A UNIFIED SOLUTION FOR COORDINATION BY TRIGONOMETRIC METHODS

E. Papp
Department of Geodesy
Technical University, H-1521, Budapest

Received June 30, 1989
Presented by Prof. Dr. P. Biró

Abstract

This short essay discusses the application of elementary computation methods for a unified solution of coordination by trigonometry. It means that after computing bearings and distances for establishing rays, coordinates for unfixed point are obtained by using the polar method in the computation process.

Description of the basic concept is completed by the algorithm of a computation process being applicable to HT PTA $4000 \div 16 / \mathrm{SHARP}$ PC 1500 A computer written in BASIC language. The software gives a real interactive communication channel between the user and the program.

The portable computer can be combined with a KA $160 / \mathrm{CE}-516 \mathrm{P}$ printer. The software also understands special symbols as well as the Greek and the Hungarian alphabets. Each problem is being supplied by a flowchart of the computation process.

A unique location of a new point, relative to 2 fixed stations can be achieved by observing at least two geometrical parts. Two internal angles or two sides or one angle and one side of a triangle formed by rays connecting control stations and a new point can be the geometrical parts for fixing a point.

Various methods are known for the computation of coordinates of an unfixed station. This paper discusses a unified method that applies entirely polar coordination for fixing a point. Using this method, intersection by bearings/angles or sides and resection. double resection and other methods (Hansen. Mareh) of fixing a point can be reduced to a simple computation process of polar coordination.

Notations

$$
\begin{aligned}
& l=\text { circle reading } \\
& \delta=\text { bearing, provisonal bearing } \\
& t=\text { distance } \\
& t=\text { adjusting constant } \\
& z_{i}=\text { mean adjusting constant } \\
& Z K=\text { included angle } \\
& \alpha=\text { included angle } \\
& \beta=\text { included angle } \\
& \gamma
\end{aligned}
$$

$\left.\begin{array}{l}X=\text { (total) northing } \\ Y=\text { (total) easting } \\ \Delta X=\text { partial northing } \\ \Delta Y=\text { partial easting }\end{array}\right\}$ total coordinates

1. Intersection

1.1. Intersection by angles

Given $A\left(Y_{A} ; Y_{A}\right) ; B\left(Y_{B} ; X_{B}\right)$ and the readings $\left(l_{A P} ; l_{A B} ; 1_{B A} ; l_{B P}\right)$ to forward directions observed at A an B respectively (Fig. 1).

The internal angles are obtained as follows

$$
\begin{equation*}
\alpha=l_{A B}-l_{A P} \quad \text { and } \quad \beta=l_{B P}-l_{B A} \tag{1.1}
\end{equation*}
$$

1.2. Intersection by provisional bearings

Given $A\left(Y_{A} ; X_{A}\right) ; B\left(Y_{B} ; X_{B}\right)$ and the readings to forward directions observed at A and B. A provisional adjustment is then performed to obtain provisional bearings $\delta_{A P}$ and $\delta_{B P}$. The direction method of triangulation is employed in the computation process (Fig. 2).

When the final bearings $\delta_{A P}$ and $\delta_{B P}$ are given then intersection by bearings is performed (Fig. 3). We also have to notice that the unfixed point P is always the second of the triangle's three points starting from A, and that lettering follows the clockwise rule ($A P B$ sequence) in the computation. The arrows pointing to the unfixed station show the bearings, while distances and bearings between $A B, A P$ and $B P$ are denoted by the

$$
\begin{array}{ll}
\delta_{A B}=\delta_{3} ; \quad t_{A B}=t_{3} \\
\delta_{A P}=\delta_{1} ; \quad t_{A P}=t_{1} \\
\delta_{B P}=\delta_{2} ; & t_{B P}=t_{2} \quad \text { symbols }
\end{array}
$$

Fig. 1

Fig. 2

Fig. 3
Coordinates for P will be computed by the polar method based on station A involving δ_{1} and t_{1}. Then δ_{1} and δ_{2} are computed using the calculated values for δ_{3} and t_{3} (Fig. 3).

