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Absiract

In the first part of this paper computation of traverses tied and oriented at both ends
was introduced by means of direct observation, based on the principle of the least squares.
In the following part formulas were shown for determining measures of accuracy for surch
traverses, After the theoretical chapters. applicibility was proved by means of a numerical
example.

o

. Introduction

“For more than hundred vears professional literature has been dealing
with adjustment of traversing, and papers discussing methods of optimal
adjustment of traversing. could not even be listed here™ [1].

One would not be able to find a more appropriate introduction to papers
on adjustment of traverses than this first sentence of the quoted work. For
this reason there will no list be presented on most important professional
works, onlv some directly used works are mentioned in the reference.

This papers deals with rigorous adjustment of traverses tied and oriented
at both ends.

With introducing and spreading EDMs, utilizing traversing on greater
Iengths came to the front. It is obvious than in case of long traverses besides
precise measurements it is important to utilize rigorous adjustments. Up-to-
date computational features make possible and continually growing demends
require utilizing rigorous methods, algorithms and programs based on least
square methods for the purposes of geodetic computations.

After describing rigorous adjustment of traverses, determining measures
of accuracy will be presented.

Intention of this paper is to form a suitable denoting and computational
algorithm for computers. Some formulas will be introduced which are difficult
to compute manually while adjustment of direct observations. Such formulas
are standard error of co-ordinates of traversing points regarded as unknowns
and measures of accuracy computed from them.

Utilizing the principle of rigorous adjustment and connecting measures
of accuracy will be shown by means of an example.
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I. BANHEGYI—E. PAPP
Notations

coefficient matrix of conditions equations
vector of adjusted measurements

vector of known values originated from geometric connections
vector of constant terms

vector of adjustment corrections
variance-covariance matrix of measurements
weight coefficient matrix of measurements

a priori value of standard error of unit weight
vector of correlates

coefficient matrix of normal equation system
vector of measurements

bearing

? plane coordinates

J
number of traverse stations

iraverse angles

lengths of traverse legs

elements of coefficient matrix of conditions equations
inverse of coefficient matrix normal equation system
standard ervor of unit weight

weight coefficient matrix of corrections

weight coefficient matrix of the adjusted measurements
variance-covariance matrix of adjusted measurements
weight coefficient matrix of coordinates of traverse stations

variance-covariance matrix of traverse stations

matrix formed by partial differential quotients of coordinates of

traverse stations to measurements
variance-covariance matrix of traverse stations

standard error of coordinates of traverse stations

covariance of traverse stations

mean standard error of position of traverse stations

mean standard error of position of the traverse

largest standard error of traverse stations

smallest standard error of traverse stations

eigenvalue of variance-covariance matrix of traverse station
bearing of the largest standard error



RIGOROUS ADJUSTMENT OF 4 TRAVERSE J

2. The principle of rigorous adjustment of traverses

Adjustment of traverses is practically carried out by means of the
method of direct observations. Results of observations must fulfill given at
the adjustment conditions. The original results of observations are usually
not fulfilling these conditional equations.

The most frequently utilized method for distributing discrepancies is
distribution according to the least squares. which leads to developing a most
probable and discrepancy-free svstem, supposing normal distribution.

The number of generally non linear condition equations are formed by
means of 'n’ observations, and after linearizing them one obtans:

B*U=2C (1)
where B* = coefficient matrix of condition equation
U = wvector, containing the adjusted observation results
€ = vector of known values originated from geometric connections,

Because condition equations are satisfied by original observation results
only exceptionally, generally when solving the equations, an “1” vector of
discrepancies -— constant term vector — will appear, which differs from zero:

C—B*L=1==0 (2)

A fulfilling the conditions can be achieved by means of “v” adjustmental cor-
rections.

C—B*L +-v)=:0 (3)

The above linear functional modell can be put to the following form:

€— (B*L +B*v)=0 (4)

Reliability of the original observation results is described by a stochastie
modell which can he described by means of M;; diagonal matrix presuming
independent measurements.

