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Abstract

This research proposes a vision-guided autonomous navigation framework for unmanned vehicles performing image acquisition for
bridge inspection. The proposed framework integrates visual SLAM with RGB-D image input with semantic segmentation to detect
and localize critical structural components like columns. The detected components are converted to the parametric map to generate
navigation goals for image collection. The proposed approach is first validated in the synthetic bridge inspection environment using
an unmanned ground vehicle. The feasibility of the framework is further studied by the laboratory-scale prototyping and validation
using TurtleBot3 equipped with Jetson TX2 onboard computer. In the simulation environment, the proposed framework can achieve
autonomous navigation to up to 6 columns and acquisition of image data with 90% success rate for 3 columns. Furthermore, the
performance evaluation in the real-world environment shows that the developed hardware-software prototype can navigate and
collect image data of up to 2 columns, with more than 60% success rate navigating to the first column. The results indicate the

significant potential of achieving autonomous navigation and image acquisition with limited onboard computational resources,

contributing to the enhanced efficiency and reliability of bridge management.
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1 Introduction
Bridges play a critical role in road and rail transportation,
and the health of bridge structures is the basis for ensur-
ing the safety of transportation. By the end of 2022, the
total number of highway and railway bridges in China has
exceeded 1.2 million [1]. Many of those bridges experi-
ence structural degradation as their duration of service
increases [2]. If such degradation is not identified and
managed appropriately, bridge safety may be compro-
mised, potentially resulting in fatalities and injuries [3].
In recent years, computer vision (CV)-based structural
inspection and monitoring approaches have been inves-
tigated as an alternative to traditional approaches that
require dense instrumentations (e.g., [4]). For example,
visual recognition algorithms today can extract structural
component types and structural damage from the images
of critical parts of the structures [5—7]. Successful results
from those applications push the need for higher levels

of automation, where image data collection in the bridge
inspection environment is performed by mobile robots
with visual recognition capabilities.

This research proposes a vision-based autonomous nav-
igation planning approach that can be deployed on small,
unmanned vehicles to acquire images in bridge inspec-
tion environments. The proposed approach first combines
visual simultaneous localization and mapping (visual
SLAM) and semantic segmentation of bridge compo-
nents to obtain parsed sparse point cloud map of the criti-
cal structural components (e.g., columns). Then, bounding
boxes representing those critical structural components
are fitted to the parsed point cloud data. The bounding
boxes are used to determine the navigation goals for col-
lecting images from the desired distance to the target sur-
face. This research investigates the feasibility of the pro-
posed approach through hardware implementation using
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TurtleBot3 Waffle Pi unmanned ground vehicle (UGV) [8]
and a one-third-scale laboratory specimen of a reinforced
concrete (RC) railway viaduct [9]. The results highlight
the potential of collecting image data autonomously and
effectively in the actual bridge inspection scenarios.

This next section discusses the related work, followed
by the detailed description of the proposed autonomous
navigation planning framework. Then, feasibility, poten-
tial, and challenges of the proposed framework is dis-
cussed by developing prototypes (Fig. 1) in synthetic and
laboratory environments (Fig. 2).

2 Related works

Computer vision-based structural inspection has been
investigated actively to reduce the workload and subjec-
tivity of manual visual inspection [7, 10]. Deep learn-
ing-based algorithms, such as convolutional neural net-
works (CNN) and vision transformers (ViT), are known
to be effective in automatically extracting information
about structural conditions from images taken appropri-
ately [5, 11, 12]. However, manual image collection pro-
cess for large and complex civil structures requires signif-
icant labor and potentially raises safety concerns.