If the angle method is applied then

$$
\begin{equation*}
\delta_{1}=\delta_{3}-\alpha \quad \text { and } \quad \delta_{2}=\delta_{3}+\beta \tag{1.2}
\end{equation*}
$$

otherwise, δ_{1} and δ_{2} are known or can be computed by provisional adjustment. The distance t_{1} will be obtained by using the sine formula (Fig. 3) as below

$$
\begin{equation*}
t_{1}=t_{3} \frac{\sin \left(\delta_{3}-\delta_{2}\right)}{\sin \left(\delta_{1}-\delta_{2}\right)} \tag{1.3}
\end{equation*}
$$

The trigonometrical ratio of the compound angle for the numerator of the sine formula gives

$$
\begin{equation*}
\sin \left(\delta_{3}-\delta_{2}\right)=\sin \delta_{3} \cos \delta_{2}-\cos \delta_{3} \sin \delta_{2} \tag{1.4}
\end{equation*}
$$

and substituting Eq. (1.3) for the numerator into Eq. (1.2) we obtain

$$
\begin{equation*}
t_{1}=\frac{t_{3} \sin \delta_{3} \cos \delta_{2}-t_{3} \cos \delta_{3} \sin \delta_{2}}{\sin \left(\delta_{1}-\delta_{2}\right)} \tag{1.5}
\end{equation*}
$$

As Fig. 4 shows the following equations can be set up

$$
\begin{equation*}
Y_{B}-Y_{A}=t_{3} \sin \delta_{3} \quad \text { and } \quad X_{B}-X_{A}=t_{3} \cos \delta_{3} \tag{1.6}
\end{equation*}
$$

Eq. (1.5) will then be rewritten into the following form

$$
\begin{equation*}
t_{1}=\frac{\left(Y_{B}-Y_{A}\right) \cos \delta_{2}-\left(X_{B}-X_{A}\right) \sin \delta_{2}}{\sin \left(\delta_{1}-\delta_{2}\right)} \tag{1.7}
\end{equation*}
$$

Fig. 4

And coordinates for P are computed from the formulae given below

$$
\begin{align*}
Y_{P} & =Y_{A}+t_{1} \sin \delta_{1} \tag{1.8}\\
X_{P} & =X_{A}+t_{1} \cos \delta_{1}
\end{align*}
$$

There is no solution if

$$
\alpha+\beta=\Phi
$$

where $W=180^{\circ}$ or $W=200^{g}$

$$
\text { or } \delta_{1}=\delta_{2} \text { or } t_{3}=0
$$

When provisional bearings are applied to the intersection problem then a semi-graphical provisional adjustment will be performed to the readings of the forward directions. Coordinates for the occupied stations and for the

Fig. 5

Fig. 6
reference objects are known, as well as a series of readings to the forward directions leading to the $R O$ s and to the unfixed points (Fig. 2 and Fig. 5).

Firstly: a set of adjusting constants (z_{i}) is created by calculating the differences between the final bearings available and the readings belonging to the same ray. Secondly, coordinate differences (ΔY and ΔX) are computed from the adjusted constants and the corresponding distances. Then the mean adjusting constant is calculated as the closing leg of the traverse line (Fig. 6). This approximate method produces a mean adjusting constant that deviates from the value computed by the numerical method using the weighted mean by 10^{-3} second of arc, therefore, the previous one can be applied to any task that may occur in practice. The adjusting constant then will be computed as follows

$$
\begin{equation*}
z_{i}=\delta_{A i}-l_{A i} \tag{1.9}
\end{equation*}
$$

and the distance

$$
\begin{equation*}
t_{i}=\left[\left(Y_{i}-Y_{A}\right)^{2}+\left(X_{i}-X_{A}\right)^{2}\right]^{\frac{1}{2}} \tag{1.10}
\end{equation*}
$$

and the coordinate differences

$$
\Delta Y_{i}=t_{i} \sin z_{i} \quad \sum_{i=1}^{n} 1 Y_{i}
$$

and

$$
\Delta X_{i}=t_{i} \cos z_{i} \quad \sum_{i=1}^{n} \Delta X_{i}^{-}
$$

If n is the number of the adjusting constants, then the mean value is calculated as follows

$$
\begin{equation*}
Z K=\arctan \frac{\sum_{i=1}^{n} d Y_{i}}{\sum_{i=1}^{n} \Delta X_{i}} \tag{1.12}
\end{equation*}
$$

Finally, provisional bearings for the establishing directions are obtained as the sum of the mean adjusting constant and the readings for those rays that terminates at the new point.