. . . — . .
The M;; variance-covariance matrix can he expressed by mp a priori
coefficient and @, weight coefficient matrix.

B'ILL = ﬁ02 QLL (5)

Applying the least square method after solving the system of normal
equations Lagrande’s multiplier factor “k”

k=—(B*Q,B)1l=— il (6)

swhere @ is the coefficient matrix of the normal equation.
From this one can compute corrections and adjusted observations:

v=0,, Bk = —Q,, B(B*Q,;B)"'1= —Q,,BQ;1 (Ta)
U=L-v (7b)
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After forming the discrepancy-free system, the sought unknown co-
ordinates can be computed, in our case by means of continuously polar points.

A sketch of a traverse oriented at both ends is given in Fig. 1.

There are n traversing points located between the starting point “K*
and the end point V™. Number of traverse angles is n + 2, while number of

measured distance is n -~ 1, which means that the number of observations is

2n - 3. Number of unknown coordinates is 2n. Number of redundant obser-
vations, i.e. that of condition equations is 3.
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Fig. 1

The first condition equation expresses that 0y 7 computed bhearing
should be resulted from bearing at the starting point with utilizing error-free
observations. The other two coandition equations provide that sums of pro-
jections of traverse legs to the coordinate axes are equal to the corresponding
co-ordinate differences between the starting and end points assuming error-
free observations.

The condition equation which expresses unchangedness of bearings:

n+2

Oy 7, — 07, 1 — Z (Upi— 180°) =@ (8)

j=1

Side equations in X and Y directions:

n-1 j

Yi—Y,— U, sin [an,\, S (Us— 180°)J =0 (9)
j=1 k=1
n-=1 7 1

Xy— Xp— > Upcos|or, o+ Z(Us— 18(>°)J= (10)
=t o
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The differences of the three conditions from 0 with introducing the
origiual measurements from the constant term vector:

lg
=11, (11)
ZX

Individual constant terms are as follows

n+2
lg=dyypy — O, i — Z (L,SJ, — 180°) (12}
. j=1
ni1 J
l,=Y, — Yy— S L sin MM,\, + S (Lp, — 180¢ )} (13)
J=1 ’ 1 b1
n+1 Jj
ly= X, — X — Z L,j cos [@nx + > (Lp, — 1803):| 14)
J=1 fr=1

The condition equation which expresses unchangedness of bearings, is
linear. Coefficients of corrections of adjustment for measured traverse angles
and measured lengths ave as follows:

ol

éﬁf - 1 wi=11n +2 (15)
ol

SIE yi=11)n +1 (16)
ot;

Partial differential quotients of side equations according to the traverse
angles in Y and X directions are as follow:

al n+1
lf:_éz_zgicos[ﬂ . 2(1:3—-180 >]
: j=1 P
wi=11n+2 (17)
8[ n-+ I’ JV _
by, = 815’, = J;Z;L,J sin LOT] K+ = (Lg, — 180“)]
Is should be noted that
oy — Ay =0
aﬁn;: aﬁn-:—‘.’

Partial differential quotients of side equations according to the lengths
can be written as

Il Jj
b3i:(9: :—sm[r K ZLE——WBO )}}
ot;
vi=In =1 (18)
ol |
b4,—~a—:—-:—cos[ T K %‘ — 180°) }j
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Reliability of the observations is given by a diagonal matrix

2 2 2 2 9 2 2
My, =(mg,mg,..., Mg LM, My, e W, D= Q. (19)

1
Coefficient of the M, = B* M;, B normal equation systems can be ex-
pressed as follows utilizing the above introduced notations.

n-+1 -

—1-E2 . n+1 R R
= mgs — Z by;mg;; - 2 bos mei

i=1 i=1 [=1

n+1 n=+1
M, =| — : 2 (b%imﬁ -+ b3, 7"'?1’); 2 (by; by; m%i — by by nz?;) (20)
i=1 i=1
n=l 5 B 2
— ; — : Z (83, m[“;i —+ by m3)
. i=1 -