M Turtlebot3' Wa
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Fig. 1 Robot configuration: (a) Configuration in simulation

environment, (b) Configuration in laboratory environment
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(b)
Fig. 2 Laboratory environment with a specimen of a high-speed railway
viaduct: (a) Front view, (b) Side view

The use of mobile robots, including UGVs and
Unmanned Aerial Vehicles (UAVs), can address some of
the shortcomings of manual image collection process.
Unmanned vehicles can be operated remotely to collect
high-quality images of civil structures [13—15]. Image
data collected by UAVs can be used for critical component
recognition [6, 16, 17], damage detection [5, 18, 19] etc.
Existing research implies that the efficiency and reliability
of the bridge inspection process would be improved fur-
ther if the autonomous navigation and image collection by
unmanned vehicles are realized.

GNSS positioning and satellite maps are used fre-
quently to automate the UAV-based collection. Morgenthal
et al. [20] proposed bridge inspection framework, in which
a UAV collects images automatically, following pre-
defined flight trajectories derived from a 3D bridge model
using the Global Navigation Satellite System (GNSS).
Lin et al. [21] proposed a satellite map-based bridge
inspection mission planner which generates 3D waypoints
according to the selected map area and data collection



requirements. However, mobile robot positioning and nav-
igation in GNSS-denied areas (e.g., under bridges) should
be based on onboard sensors, such as cameras and LiDAR.

Mobile robot navigation paths for data collection can
be planned without explicit use of the GNSS by lever-
aging accurate pre-built maps or Building Information
Modeling (BIM) models. Bolourian and Hammad [22] pre-
sented a 3D path planning method for UAV-assisted bridge
inspection using a LIDAR scanner. The method optimizes
flight time while ensuring maximum visibility of poten-
tial defect locations. Prieto et al. [23] proposed a BIM-
based framework for data collection in the indoor environ-
ment using multiple robots. Asadi et al. [24] investigated
a navigation method for data collection in an indoor envi-
ronment using a combination of UGV and UAV. In this
approach, a UGV explores the environment to create a 2D
map, based on which the UAV and UGV perform data
collection cooperatively. These navigation path planning
methods require complete pre-built models or maps, mak-
ing the methods potentially inefficient and uncertain for
complex bridge inspection environments.

Another approach plans mobile robot navigation paths
on-site based on the robot's own sensor inputs, without
fully relying on pre-built models or maps. Car et al. [25]
proposed a semi-autonomous UAV navigation approach
for the wind turbine blade inspection. The method per-
forms plane detection and relative distance/heading
adjustments to maintain the constant position relative to
the blade. Xu et al. [26] incorporated CNN into real-time
power line detection and 3-D point set construction using
UAVs. In this approach, the UAV is guided to focus its
camera on the center of the tower and to traverse a path
aligned with the direction of the power lines. Those stud-
ies presented successful preliminary results toward the
automation of inspections for relatively simple structures,
such as wind turbine blades and power line cables; how-
ever, direct extensions of those approaches to more com-
plex bridge structures are not straightforward.

Research about fully autonomous navigation plan-
ning (online and onsite planning based on robot's own
sensors) for bridge inspection is relatively sparse in the
field. Peng et al. [27] developed an autonomous UAV plat-
form for post-disaster bridge inspection. Their approach
uses an onboard 3D lidar sensor to map the environment
and to detect structural damage. Narazaki et al. [28] pro-
posed a vision-based autonomous navigation approach for
post-earthquake inspection of railway viaduct columns
using UAVs. This approach can plan UAV navigation
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paths without relying on known models or maps. However,
those investigations are limited to conceptual and theo-
retical development. Further investigations are required to
realize the autonomous bridge inspection based on real-
world online navigation for image acquisition, requiring
+ efficient interfacing of different hardware and soft-
ware components,
+ real-time data processing with limited onboard com-
putational resources,
+ dealing with lower perception and robot localization
accuracies in the real-world compared to the simula-
tion environments.