Then:

$$
\begin{align*}
& Z K_{A}+l_{A P}=\delta_{A P} \tag{1.13}\\
& Z K_{B}+l_{B P}=\delta_{B P}
\end{align*}
$$

where $Z K_{A}$ and $Z K_{B}$ are mean adjusting constants for sets of forward directions observed at station A and B. respectively.

If coordinates of A and B and readings for directions $l_{P B} ; l_{P A}$ observed at P and/or $l_{A P}$ and $l_{A B}$ observed at A; or $l_{B A}$ and $l_{B P}$ observed at B; (Fig. 7) are known then the internal angles are as follows

$$
\begin{align*}
& \beta=W-(\alpha+\gamma) \tag{1.14}\\
& \%=W-(\beta+\gamma)
\end{align*}
$$

where $W=180^{\circ}$ or $W=200^{g}$.

Fig. 7

Further steps in computation agree with those applied for the intersection by angles [also see Eq. (1.2); (1.7); (1.8)].

If coordinates for A and B and distances t_{1} and t_{2} measured at P are known then δ_{3} and t_{3} are also computed (Fig. 8).

Fig. 8

Coordinates for P will then be computed using polar coordinates from A station. The cosine formula gives the solution for α as below

$$
\begin{equation*}
a=\arccos \frac{t_{1}^{2}+t_{3}^{2}-t_{2}^{2}}{2 t_{1} t_{3}} \tag{1.15}
\end{equation*}
$$

Therefore, the final bearing for the forward direction to P [see Eq. (1.2)] is obtained from the following formula

$$
\delta_{1}=\delta_{3}-\alpha
$$

Note: There is no solution of the problem, if

$$
t_{1}+t_{2}<t_{3}
$$

2. Resection

Solution of resection by the Collinns' point method can be reduced to two repeatedly performed intersections.

Given $A\left(Y_{A} ; X_{A}\right) ; \mathbf{M}\left(Y_{M} ; X_{M}\right) ; B\left(Y_{B} ; X_{B}\right)$ and readings to backward directions $l_{P A} ; l_{P M}$ and $l_{P B}$ observed at P. The included angles are given as follows (Fig. 9)

$$
\begin{equation*}
\alpha=l_{P M}-l_{P A} \tag{2.1}
\end{equation*}
$$

and

$$
\beta=l_{P B}-l_{P M}
$$

The circle drawn through A, B and P will be cut by a straight line connecting P and M at P^{\prime} (Fig. 10). Note that $\beta^{\prime}=W-\beta$ and $\alpha^{\prime}=W-\alpha$ where $W=180^{\circ}$ or $W=200^{g}$.

Fig. 9

Coordinates for A and B, and angles α and β are initial facts for the first intersection. After computing values of δ_{3} and t_{3}, two bearings (δ_{1} and δ_{2}) will be obtained from the following formulae

$$
\begin{equation*}
\delta_{1}=\delta_{3}-\beta \quad \delta_{2}=\delta_{3}+\alpha \tag{2.2}
\end{equation*}
$$

The distance t_{1} is then computed as it is shown in Eq. (1.7) where the sine rule has been applied, and Eq. (1.8) is available for computing the coordinates of P^{\prime} the same as those for the first procedure.

Firstly, the bearing $\delta_{M P}=\delta_{3}^{\prime}$ and the distance $t_{M P}=t_{3}^{\prime}$ secondiy, δ_{1} and δ_{2}^{\prime} bearings are computed as follows

$$
\begin{equation*}
\delta_{1}^{\prime}=\delta_{3}^{\prime}-\alpha \quad \text { and } \quad \delta_{2}^{\prime}=\delta_{3}^{\prime}+\beta \tag{2.3}
\end{equation*}
$$

