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Ahstract 

In the first part of this paper computation of traverses tied and oriented at both ends 
"'as introduced by means of direct observation, based on the principle of the least squares. 
In the following part formulas were shown for determining measures of accuracy for surch 
traverses. After the theoretical chapters, applicibility was proved by means of a numerical 
example. 

1. Introduction 

"For more than hundred years professional literature has been dealing 
with adjustment of traversing, and papers discussing mE'thods of optimal 
adjustment of traversing, could not even be listed here" [1]. 

One would not be able to finrI a more appropriate introduction to papers 
on adjustment of traversE'S than this first sentenee of the quoted work. For 
this reason there will no list be presented on most important profi,ssional 
works, only some directly used works are mentioned in the reference. 

This papers deals with rigorous adjustment of traverses tied and oriented 
at both ends. 

With introducing and spreading EDMs, utilizing traversing on great pr 
lengths came to the front. It is obvious than in ease of long traverses besides 
precise measurements it is important to utilize rigorous adjustments. Up-to
date computational features make possible and continually growing demends 
require utilizing rigorous methods, algorithms and programs based OIl lea~t 

square methods for the purposes of geodetic computations. 
After describing rigorous adjustment of traverses: determining measures 

of accuracy will he presented. 
Intention of this paper is to form a suitahle denoting and computational 

algorithm for computers. Some formulas will be introduced which are difficult 
to compute manuaHy while adjustment of direct observations. Such formulas 
are standard error of co-ordinates of traversing points regarded as unknowns 
and measures of accuracy computed from them. 

Utilizing the principle of rigorous adjustment and connecting measures 
of accuracy will be shown by means of an example. 

1 " 



4 

B* 
U 
C 

Notations 

coefficient matrix of conditions equations 
vector of adjusted measurements 
vector of known values originated from geometric connections 
"Vector of constant terms 
vector of adjustment corrections 

MLL variance-covariance matrix of measurements 
QLL weight coefficient matrix of measurements 
mg a priori value of standard error of unit ,\~eight 
k vector of correlates 

L 
,) 

Y; 
Xi 
n 

Pi 
ti 

bli •. . b 4i 

1\'11/ 
mo 
Qvv 
Quu 
Muu 

Q(~) 
lVl(D 

E 

my, 
m Xi 

Cy,x, 
Ki 

K" 
mmaXj 

mmin, 

J. 

°max, 

coefficimlt matrix of normal equation system 
vector of n1easurements 
bearing 
1 
r plane coordinates 
J 

numher of traverse stations 
tTaverse angles 
lengths of traverse legs 
elemcnts of coefficient matrix of conditions equations 
inverse of coefficient matrix normal equation system 
standard error of unit weight 
weight coefficient matrix of corrections 
weight coefficient matrix of the adjusted measurements 
variance-covariance matrix of adjusted measurements 

weight coefficient matrix of coordinates of traverse stations 

variance-covariance matrix of traverse stations 

matrix formed by partial differential quotients of coordinates of 
traverse stations to nleasurements 

variance-covariance matrix of traverse stations 

} standard error of coonlinates of trayerse stations 

covariance of traverse stations 
mean standard error of position of traverse stations 
mean standard error of position of the trayerse 
largest standard error of traverse stations 
smallest standard error of traverse stations 
eigenvalue of variance-covariance matrix of traverse station 
hearing of the largest standard error 
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2. The principle of rigorous adjustment of traverses 

Adjustment of traverses is practically carried out by means of the 
method of direct ohservations. Results of ohservations must fulfill given at 
the adjustment conditions. The original results of observations are usually 
not fulfilling these conditional equations. 

The most frequently utilized method for distributing discrepancies is 
distribution according to the least squares, which leads to developing a most 
probahle and discrepancy-free system, supposing normal distrihution. 

The numher of generally non linear condition equations are formed hy 
means of . n' observations, and after linearizing them one ohtans: 

B*U = C (1) 

where B* coefficient matrix of condition equation 
U vector, containing the adjusted ohservation results 
C vector of known values originated from geometric connections. 