This research aims at developing an autonomous
unmanned vehicle navigation framework and its laborato-
ry-scale prototype for image acquisition of critical bridge
components. The proposed framework combines image
semantic segmentation and sparse point cloud map to detect
critical structural components (e.g., columns), and com-
putes navigation paths for collecting images from desired
distance and view angles. The efficiency and feasibility of
the proposed framework is investigated using TurtleBot3
Waffle Pi with NVIDIA Jetson TX2 [29]. To address the
issues of computational efficiency, this research opti-
mizes the combination of visual SLAM algorithm, image
semantic segmentation network architecture, and column
shape fitting algorithm based on the performance evalua-
tion on the selected hardware. To reduce the performance
gap between simulation and real-world environments, the
semantic segmentation network is trained by an unsuper-
vised domain adaptation (UDA) approach [30, 31] with the
rich synthetic dataset [9]. All those data processing steps
are interfaced by Robot Operating System (ROS) [32].
Based on the parsed sparse cloud map obtained from
SLAM and semantic segmentation (sufficient image over-
laps and correct camera pose estimation are identified to
be critical therein), the proposed framework can execute
the autonomous navigation for image data acquisition.
This research contributes to the realization of the fully
autonomous "inspection robot" by the wholistic develop-
ment and feasibility study.

3 An autonomous unmanned vehicle navigation
framework for bridge inspection

3.1 Framework overview

An overview of the proposed framework for autonomous
unmanned vehicle navigation for the image acquisition
in unknown (without pre-built maps or models) bridge
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inspection environments is shown in Fig. 3. In this frame-
work, waypoints are determined based on the online pro-
cessing of RGB-D image stream from an onboard cam-
era to collect close-up images or videos of critical bridge
components (e.g., columns). The framework consists of
three modules interacting with each other: visual SLAM,
bridge component recognition, and target generation and
navigation. The image frame is first processed by visual
SLAM algorithm to update the robot pose and the sparse
point cloud map of the environment. At the same time,
a semantic segmentation model is applied to obtain the
bridge component label map. The target generation and
navigation module accesses the visual SLAM and bridge
component recognition results to parse the sparse point
cloud map into different bridge component types. When
the number of points for the critical component class
reaches the threshold, the point cloud for that compo-
nent class is clustered into component instances. These
instances are converted into a parameterized component
map, which is used to determine the waypoints for col-
lecting images of those components from desirable dis-
tance and view angles. This map and the associated way-
points are updated continuously, until all the components
are detected and inspected. The detail of each module is
described in the following sections.

3.2 Robot Operating System

Robot Operating System (ROS) [32] is an open-source
software development platform that allows programs
with different functions (referred to as "nodes") to be

Component Recognition

Visual SLAM

Point cloud parsing

interconnected via standardized communication pro-
tocols. For example, this research runs visual SLAM,
semantic segmentation, and navigation target generation
as nodes in the ROS framework, ensuring that those algo-
rithms can coordinate effectively to perform the autono-
mous bridge inspection task.

3.3 Visual SLAM module

The visual SLAM algorithm estimates the camera pose and
updates the point cloud map simultaneously by processing
RGB or RGB-D image stream. This research evaluates the
following three SLAM algorithms, OV2SLAM [33], ORB-
SLAM3 [34] with RGB image input, and ORB-SLAM3
with RGB-D image input.

OV?SLAM [33] is a SLAM algorithm that combines
optical flow with feature extraction. The algorithm achieves
efficient tracking and localization by adopting the fast opti-
cal flow algorithm, while performing feature matching only
on keyframes. ORB-SLAM3 [34] is a SLAM algorithm that
relies on ORB (Oriented FAST and Rotated BRIEF) [35]
features and utilizes co-visible views for backend local bun-
dle adjustment. Extracting ORB features from every frame
results in a relatively dense point cloud map at the expense
of increased processing overhead. ORB-SLAM3 also sup-
ports map merging and loop detection, improving the track-
ing and mapping results. ORB-SLAM3 can be applied to
RGBD image data, allowing the localization and mapping
results to reflect the actual scale. Use of RGBD image data
can also improve the accuracy of triangulation-based depth
reconstruction during small movements.