Fig. 10

Then, t_{1}^{\prime} distance is calculated using the sine formula as shown below

$$
\begin{equation*}
t_{1}^{\prime}=\frac{\left(Y_{B}-Y_{A}\right) \cos \delta_{2}^{\prime}-\left(X_{B}-X_{A}\right) \sin \delta_{2}^{\prime}}{\sin \left(\delta_{1}^{\prime}-\delta_{2}^{\prime}\right)} \tag{2.4}
\end{equation*}
$$

Finally, coordinates of P will be computed using polar coordinates

$$
\begin{equation*}
Y_{P}=Y_{A}+t_{1}^{\prime} \sin \delta_{1}^{\prime} \tag{2.5}
\end{equation*}
$$

and

$$
X_{P}=X_{A}+t_{1}^{\prime} \cos \delta_{2}^{\prime}
$$

The problem can be solved if

$$
\begin{gather*}
\alpha+\beta=W \quad \text { and } \quad t_{M P}=0 \tag{2.6}\\
\text { where } W=180^{\circ} \text { or } W=200^{\mathrm{g}}
\end{gather*}
$$

otherwise
a) In the case of $\alpha+\beta=W$ the circle involving points A, B and P becomes a straight line and gives no solution.
The bearings δ_{1} and δ_{2} become parallel lines and cuts can not be achieved.
b) If $t_{M P}=0$ then M falls onto $P^{\prime}\left(M=P^{\prime}\right.$ and $\left.\delta_{3}^{\prime}=0\right)$.

3. Double resection

Double resection, and its specific versions such as the Hansen and the Marek methods can be traced back to a simple resection that involves auxiliary stations in the computation.

Given $A\left(Y_{A} ; X_{A}\right) ; B\left(Y_{B} ; X_{B}\right)$ and $C\left(Y_{C} ; X_{C}\right)$ as well as readings $l_{P A}$; $i_{P B} ; l_{P R}$ to backward directions observed at P and those $l_{R F} ; l_{R B} ; l_{R C}$ to forward directions observed at R (Fig. 11).

The included angles are as follows:

$$
\begin{array}{ll}
\alpha=l_{P R}-l_{P B} ; & \beta=l_{P B}-l_{P A} \tag{3.1}\\
\gamma=l_{R B}-l_{R P} ; & \varepsilon=l_{R C}-l_{R B}
\end{array}
$$

First, coordinates for P^{\prime} are computed. The circle, drawn through A, B and P, is cut by the straight line joining P and R at P. Similarly, the circle drawn through B, C and R is cut by the same line at R^{\prime}.

The initial data for the computation of P^{\prime} by intersection are $A\left(Y_{A} ; X_{A}\right)$ and $B\left(Y_{B} ; X_{B}\right)$ as well as angles α and $W-(\alpha+\beta)$. After calculating bearing δ_{3} and distance t_{3}, the δ_{1} and δ_{2} can be obtained as follows (Fig. 11)

$$
\begin{equation*}
\delta_{1}=\delta_{3}-[W-(\alpha+\beta)] ; \quad \delta_{2}=\delta_{3}+\alpha \tag{3.2}
\end{equation*}
$$

Also note that $\delta_{3}=\delta_{B A}$ and $t_{3}=t_{B A}$!

The t_{1} distance will then computed by applying Eq. (1.7) while the coordinates for P^{\prime} is obtained by Eq. (1.8).

The initial data for the computation of R^{\prime} by intersection are $B\left(Y_{B}\right.$; $\left.X_{B}\right)$ and $C\left(Y_{C} ; X_{C}\right)$ as well as angles $W-(\gamma+\varepsilon)$ and γ. After computing bearing $\bar{\delta}_{3}$ and distance $\bar{t}_{3}, \bar{\delta}_{1}$ and $\bar{\delta}_{2}$ are calculated as follows

$$
\begin{equation*}
\bar{\delta}_{1}=\bar{\delta}_{3}-\gamma ; \quad \bar{\delta}_{2}=\bar{\delta}_{3}+[W-(\gamma+\varepsilon)] \tag{3.3}
\end{equation*}
$$

Also note, that $\vec{\delta}_{3}=\delta_{C B}$ and $\bar{t}_{3}=t_{C B}$!
Coordinates for R^{\prime} will then be obtained by using polar coordinates in Eq. (1.7) and Eq. (1.8).