After solving the svstem of equations of a size of (3x) one obtains the
values of correlates

B = (g by B
Individual corrections can be obtained from the equation (7a)

Ugp == ("“1155 - bli ky —+ bgi Zf\) m’ﬁ?
¥ i=1{1)n +1

N 9
v = (bgiky — by k) mi;
9 <
Vgpen = —hgmp. o (21)
The adjusted measurements can be computed by means of equations

(7b). Final coordinates of traverses stations are determined by means of
adjusted observations

i -
Y, =Y, - Z} U, sin[éK,TI = };1‘ (Us, — 1800)]
= =

1

X=X, + 2 U, c&s[é,{, o 3 (U — 180°)J
j=

wi=11n L1, (22)

k=1

Of course coordinates of point (n -- 1) are identical with those of the
end point “ V™,

3. Measures of accuracy of traverses

Following measures of accuracy can be determined when carrying out
rigorous adjustment of traverses

a) value of weight coefficient i.e. standard errors of adjusted measure-
ments
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b) standard error of coordinates of traverse stations

¢) various measures of accuracy derived from standard error of coordi-
nates.

a) In order to develop the weight coefficient matrix of adjusted measure-
ments one has to compute weight coefficient matrix of corrections. It can be
carried out by utilizing the general law of error propogation for equations
(7a) and (7b) by means of coordinates k and weight coefficient matrix Q’L—I}

Qv =10, 8BQ,B* ¢, (23)

From the above one can obtain the weight coefficient maitrix of adjusted
measurements

QL'L’ = QLL - vi (2‘4)

Variance-covariance matrix ¥, for standard error of adjusted measurements

F“EL'U = Ing QL"L' (25)
where mi = FIvEQ,, v

b) In order to determine standard error of coordinates of traverse sta-
t1oms one must produce X and Y coordinates as functions of adjusted measure-
menis

HES (26)

This connection can he found in equation (22).
By utilizing the general law of error propagation one obtains the weight

coefficient matrix of coordinates of traverse stations as follows:

Q. =FQuy F* (27)
(x)

where F is a matrix formed by partial differential quotients of eqn (22) accord-

ing to the measurements.

Variance-covariance matrix M ;. which is necessary for standard error of
X

traverse points, can be computed by the following formulae:

M, = mﬁQ ,
(‘\) (S\)

¢) Several measures of accuraey can be deduced from standard error of

(28)

coordinates of traverse stations.
Reliability of a point can be described by submatrix N;: which will be
deduced with purposeful regronping of the variance-covariance matrix

2
N, = {mm e (29)
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N, are the squares of standard errors of a point’s

In the principal diagonal
coordinates. Besides the principal diagonal covariances are located too which
are characteristic to the connection of the coordinates.

K, standard error of position is frequently used for rating points of a net:

/my, : sz (30)

The whole net — a traverse — can be rated by means of their quadratic mean

()
K.=|/B & (31)

n

where K is a vector containing standard error of position and n is the number
of traverse stations.

For characterizing accuracies of nets — and positions of nets — error ellipse
are widely used. For determining error ellipses their elements should be known.
These elements are the maximum my,,, and minimum Mpin, of standard
error of a given point with the corresponding bearings. Greatest and smallest
variances are the eigenvalues of the N; matrix, while their bearings are the
eigenvectors.

LEigenvalues of the N; matrix are the roots of the following equation:

o n
[my,- — 2 Cyix:
5

=0 (32)

[Cyixi
The equation after development of the determinant:

A2 — /'.(m?{,-, -+ mﬁﬁ) — Ci’,‘xf = nlr%rg nl;}\'[ =0 (33)

By solving the equation one obtains the greatest and smallest values of vari-

ance.
i 2
2 my + miq 1
Mmux, = — - I (’n)u - th) T 46& iXi (34)
2 2
9
2 my; -+ m¥; 1 2 2 \o P =
Mmin, == — " — T~ V(m,\’i my)* -+ 40y, (35)
2 2
Value of bearing. belonging to the greatest ¢, standard error can be

determined by means of the following equation:

1 2¢y ;i
YixXi
Omax, = —arc tam —————— (36
! 2 m3,; — mi;




RIGOROUS ADJUSTMENT OF A TRAVERSE 11

H
X

+
~<

4. An example for rigorous adjustment of a traverse
with determining measures of accuracy

A computer program was written in TURBO PASCAL for an IBM
PC/AT personal computer for solving the task,
Adjustment of traverse oriented and tied at both ends were carried out.