Target Generation & Navigation

Target generation Navigation

[ Column 1
Column 2
m Column 3

Column 4 %

Fig. 3 Overview of the proposed UGV-based autonomous navigation and image acquisition system under bridge inspection task (Dark blue blocks are

the main modules of our approach)



When the SLAM algorithm processes the new image
frame, the image point coordinates corresponding to the
3D points are computed using the estimated camera pro-
jection matrix. These image coordinates are published
as ROS messages, allowing other modules to access the
information in real-time.

3.4 Bridge component recognition module

This module performs semantic segmentation to identify
critical structural components that need to be inspected.
The proposed approach first performs 2D semantic seg-
mentation of each frame of the image stream, and merges
the results into point cloud to obtain parsed map of the
environment. Compared to semantic segmentation
methods that operate directly on point cloud data, e.g.,
PointNet++ [36], this image semantic segmentation-based
approach has the following advantages:

1. semantic segmentation of a new incoming image
frame tends to be computationally more efficient
than performing point cloud semantic segmentation
of the entire scene,

2. point cloud map creation and parsing can be per-
formed online, without waiting for the robot to finish
exploring the environment, and

3. images tend to provide richer contextual information
compared to the sparse and incomplete point cloud

map obtained by SLAM algorithms.

This research trains the semantic segmentation algo-
rithm by a UDA approach, termed DAFormer [30, 31], with
a large-scale synthetic dataset, termed Tokaido Dataset [9].
The DAFormer framework combines multiple UDA tech-
niques, such as self-training, rare-class sampling, and
learning rate warmup, to obtain high-performance seman-
tic segmentation networks for the target domain (real-
world images). The training is based on annotated data in
the source domain (synthetic data) and unannotated data
in the target domain. The DAFormer facilitates the transi-
tion from preliminary algorithm development in the syn-
thetic environment to the real-world implementations.

This research adopts DeepLab V2 segmentation
model [37] to realize near real-time processing. This
research compares two backbones, ResNet-101 and
ResNet-50 [38], to identify the network architecture that
can balance the accuracy and computational efficiency
(Section 4.3). The recognition results are published as
ROS messages.
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3.5 Target generation and navigation module

The target generation and navigation module parses
point cloud map, determines navigation goals for bridge
component inspection, and controls the unmanned vehi-
cle toward the navigation goals. This module works in
real-time, interacting with other modules that compute
the robot pose, point cloud map, and semantic segmen-
tation results.

3.5.1 Point cloud parsing

This step segments and filters the point cloud map to extract
the parts corresponding to the selected critical structural
component class (columns in this research). First, semantic
label predictions at the image key point locations are read
and stored in a hash table containing the point ID p, the
number of times those points are classified into the selected
critical structural component class M, and the number of
times those points are observed N?. When the new frame
is processed, the counts M?, and \? for every point p in the
current view are updated, and the label for the selected crit-
ical structural component class is assigned if N, > ¢, and
NP > t, where the ¢ and ¢, are thresholds (1 =6 and ¢, = 10
in this research). This process enables online incremental
parsing of sparse point cloud maps.

After extracting parts of the point cloud map corre-
sponding to the critical structural component class, the
point cloud is further segmented into component instances
using the Ordering Points to Identify Cluster (OPTICS)
method [39]. This method can identify clusters of different
densities without the need for specifying the number of
clusters. This method is suitable for this research, because:

1. the point cloud map is continuously updated and

expanded, changing the number of components in
the map, and

2. the point cloud map created by the SLAM algorithm

typically exhibits non-uniform point densities (e.g.,
point density is higher for nearby components, while
regions between two components have very sparse
point distributions).

Instead of the number of clusters, the OPTICS method
uses the core distance (r), 0.05 m in this research) and
reachability distance (r,, 0.25 m in this research) to per-
form clustering. This point cloud parsing and clustering
process is implemented as a callback function in ROS
framework, which is invoked every time the message is
published from the recognition module.
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3.5.2 Navigation goal generation

The segmented point cloud for critical structural compo-
nents is used to generate navigation goals and guide the
robot toward the goals. This research determines cam-
era viewpoints using a parametric map containing tight
bounding boxes of component instances.