Fig. 11

If coordinates for P^{\prime} and R^{\prime} are available, then bearing δ_{3}^{\prime} can be obtained and the bearing to P and R can also be computed.

Coordinates for P will be computed by intersection, where initial data are the same that have been used earlier for computing coordinates for P^{\prime}. The bearings applied are

$$
\begin{equation*}
\delta_{1}^{\prime}=\delta_{3}^{\prime}-\alpha ; \quad \delta_{2}^{\prime}=\delta_{3}^{\prime}+[W-(\alpha+\beta)] \tag{3.4}
\end{equation*}
$$

Since, bearing δ_{3} and distance t_{3} are given (see computation of coordinates for P^{\prime}), hence the bearings $\bar{\delta}_{1}^{\prime}$ and $\bar{\delta}_{2}^{\prime}$ are

$$
\begin{equation*}
\bar{\delta}_{1}^{\prime}=\bar{\delta}_{3}^{\prime}-[W-(\gamma+\varepsilon)] ; \quad \quad \bar{\delta}_{2}^{\prime}=\bar{\delta}_{3}^{\prime}+\gamma \tag{3.5}
\end{equation*}
$$

Knowing these bearings, P and R coordinates can be computed from B and C by the polar method (see Eq. (1.7) and Eq. (1.8)).

4. The Hansen method

Given $A\left(Y_{A}, X_{A}\right) ; B\left(Y_{B}, X_{B}\right)$ and readings $l_{P A}, l_{P R}, l_{P B}$ for backward directions observed at P; and $l_{R B}, l_{R P}, l_{R A}$ observed at R (Fig. 12)t Then the angles are as follows

$$
\begin{array}{ll}
\chi=l_{P R}-l_{P A} ; & \beta=l_{P B}-l_{P R} \\
\gamma=l_{R P}-l_{R B} ; & \varepsilon=l_{R A}-l_{R P} \tag{4.1}
\end{array}
$$

Fig. 12

The circle drawn through A, B and P points is cut by a straight line joining P and R stations at point P^{\prime}. The same line also cuts a circle drawn through A, R and B at R^{\prime}.

Coordinates for P^{\prime} can be calculated from the given coordinates of A and B also involving α and β angles using the intersection method for computation (Fig. 12). The bearings are

$$
\begin{equation*}
\delta_{1}=\delta_{3}-\beta ; \quad \delta_{2}=\delta_{3} \div \alpha \tag{4.2}
\end{equation*}
$$

Coordinates for P^{\prime} will then be computed from Eq. (1.2).
To obtain coordinates for R^{\prime}, γ and ε angles and coordinates of A and B are used. The required bearings then

$$
\begin{equation*}
\bar{\delta}_{1}=\bar{\delta}_{3}-\varepsilon ; \quad \bar{\delta}_{2}=\bar{\delta}_{3} \div \gamma \tag{4.3}
\end{equation*}
$$

And the coordinates for R^{\prime} can be calculated by Eq. (1.2).
Then the bearings (pointing to P and R stations) will be computed considering that $\delta_{3}^{\prime}=\delta_{P, R}$.

A repeatedly performed intersection leads to coordinates for P.

Coordinates and angles used in the computation are the same as the values applied to the coordinates for P^{\prime}. Bearings are calculated as follows

$$
\begin{equation*}
\delta_{1}^{\prime}=\delta_{3}^{\prime}-\alpha ; \quad \delta_{2}^{\prime}=\delta_{3}^{\prime}+\beta \tag{4.4}
\end{equation*}
$$

The $\bar{\delta}_{3}$ bearing and \bar{f}_{3} distance as well as the angles are the same as those used in the computation of R^{\prime} when coordinates are being computed for R. Further bearings can be obtained from the following formulae

$$
\begin{equation*}
\bar{\delta}_{1}^{\prime}=\bar{\delta}_{3}^{\prime}-\gamma ; \quad \bar{\delta}_{2}^{\prime}=\bar{\delta}_{3}^{\prime}+\varepsilon \tag{4.5}
\end{equation*}
$$

After knowing these bearings, coordinates for P are computed based on A station while coordinates for R can be calculated from B station by the polar method [see Eq. (1.7) and Eq. (1.8)].