Because condition equations are satisfied by original ohservation results 
only exceptionally, generally when soh-ing the equations, an "1" vector of 

discrepancies constant term vector will appear, which differs from zero: 

C B*L = I o (2) 

A fulfilling the conditions can he achieved hy means of "v" adjustmental cor
rections. 

C - B*(L v) o (3) 

The ahove linear functional modell can he put to the following form: 

C (B*L ..-L B*v) = 0 (4) 

Reliahility of the original ohservation results is descrihed hy a stochastic 
modell which can he descrihed 1)y means of lULL diagonal matrix presuming 
independent measurements. 

The ~ILL variance-covariance matrix can he expressed hy mg a priori 
coefficient and Qu ,,,-eight coefficient matrix. 

(5) 

Applying the least square method after solving the system of normal 

equations Lagrande's multiplier factor "k". 

k = -(B* QLL B)-Il = -Qzill (6) 

where Ql/ is the coefficient matrix of the normal equation. 
From this one can compute corrections and adjusted ohservations: 

v = QLL B k (7a) 

(7h) 
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Mter forming the discrepancy-free system, the sought unknown co
ordinates can be computed, in our case by means of continuously polar points. 

A sketch of a traverse oriented at both ends is given in Fig. 1. 
There are n traversing points located between the starting point "K" 

and the end point" V". Number of traverse angles is n 2, while number of 
meai3ured distance is n -i-- 1, which means that the number of observations is 
2n + 3. Numher of unknown coordinates is 2n. Number of redundant obser
yations, i.e. that of condition equations is 3. 

! +X' 

'2 

.x 

.. 'r' 

Fig. 1 

The first condition equation expresses that 6V ,T, computed hearing 
should be resulted from bearing at the starting point with utilizing error-free 
obseryations. The other two comlition equations provide that sums of pro
jections of trayerse legs to the coordinate axes are equal to the corresponding 
co-ordinate differences between the starting and end points assuming error
free obsen-ations. 

The condition equation which expresses unchangedness of hearings: 

11+2 

617 •T , - 01,,1( - ~ (Upi - 180°) = £1 
j~l 

Side equations in X and Y directioll5: 

Tl-~ 1 [ j ., 
- - ~T • I~- )e ' X\.-Xr<-~ UtjCOS 0T"KI..;;;;".(U ih -180 )J=(l 

J~l t-l 

(8) 

(9) 

(10) 
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The differences of the three conditions from 0 with introducing the 
original measurements from the constant term vector: 

(11) 

Individual constant terms are as follows 

n-i-2 :z (Lp. - 180°) 
}=1 1 

(12) 

n-i-l r } J 
ly = Y\. - Yg - ~ Lt! sin_ 6T1 , K -'- ,~ (Lp" 180 0

) (13) 

n+l [} ] 
lx = Xv - X K -- :E Lt; cos bTlI( -'- :E (Lh - 180:» 

}=I k=! 

(14) 

The condition equation which expresses unchangedness of hearings, is 
linear. Coefficients of corrections of adjustment for measured traverse angles 

and measured lengths are as follows: 

a1 
. _f = -1 
apt 
a1~ __ 0 

ott 

Vi = 1(1)11 2 (15) 

Vi = 1(1)11 -'- 1 (16) 

Partial differential quotients of side equations according to the travprSt, 
angles in Y and X directions are as follow: 

2 (17) 
af r n+l r } 

b -~- ""- .' I ~(L 2t - . - ~ L 1;sln. 0T],K -r..,;;;,; p" apt }=1 L k=1 

Is should he noted that 

~>:..... = ol>£., = 0 

o{J"~~ 0P,,+2 

Partial differential quotients of side equations according to the lengths 
can he written as 

180°) J 1 
I vi = 1(1)11 

180") J J 
1 (18) 
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Reliability of the observations is given by a diagonal matrix 

(19) 

Coefficient of the Mll = B* MLL B normal equation systems can he ex
pressed as follows utilizing the above introduced notations. 