Parametric map
The first step of navigation goal generation is to obtain
tight bounding boxes of the parsed point cloud for com-
ponent instances. Bounding box detection begins with the
estimation of the transformation between the global coor-
dinate system and the coordinate system of each bound-
ing box. For each point p in the cluster, the neighborhood
./\/p = {pi |i =12,.. .,n} is obtained by either k-nearest
neighbors (kNN) or spherical neighborhood within radius
r as follows:
Np:{{pi|;;<r}, N, <N, o
kNN(p), N, =N,
where kKNN(p) stands for the k-nearest-neighbors of point
P> (k=15). N_is the number of points in the selected cluster,
N_ is the threshold for using the spherical search method,
which is set to 200. After obtaining the neighborhood of
the point p, the centroid p and the covariance matrix X are
calculated. The point normal vector is then calculated by
the principal component analysis. After obtaining the nor-
mal vectors of the point cloud, a Euclidean distance-based
clustering method is applied, and the average normal vec-
tor of the largest cluster is selected as the principal normal
vector of the component. This vector is regarded as the
normal of bounding box.

The normal vector is used to transform the cluster, and
the axis-aligned bounding box (AABB) is fitted to the
transformed cluster. The tight (oriented) bounding box
representing the column can then be obtained by trans-
forming the AABB back to the original coordinate sys-
tem. Those tight bounding boxes constitute the parametric
map; the map stores the centers of the bounding boxes, the
projections of the centers of the 4 side faces of the bound-
ing box onto the horizontal plane, and the normal vectors
of the vertical faces.

The parametric map is updated continuously, following
the updates in point cloud parsing results. If significant
changes in the length, width (>10% change in size), or the
normal vector (>15 degrees in rotation) are observed, the
parametric map is updated to incorporate those changes.
If the number of points in the new bounding box exceeds

the threshold, that bounding box is added to the paramet-
ric map. When the bounding box does not fully enclose
the component because of the incompleteness of the clus-
ter, the lengths of the short and long sides are temporarily
assumed to be the same, until the actual aspect ratio of the
bounding box is greater than 2:1, at which point the shorter
dimension is used. This process realizes the incremental
creation and continuous updating of the parametric map
of the environment.

Navigation goal generation

The navigation goal is generated based on the paramet-
ric map. During the initialization stage, the robot is com-
manded to move forward until it finds the first critical
component. Afterwards, navigation goals are computed by
adding an offset n - x, to the geometric center of the near-
est surface of the current target component x :

X, =x_+n-x,. @)

After the initial navigation goal is generated, the robot
starts the inspection mode. In this mode, the robot con-
tinuously checks if the bounding box is updated or not; if
the bounding box is updated, the navigation goal is also
updated. Otherwise, the navigation goal is fixed until the
robot arrives at the goal.

When the robot arrives at the navigation goal, it checks
whether the data for the current component has been fully
collected. When the collection is complete, the robot que-
ries the map for the unvisited bounding box with the high-
est number of points as the next target. If the collection is
not complete, the next navigation goal is set to continue to
inspect the current component.

3.5.3 Navigation

This research applies ROS navigation [40] to let the
unmanned vehicle follow the navigation plans. The path
planning in ROS navigation consists of a global planner
and a local planner. This research uses the SLAM point
cloud map as input to the ROS navigation, and treats
the components in the environment as non-static obsta-
cles. By this implementation, the robot can effectively
avoid obstacles through local path planning as the vehicle
approaches them.

4 Experiments

4.1 Overview of experiments

This research investigates the feasibility of the proposed
approach in both synthetic and laboratory environments.



In the synthetic environment, TurtleBot3 Burger equipped
with a simulated Kinect depth camera [8] is used as
a hardware platform (Fig. 1 (a)). The resolution, frame
rate, and field of view (FOV) settings for both RGB and
depth images are set to 640 x 480, 30 fps, and 60 degrees
horizontally, respectively. For the laboratory experiments,
a Jetson TX2 onboard computer and an Intel RealSense
D435i RGB-D camera [41] are mounted on the TurtleBot3
Waffle Pi UGV [8] (Fig. 1 (b)). The image resolution and
frame rate are 640 x 480 and 15 fps, respectively. During
the laboratory experiments, all the data processing is
performed by the onboard computer, as opposed to the
synthetic experiments where the richer computational
resources from a desktop computer are leveraged.