5. The Marek method

Given $A\left(Y_{A}, X_{A}\right), B\left(Y_{B}, X_{B}\right), C\left(Y_{C}, X_{C}\right)$ and $D\left(Y_{D}, X_{D}\right)$ as well as readings for backward directions $l_{P B}, l_{P R}, l_{P A}$ and $l_{R D}, l_{R P}, l_{R C}$ (Fig. 13). Then the included angles are

$$
\begin{array}{ll}
\varkappa=l_{P A}-l_{P R} ; & \beta=l_{P R}-l_{P B} \tag{5.1}\\
\because=l_{R C}-l_{R P} ; & \varepsilon=l_{R P}-l_{R D}
\end{array}
$$

The circle drawn through A, B and P is cut by a straight line joining P and R at P^{\prime} while another circle drawn through C, D and R is cut by the same line at R^{\prime}. The computation process will then be started by calculating

Fig. 13
coordinates for P^{\prime} by using the coordinates of A and B and \propto and β angles (Fig. 13). It should also be noted that $\delta_{3}=\delta_{A B}$ and $t_{3}=t_{A B}$. Then the bearings needed for further calculations are

$$
\begin{equation*}
\delta_{1}=\delta_{3}-\beta^{\prime} ; \quad \delta_{2}=\delta_{3}+\alpha^{\prime} \tag{5.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\beta^{\prime}=W-\beta \quad \text { and } \quad \alpha^{\prime}=W-\alpha \tag{5.3}
\end{equation*}
$$

and

$$
W=180^{\circ} \quad \text { or } \quad W=200^{\circ}
$$

Equations (1.7) and (1.8) are useful for the computation of the distance t_{1} and the coordinates of P^{\prime}.

Similarly, coordinates for R^{\prime} are computed from the coordinates of C and D using γ and ε angles as well (Fig. 13). It should be noted that $\bar{\delta}_{3}=$ $=\delta_{C D} ; \bar{t}_{3}=t_{C D}$.
Then, the bearings come from the following formulae

$$
\begin{equation*}
\bar{\delta}_{1}=\bar{\delta}_{3}-\varepsilon^{\prime} ; \quad \bar{\delta}_{2}=\bar{\delta}_{3}+\gamma^{\prime} \tag{5.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\varepsilon^{\prime}=\bar{W}-\varepsilon \quad \text { and } \quad \gamma^{\prime}=W-\gamma \tag{5.5}
\end{equation*}
$$

and ${ }^{2}$

$$
W=180^{\circ} \quad \text { or } \quad W=200^{\circ}
$$

Equations (1.7) and (1.8) will be used in the calculation and coordinates for R^{\prime}. Knowing the coordinates for P^{\prime} and R^{\prime}, and considering that $\delta_{3}^{\prime}=\delta_{P^{\prime}, R^{\prime}}$, bearings belonging to the establishing directions can be obtained.

When the coordinates for P are being computed, then the same initial data are used, except the bearings that follow

$$
\begin{equation*}
\delta_{1}^{\prime}=\dot{\partial}_{3}^{\prime}-\alpha^{\prime} \quad \check{\partial}_{2}^{\prime}=\dot{\delta}_{3}^{\prime}+\beta^{\prime} \tag{5.6}
\end{equation*}
$$

Similarly, the computation of the coordinates for R requires the data that has been applied to the computation of Y_{R}, and X_{R}, coordinates. In this case, the bearings are

$$
\begin{equation*}
\bar{\delta}_{1}^{\prime}=\bar{\delta}_{3}^{\prime}-\gamma^{\prime} \vdots \quad \bar{\delta}_{2}^{\prime}=\bar{\delta}_{3}^{\prime}+\varepsilon^{\prime} \tag{5.7}
\end{equation*}
$$

Using the equations (5.6) and (5.7) then Eq. (1.7) and (1.6), coordinates for P and R can be obtained by the application of the polar method and also involving the coordinates of B and C.

6. Program description

The unified solution of coordination is being supported by a software program which is written in BASIC language and applicable to HT PTA 4000 + 16/SHARP PC 1500 A portable computers.