L 

n+l 

.:2 bIi mi; 
i=1 

n+l 

bt111~i); .:2 (bIi b2im~i ~ b3i b.lfTllTt) 
i=1 

11+1 
~ (b 2 .) 
~ 2im~i 
i=1 

(20) 

After solving the system of equations of a size of (3x) on<> obtains the 
values of correlates 

Individual corrections can he ohtained from the equation (7a) 

lk" bIi ky ,bZi k x ) md I 
¥ 

(b3i ky -,- b.li k x ) 111Fi 
l(l)n ~ 1 

(21) 

The adjusted measurements can be computed hy means of equations 
(7b). Final coordinates of traverses stations are determined hy means of 
adjusted observations 

Y i Y A -L i Utj sin [OK. Tt +1-.~ (UPk - 180 0
)] 

j=1 k=l 

¥i=l(l)n I. (22) 

Of course coordinates of point (n -'- 1) are identical 'with those of the 
end point "V". 

3. l\"!easures of accuracy of traverses 

Following measures of accuracy can be determined when carrying out 
rigorous adjustment of traverses 

a) value of weight coefficient i.e. standard errors of adjusted measure
ments 
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b) standard error of coordinates of traverse stations 
c) various measures of accuracy derived from standard error of coordi

nates. 

a) In order to develop the weight coefficient matrix of adjusted measure
ments one has to compute weight coefficient matrix of corrections. It can be 
carried out by utilizing the general law of error propogation for equations 
(7 a) and (7h) hy mpans of' coordinates k and weight coefficient matrix Qu~ 

(23) 

From the ahove one can ohtain thp weight coefficient matrix of adjusted 
measurements 

(24) 

Variancp-coyariance matrix for "tandard error of adjusted measurements 

(25) 

where 
.) 

In(j I -I v* Q V LL 

b) In order to determine standard error of coordinates of traverse sta
tIOns one must produce X and Y coordinatps as functions of adjusted measure

ments 

I~) = F(U) (26) 

This connection can J)P found in equation (22). 
By utilizing the general law of error propagation one obtains the weight 

coefficient matrix of coordinatt's of trayerse stations as follows: 

Q i") = FQuu F* 
Ix 

(27) 

where F is a matrix formed hy partial differential quotients of eqn (22) accord
ing to the measurements. 
Variance-covariance matrix lH\, which is nece"sarv for standard error of 

Lx) 
traverse points, can he computed by the following formulae: 

m~Q \") 
Ix 

(28) 

c) Seyeral measures of accuracy can be deduced from standard error of 
coordinates of traverse stations. 

Reliahility of a point can he described hy suhmatrix Ni: which will JJe 
deduced with purposeful regronping of the variance-covariance matrix 

CYi,Xi] 
.) 

m:,<r 
(29) 
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In the principal diagonal Ni are the squares of standard errors of a point's 
coordinates. Besides the principal diagonal covariances are located too which 
are characteristic to the connection of the coordinates. 

Ki standard error of position is frequently used for rating points of a net: 

K 1 V ---'--'--2'----'-'-.' (30) 

The whole net - a traYen'e can he rated by means of their quadratic mean 
(Kk) 

K (31) 

where K is a vector containing standard error of position and n is the number 
of traverse stations. 
F or characterizing accuracies of nets - and positions of nets - error ellipse 

are ,ddely used. For determining error ellipses their elements should be known. 
These elements are the maximum mmax

i 
and minimum mmin

i 
of standard 

error of a given point with the corresponding bearings. Greatest and smallest 
yariances are the eigenvalues of the Ni matrix, ·while their bearings are the 
eigen vectors. 

Eigenvalues of the Ni matrix are the roots of the following equation: 

r m~i i. 
LCYiXi 

CYiXi 
.> 

m:Xi 
.J = 0 
I. 

(32) 

The equation after developmcnt of the determinant: 

(33) 

By solving the equation one obtains the greatest and smallest values of vari
ance. 

? 1 ., I ., m'h, m7Xi r 0 m~i)2 + 4cLxi 111;;',tx l: ------ I ! (mj.(i - (34) 
2 "I 2 

? + m3;i I .) m'Yi 
V(m:Xi - 2 r . 4 t mmin i 2 2 

mYi - -+- CYiXi (35) 

Value of bearing, belonging to the greatest (jmaxi standard error can be 
determined by means of the following equation: 

I 

2 
arc tan 

nl.li- nzt"i 

2CYiXi 
(36) 
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Fig. 2 

4. An example for rigorous adjustment of a traverse 
with determiniug measures of accuracy 

11 

A computer program was written in TURBO PASCAL for an IBM 
PC/AT personal computer for solviug the task. 