In this research, RC railway viaducts are used as target
structures for investigating autonomous bridge inspection
tasks. The synthetic environment is set up by importing
the model of an RC railway viaduct [9], while the labora-
tory environment was made by constructing a one-third-
scale specimen of a high-speed railway viaduct (Fig. 2).
The dimensions of the laboratory specimen are 5.00 m,
3.63 m, and 2.33 m in longitudinal, transversal, and ver-
tical directions, respectively. The aluminum frame was
first made as the core, and plastic foam components are
attached around the core to realize the target shapes.
Finally, wall papers resembling the textures of the con-
crete material are attached to the foam components to
achieve the visual realism.

4.2 SLAM algorithm selection

This section discusses the selection of a visual SLAM
algorithm for the proposed framework. This research
compares the ORB-SLAM3 algorithm with RGB and
RGB-D image inputs, as well as OV2SLAM algorithm
with RGB image input. The camera trajectory estima-
tion results for a benchmark synthetic experiment are
shown in Table 1 and Fig. 4. The corresponding mapping
result is shown in Table 2 and Fig. 5. This research selects
ORB-SLAM3 with RGB-D image input based on the high

Table 1 Displacement ATE and RPE for different configurations

Confieuration  Mean RMSE  MecanRPE RMSE RPE
& ATE (m)  ATE (m) (deg) (deg)

ORB-SLAM3

RGB 0.026 0.039 0.150 0.261

ORB-SLAM3

RGBD 0.023 0.026 0.163 0.271

OV2SLAM 0.036 0.056 0.132 0.252
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Fig. 4 Estimated trajectories with rotation error labeled: (a) ORB-
SLAM3 RGB, (b) ORB-SLAM3 RGB-D, (c) OV3SLAM

trajectory estimation accuracy (absolute trajectory error,
ATE), superior map quality, and comparable relative pose
error (RPE).



454 Meng et al.
Period. Polytech. Civ. Eng., 69(2), pp. 447-460, 2025

Table 2 Cloud/mesh distance result for different configuration

Confieuration Mean Standard Valid  Validation
g distance (m) deviation (m)  points rate
ORB-SLAM3 o
RGB 0.035 0.044 2127 65.05%
ORB-SLAM3 N
RGB-D 0.027 0.037 2197 76.42%
OV2SLAM 0.043 0.050 950 55.17%

(®)

©
Fig. 5 Cloud/mesh distance in different configurations: (a) ORB-
SLAM3 RGB, (b) ORB-SLAM3 RGB-D, (c) OV?:SLAM

4.3 Semantic segmentation network aelection

This section discusses the selection of a semantic seg-
mentation network architecture that balances accuracy
and computational efficiency. Two backbone architec-
tures, ResNet-101 and ResNet-50, are combined with the
DeepLab V2 [37] segmentation head, and those networks
are trained by the DAFormer framework [30]. During test-
ing, all the computations are performed using the Jetson
TX2 onboard computer. Table 3 shows the accuracy of
bridge component segmentation with different backbones
measured by pixel accuracy. Table 4 shows the mean pro-
cessing time per frame. The results show that the infer-
ence time with ResNet-101 backbone is significantly more
than that with ResNet-50 backbone. Although accuracy
is slightly better for ResNet-101 backbone, this research
selects ResNet-50, considering the balance between speed
and inference accuracy evaluated using the Jetson TX2.

4.4 Synthetic experiment results
This section discusses the results of the autonomous UGV
navigation for image data acquisition in the synthetic
bridge inspection environment. The robot is first placed at
a fixed position under the bridge. During the initialization,
the robot moves forward until the first column is detected.
Then, the robot initiates the inspection mode, collecting
images of the column autonomously.