Fig. 14

Fig. 15

The user of the program is supplied with a real interactive software that makes usage of the program easy. As the flowchart of the program indicates, after entering the name of the program and starting it, the computer will ask for the input data. In the case of options, these might be the answers to the questions required by the program.

First, the option is selected according to the circle reading made on the theodolite, as shown below

Fig. 16

DEGREE/GRAD (D/G?)

Secondly, the method of coordination is being chosen as below

$$
\mathrm{I} 1 \mathrm{I} 2 \mathrm{R} \quad \mathrm{TI} \quad \mathrm{DR} \quad \mathrm{H} \quad \mathrm{M} \text { ? }
$$

Notaiions

11 = intersection (angles/provisional bearing)
I2 $=$ intersection (special version)
$\mathrm{R}=$ resection
$\mathrm{TI}=$ intersection by length
$\mathrm{DR}=$ double resection
$\mathrm{H}=$ Hansen method
$\mathrm{M}=$ Marek method

Fig. 17

Fig. 18a

Fig. $18 b$

Fig. 19

Er	E）	160：IF．（K\＄ニ＂Y＂う＋（K
OORDINATION		$5:{ }^{\prime \prime}$
FEM Programm		58
R1K	： $4=3$ cosus ：5	： F K $\mathrm{F}=$＂Y：AND U
81－19－1989	25	$4=1$ THEN 125
2R：CLEAR ：CLS	1．${ }^{\text {cosue }}$ ：S90：IF	
INPUT＂DEGREE	（1\＄ニ＇R＇）$-(I \$=1$	$4=$ QTHEN 330
EEAD SD，G	$\left.\wedge^{1:}\right\rangle\rangle \operatorname{LeSUB} 15$	IF KSE＇M＇THEN．
？）： 0	92	20
If ips $^{\text {a }}$	$1 F$	：CSIZE 3：LPRINT
$s=E^{\prime \prime}$	139	＂INTERSECTIDN：
$\langle>1$ THEN 20	IF IS＝A THEN	：LPRING＂－－．．．－－
：if DSE：D：THE	125	．．．：$:$ cosub
DEEREE ：W＝： 0 ：	U4＝1：0－2：cosie	2
$0=360: 0 \$=1$ DEER	1580：00T0 ！600	2）
FE：$:$ GOTD 48	C：COSUE 1520： $54=$	
：$=$ DSA＂E：THE	Q：CLS ：IMPUT	$3=" B^{\prime \prime}: N=2:$
ERAD ： $4=200: 0=$		cosue ：525
4DQ： 9 F＝：GRAD：	LK，＇BE＇，LE：S	200．Cis ：Input＂Be
4Q：CLS ；INFUT	$={ }^{\prime \prime}=^{\prime \prime}: S=L A$	onime fingle
112 RT TR H	COSUE 1740：S	？：E¢
T $?$ ：${ }^{\text {af }}$	K：EOSUE 1740	
IF	：S－LE：COSUS 17	
	O：IF W＝180日ND	280
只 ${ }^{\prime}$ ）+ US $=4$ TI	C＝36日THEN LET	210：IF ES＝＂B＇THEN
	LAEDEG LA：LK	310
	DEG LK：LEADEG	5：IF ES＝＂A＇THEN
$\geqslant>1$ THEN 42	LE	228
：TF US＝＂İ＂THEN	D：$A=L K-L A: B=1-2-L$	220：6054B：590：IF
180	K：U＝1：GOSLE 16	
：IF U	15	A 》）¢G0Sue 15
$7 \square$	IF	90
IF	1780	5：IF IF＝＂R＂THEN
92	150： $1=3 ; \mathrm{J}=1: \mathrm{J}=1$ ：	240
：1F	cosub 1650：03＝	230：1F $5: 4$. THEN
998	D： $12=\square 3-B: D 2=0$	290
IF U	3－A：GOSUE 1700	a：GOSUB 1582：
1260	：$\because=D Y: X=\square X$	INPUT $\because\left\{A P={ }^{\text {a }}\right.$
：IF US＝＂H＂	： $19=Y P-A(2,1):$	
1218	$\left.X_{1}=X P-4: 2,2\right):$	E，${ }^{\prime}(\mathrm{BA})=$＂；$B A$ ，
IF Us＝＂ $\mathrm{TH}^{\text {¢ }}$	GOSUE ：660：133＝	$\because!~(B P)=" ; B P: S \$$
13.70	D：D1＝D3－A：D2＝ロ	二＂$=$＝
：CSILE 3：LFRINT	$3+B: U=Q: D Y=Y: D$	250：5＝AF：cosub 174
：RESECTION＇：	$x=\mathrm{x}$ ：COSUB 1720	Q：S＝AB：GDSUB 1
LPRINT＂－	8：GLS ：InPUE＂Co	748：LPRINT ：S＝
…－midgosub I	nt inue YrN？	EA：GOSUB 1740：
520：DIM A（3，2）	； K 今	S＝BP：EOSUB ：74 0