Adjustment of traverse oriented and tied at both ends were carried out. 
The traverse is shown in the Fig. 2. 

Number of traverse stations was n = 3 

Number of traverse angles was 
Number of distance measurelnent was 

Given data: 

a) Coordinates: 

Y K = + 5402,181 m 

Y v = + 5 783,332 m 

h) Bearings and traverse angles: 

6T1 ,K 

Lpl 

Lf3~ 
Lp3 = Lp" 

Lp! = Lp"~'l = 

Lpo = Lpr.-"-2= 

(\',7 

180°00'00" 
147°47'25" 
182°23'10" 
174°23'38" 
181 °27'57" 

33°58'25" 
0°00'00" 

n-2=5 
11 ~ 1 4 

X K = 194,769 m 

Xv + 601,258 m 

c) Distances: 

Ltl 
Lt2 

LI3 Lt!! 

La = LIr:+l = 

183.941 m 

197.479 ill 
169.062 ill 
155.288 ill 
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cl) Applied standard errors: 

I '"" ( '») mpi =;) n - mti 
!'[LL = < 225, 225, ... , 225, ... , 225 > 

(2n+3,2n+3) 

Vector of constant terms: 

15 mm (n 1) 

Correlates were computed by means of eqn (6) 'while solving the normal equa
tion system. 

kf3 = 4.442 (arc sec)-l 
ky = 16.081 mm- 1 

kx = ...,..11.965 mm- 1 

Adjustment correction of measurements and their adjusted values from eqns 

(7) and (8) respectively. 

VfJ1 -20.0" Up 147°47'05.011 

vf32 -13.3" Uf32 182°22'56.7" 

vf33 5.6" U f33 174°23'32.4" 

VP4 - 0.6" Uf3.1 181 °27'56.4" 

t'/35 ..L 4.4" U/35 33 ~58'29 .4." 

vn +18.7" Ftl 183.9597 m 

vt2 +18.4" Ut2 197.4974 m 

Vl3 +19.1" Ut3 169.0811 m 

t't4 +18.9" Ut4 155.3069 m 

Final coordinates of traverse stations ,I'ere computed from adjusted measure
ments by means of eqn (22) 

y - +5 500.2503 m Xl I 1039.1297 m 1 T 

Y2 +5598.4996 m X 2 + 867.8046 m 
Y 3 - +5696.5426 m X3 730.0512 m. 

. Some more important measures of accuracy of traverse stations are showed. 
Standard error of unit weight is mo = 1.73. 

Standard errors of adjusted measurements, hased on eqns (24) and (25) 
respectively, are: 

mf31 -10.83" m t1 ,·4.27 mm 

m/32 -10.33" m t2 +3.81 mm 

m/33 9.22" m t3 +4.83 mm 

m/34 6.89" m t4 +4.57 mm 

nIp5 3.46" 
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.x 

.Y 

Fig. 3 

Standard errors of coordinates, determined according to eqns (27) and (28), 
are: 

mn +17.0 mm m X1 +20.5 mm 
m Y2 +20.9 mm m X2 +23.9 mm 

mY3 +16.5 mm mX3 +19.9 mm 
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Mean standard errors of position computed according to eqn (30) are: 

14.5 mm 

K3 
Kz = 22.5 mm 

18.3 mm. 

Quadratic mean of standard errors of position from eqn (31): 

K" = 18.72 mm 

Elements of error ellipses of traverse points were determined according to 
eqns (34), (35) and (36) respectively. The error ellipse are shown in Fig. 3. 
Data of error ellipses computed by means of eqns (34), (35) and (36) are as 
follow: 

61 147°51'45" 62 146°4,1'14" 63 143°45'21" 
mmQx

1 
5.05 cm nzmax, 6.72 cm T1Z n1ax: S.03 cm 

In;nin
1 

2.05 cm nlmin, 3.36 cm mmin, 1.65 Cin 
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