This research evaluates the autonomous navigation
results using success rates. The success in this evaluation

Table 3 Pixel accuracy of DeepLab V2 with ResNet-101 and ResNet-50

Class ResNet-101 Acc. (%) ResNet-50 Acc. (%)
Non-bridge 82.49 81.50

Slab 76.32 74.78

Beam 96.22 92.33
Column 95.80 90.19
IC\LOmnpsg;‘;tt‘:re 64.85 §3.27

Rail 0.14 0.11
Sleeper 0.00 0.00

Table 4 Processing speed of DeepLab V2 with different backbones

on Jetson TX2
Mean processing Mean time w/
Type .
time (ms) SLAM (ms)
Deeplab V2 w/
ResNet-101 786.4 908.1
Deeplab V2 w/ 536 601.3

ResNet-50




is defined using two tolerance levels (50 cm and 25 cm
in the synthetic experiments). In each UGV navigation
attempt and for each column of the bridge, the number of
navigation goals visited successfully (defined by the two
tolerance levels, Fig. 6) is counted. Because each column
has four navigation goals corresponding to the four faces,
this count takes the value of 0, 1, 2, 3, or 4 (0%, 25%, 50%,
75%, and 100%). The navigation attempt is repeated five
times, and the average count and average success rate for
each column is calculated. Finally, those column-wise suc-
cess rates are sorted from most successful columns to least
successful columns (1 column, 2 columns, ...). The result-
ing success rates are presented in Table 5, and the example
trajectories are showcased in Fig. 7.

4.5 Laboratory experiment results

This section discusses the autonomous navigation capabil-
ities of the UGV for acquiring image data in a laboratory
environment of an RC railway viaduct. The success rates
defined for synthetic experiments are used in this sec-
tion, with the low and high tolerances set to 12.5 cm and
25 cm, respectively, considering that the bridge model is

1m

0.5m

0.25m

Fig. 6 Success region (Darker blue area indicates the low tolerance

success region while lighter blue area indicates the high tolerance one)
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one-third scale. The success rates are presented in Table 6.
Example image collection results with the trajectory read
from the odometry are shown in Fig. 8.

5 Discussion

The results from the synthetic and laboratory experiments
demonstrate the significant potential of the proposed
autonomous navigation framework. The output of the
proposed framework is close-up images of critical struc-
tural components (columns in this research). Such images
can be processed by image-based damage detection algo-
rithms; for example, Prasanna et al. [42] showed a success-
ful example of processing close-up images of structural
components to identify structural damage. This research
about autonomous navigation planning will provide an
enhanced level of automation and accuracy for the struc-
tural condition assessment by providing ideal image data
for assessment efficiently and autonomously. On the other
hand, challenges that need to be explored have also been
identified, which are discussed in this section.

5.1 Simulation analysis

In the synthetic environment, the UGV can accomplish the
goal of autonomous navigation to acquire images at rela-
tively high success rates. On the other hand, the following
types of failures have been observed:

1. When the columns have relatively uniform surface
textures, SLAM point cloud is sparse, ending up
with the missing column detections (columns that
are consistently not visited in Fig. 7).

2. False-positive detections of columns cause the robot
to perform inspections not at the column locations.
False positive detections are caused by the error of
the semantic segmentation algorithm or the cluster-
ing process.

3. A gap between the success rates under the high and
low tolerances exists, indicating the misalignment
between the robot's observation and the target sur-
face. The cause of this inaccuracy could be explained
by the inaccuracy in the size or orientation of the
estimated bonding boxes representing columns.