The traverse is shown in the Fig. 2.

Number of traverse stations was n =3
Number of traverse angles was n—-—32=25
Number of distance measurement was n—1=4

Given data:

a) Coordinates:
Y, =-+5402181 m Xy = +1194.769 m
Y,=+5783332 m X, =+ 601,258 m

b) Bearings and traverse angles: ¢) Distances:
67\,1{ = 180°00°00" L, = 183.941 m
Lg = 147°47°25" L, = 197479 m
L, = 182°23°10” Liy=0L, = 169.062m
Lﬁ3 = Lﬁ,; = 174°23°38” Ly=1L.1= 155288 m
L, = Lﬂ,;_v_lz 181°27°57”
L;aa = Lﬁn~2: 33°58°25"

0°00°00"

I
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d) Applied standard errors:

mg = 15" (n -+ 2) my; = 15 mm (n -+ 1)
M,, = <225,225,...,225,...,225>
(2n+3,2n-+3)

Vector of constant terms:

lﬁ —35"
I— ZY = —:—-134 min
Iy —3 mm

Correlates were computed by means of eqn (6) while solving the normal equa-
tion system.

ks = — 4.442 (arc sec)™*
ky = —16.081 mm~!
kEy = +11.965 mm~*

Adjustment correetion of measurements and their adjusted values from eqns
(7) and (8) respectively.

vy = —20.0” Un = 147°47°05.0”
v = —13.3" Up = 182°22°56.7"
vgy = — 5.6” Ug = 174°23°32.4"
vp = — 0.67 Uy = 181°27°56.47
vy = +— 447 Ugp = 33°58729.4"
vy = —+18.7" U, = 1839597 m
vy = --18.4" U, = 1974974 m
vy = -+19.17 U, = 169.0811 m
v, = +18.9" U, = 1553069 m

Final coordinates of traverse stations were computed from adjusted measure-
ments by means of eqn (22)

Y, = +55002503 m X, = -+ 1039.1297 m
Y, = -+5598.4996 m X, = + 867.8046 m
Y, = +5696.5426 m X, = + 730.0512 m.

Some more important measures of accuracy of traverse stations are showed.
Standard error of unit weight is my = 1.73.

Standard errors of adjusted measurements, based on equs (24) and (25)
respectively, are:

mg = —10.83" m,;, = -+4.27 mm
mg = —10.33" my, = —+3.81 mm
mgy = — 9.22" my; = -+4.83 mm
My = — 6.89" m;, = -+4.57 mm

— 3.46"

3
w
&

I
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Fig. 3

Standard errors of coordinates, determined according to eqns (27) and (28),
are:

my; = -+17.0 mm my, = -+20.5 mm
my, = —+20.9 mm My, = —+23.9 mm
My, = —+16.5 mm my; = +199 mm
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Mean standard errors of position computed according to eqn (30) are:

K, = 14.5 mm K, = 22.5 mm
K, = 18.3 mm.

Quadratic mean of standard errors of position from eqn (31):

K = 18.72 mm
Elements of error ellipses of traverse points were determined according to
eqns (34), (35) and (36) respectively. The error ellipse are shown in Fig. 3.
Data of error ellipses computed by means of eqns (34), (35) and (36) are as

follow:

94 = 147°57°45" 9y = 146°47°14" Ba — 143°45°21"

Mpax, = 5.05 cm Mmax, = 672 cm Mmax, = 5.03 em

Muyin, = 2.05cm Mpin, =  3.36 cm Mpin, =  1.65 em
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