of the cross-section
under the load are the unknowns of the problem.

_Tg P P-T
14 1 4
y (w) 2 . ET
S : /L? el
2i X ' e']B
‘e
)
W Z-\ -z :
l

Fig. 14. Navier’s solution

According to the first equation generated by the strength of materials, the
deflection value at the cross-section of the load calculated from the left and
calculated from the right, respectively, have to agree each other. By the
notations of the figure

e1i + e +y(w) = e1p — €25 (45)
holds. Here
_pz=w)? = , _Tw’
eii=T 3EI ° e2i = (z — w)g, y(w) = 'é_f (46)
and
—(pomi2 — (- =) (47)
€ip = 3Bl €2 = zZ)Q .

Replacing (46) and (47) in (45), respectively, we obtain a compatibility
equation as follows
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(I—2z2)? T
3ET 3ET

(l—w)p=P {l3+3{1z(z-1)+zw(w—z)]-2w3} .

(48)
Another geometrical equation can be written by considering Fig. 15a. Thus
the relationship between absolute and relative angular rotations reads as

!

y(w) =9 =4, (49)

hence by applying MOHR’S theorem

Tw? T(z—w)?

= ¢ 50
2Bl 2EI . (50)
therefore
T . = ¢ (51)
ZEIz(zw —z)=0.
a b.,

/ |

Fig. 15. Geometrical relationship. Equilibrium

We apply thereafter the equilibrium condition suited to Fig. 156, that is
the moment-equilibrium equation with respect to the right support. Thus

-2z
T = Pl — (52)
Referring to (50) and (52)
6= P z(I-2)2w - z2) . (53)

2FI I—w
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Finally we replace (52) and (53) to (48) as to obtain

zZ(l—z)(2w - 1)
2

(1-2)° -z { 3 3
= - l 3{lz(z = 1) + zw(w — —Zw}. 54
T - gy (30— D+ zw(w— ) (5)
The static indeterminacy of the structure is released by this latter com-
patibility equation. It has to be pointed out that the unknown quantity is
neither a stress resultant nor a displacement, it is rather the coordinate w
of the inflexion point.

Beam Clamped in at Both Ends

The previous investigation has been extended to the clamped in beam
presented in Fig. 16a, as well. Both abscissae of the inflexion points of
the deflection line are unknown (Fig. 16b). Geometrical relationships are
presented in Fig. 16/c, while the idea of the first geometrical equation
agrees to that dealt with previously. The second geometrical equation
described there must be replaced here by two separate relationships, while
the equilibrium condition can be obtained treating the situation presented
in Fig. 17. p

a.,

I
| &
z bz .

: _ SHCy
j

At_(P“T)

j=
—i
1
o ame—

a)

ylw,) |

Fig. 16. Beam built in at both ends

Disregarding tedious details we obtain finally the following compati-
bility equations
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i

l - Wa=-Wp

;L_Z(-WA |l=2Z-wq

o
]

Fig. 17. Equilibrium relationship

(z=w)(=2)(2uws —I—2)= (- z—wp)(2wa — 2), (55)
1 _
(l—z—ws)z(2wa —2) = 3 Zﬁ(l e w5)3
f-z—-Ws (z—-wA)3+ Z " Wa w% I—z—ws wi . (56)

l —ws— wg [ —w, —wp l—w, —wg

Considering the nonlinear equations (55) and (56) we can state that the
method of NAVIER using finite cantilever elements is not too suitable for
solving problems related to bar structures. The technical mechanics of the
early 19th century was not yet in trim for investigation of complicated
questions like this.
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