Table 5 Success rate in percentage of different counts of succeed navigated columns under simulation environment (The robot can navigate up to

6 columns)
Criteria 1 column 2 columns 3 columns 4 columns 5 columns 6 columns
success rate success rate success rate success rate success rate success rate
Low tolerance 70.00% 65.00% 55.00% 30.00% 20.00% 5.00%
High tolerance 100.00% 100.00% 90.00% 65.00% 45.00% 20.00%
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Fig. 7 Sample trajectories of autonomous navigation in simulation environment (Red solid square shows the successfully navigated columns,

including partially and fully navigated; red dashed square shows the undetected columns)

Table 6 Success rate in percentage of different counts of succeed
navigated columns under laboratory environment (The robot can only
navigate up to 2 columns)

1 column success rate 2 columns success rate

Criteria %) %)
Low tolerance 25.00% 0.00%
High tolerance 64.29% 3.57%

4. Sometimes, when using Dynamic Window Approach
(DWA) local planner in ROS navigation, robot oscil-
lation and deadlock occurs when the navigation
point is far from the current position.

5.2 Laboratory analysis
The performance in the laboratory environment is lower
than that in the synthetic environment, which is explained

in detail in the following:
1. The UGV platform is equipped with a Jetson TX2
computer, which poses constraints on the available
computational resources. At a resolution of 640 x 480,

the Jetson TX2 can only support the frame rate of
15 fps, and it requires a longer time for backend pro-
cessing when adding new keypoints. This time delay
can cause tracking loss, particularly during rotation.

2. Compared to the synthetic environment, the labo-

ratory environment has significantly more complex
background. As a result, most features appear in the
background, while feature points on the bridge col-
umns are relatively scarce. The lack of keypoints on
the columns leads to the difficulty of detecting the
column shapes during the navigation.

3. Image semantic segmentation is less accurate in the

laboratory environment than in the synthetic envi-
ronments, because of the existence of many pat-
terns that confuses the algorithm. Such inaccuracy,
combined with the rich features of the background,
can cause the spurious detection of new "columns",
which guide the robot to perform inspection tasks
not at column locations.
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Fig. 8 Sample collected images during the navigation for a column in the laboratory

5.3 Future extensions

To address the challenges identified in this section, fur-
ther investigations to improve the hardware, software, and
their combinations are needed in the future. This includes:

1. better combinations of unmanned vehicles (e.g.,
mobile robots that can carry larger payloads),

2. better combinations of onboard computers, sensors
(e.g., LIDAR sensor), and SLAM/visual recognition
algorithms (e.g., direct point cloud processing),

3. improvement of semantic segmentation or clustering
algorithms, taking into account the computational
efficiency for the selected hardware, and

4. improvement of navigation module.

Optimized combinations of those technical components
will be derived from through evaluations in synthetic and
laboratory environments, further enhancing the potential
and feasibility of the proposed autonomous bridge inspec-
tion approach.

6 Conclusions

This research developed an autonomous UGV navigation
approach to acquire image data of critical bridge compo-
nents. The proposed approach does not rely on pre-built
bridge models or maps; instead, the UGV navigates based
on the online and onboard processing of images, i.e., by
recognizing components from the RGB images captured
by the onboard camera, and planning and executing navi-
gation based on the recognition results. Firstly, the visual
SLAM module processes the RGB-D image streams to
estimate the current robot position and the surrounding
point cloud. Concurrently, the component recognition
module performs semantic segmentation on the images.
Subsequently, the target generation and navigation module
extracts the points of interest corresponding to the struc-
tural components. The extracted points are clustered into
component instances, based on which the parametric map
is updated, and navigation targets are established. The pro-
posed approach was validated in both synthetic and labo-
ratory bridge inspection environments, demonstrating its
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significant potential for autonomous and effective bridge
monitoring in practical applications.

There is a room for optimization in terms of performance
and efficiency. Firstly, the study relies on accurate and effi-
cient segmentation results; more efficient and accurate
semantic segmentation models can be employed, and addi-
tional sensor information (such as depth and point cloud
data) can be incorporated for more precise semantic seg-
mentation. Secondly, multi-sensor fusion localization and
mapping methods can be utilized; incorporating sensor
information such as LIDAR and IMU can improve localiza-
tion accuracy and map quality. Incorporating map-building
techniques based on more effective geometric description
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