Fig． 20

```
255:1F W=1800ND Q=
    3EDTHEN LET AP
    -DEE AP:AB=DEG
    AP:BG=DEG BA:B
    POEE EP
2EE:A AB-0P:E-EP-D
    A:j=:%OCUB 16
    15;::2;J=::u=0
265:%F S-E:=WTHEM
    178P
2,0:60548:650:03-
    1:0,:133-0:02=0
    3-5:00SUE 1700
    :1F U1=:THEN
    FETUR:4
22.6:S :NFUT *Co
    M!ruf YN? ?
    <$
275:1F <<s=:Q">+<k
    ま#"N"\<\1THEN
    2%
2ER:7= \, %WWTHN
    \therefore<2
```



```
    20
290:00C15 :580:
    COSUB :60R;0-2
    :U1=1: i=2:I=1;
    cosue 265
293:INPUT "Contim
    e \ddotsr! F:%ks
```



```
    293
300:rFK$="Y"THEN
    290
205:1F kS=NMTHEN
310:CLS : FPUT :AE
    BE: Y个 P :!T
    &
315:% T T:=0%+0
    S:"M":G>1THEN
    310
228:!% T0=:":THEN
    3P
325:1F TO:=N"THEN
    32e
```

```
*
```

332: GOSUP 1582:
TNPU $\sigma(A P)=$

$2: 5 s=5=\cdot: S=0$:
- COEUB 1740:5=
E2:GOEUE 174
$335: 15 \quad 4=1800 \mathrm{MD} \mathrm{a}=$
ЗEOTHEN LET FI
=OEG D:DRADE
02
34D:FF ABS (D1)=
CBS (D2)THEN
78
35E: $1=2:=1: 6050 \mathrm{E}$
1ES0. GOEUS 172
a
352: こı : INPUT "Co
nt inue Y/ ? :
; $<\leqslant$
355:1F (K\$=:Yr)+(K
E-"N"XCITHEN
- 5

320

2
370: 25 : INPUT "Nu
mber of fo= \quad;
M:DM B(M, 2), C
क, Tकल $5: 54=0$
$\therefore=x=0$
280:FOR U=1TO M:
ELS :WAT Q:
E天INT "ROK";
=RRSU:")P. Mus
ben S.mark: ";
: infut ts; Tsu
\because 安
z5E:CS:WAT 0 :
FSNT:X6":Ts;
: infure
CEQ: A :WAT A

\because MPUTE
4LE:CLS Wh: $0:$
PRINT "! ? T
:
" = ": INFUTL
42Q:LPENT GAju
stang =otnt:

今(v)

ソ, 2D:LPRUT :
$\therefore:=10,1): 5 \equiv=$
- - ; $5=$: GOSUP
1740
$\angle C D: D Y=E\langle U, \therefore \cdots B!1$,
ysx-ED,
$\therefore \therefore \therefore \operatorname{ance} 16$
55
$\angle S$:IF W=aEDAT $=$
360THEN LO L:
OEE

THEN LF: COB
Cune

C:IF N=I eacna
D=36QTHE: LET

\therefore cote cio
460:1F W-20日an Q $=$
COQTHEN $\angle-5=$
$C(u)+k$:

- LFEIN : G:
-TxSINCuMSX
$=\mathrm{Ex}-\mathrm{TaOc}$ (u)
: NEXT 3
489: GY 二厶, OX=E:
COSUE IFER:G:O
: 29:

360ThEN
0MS S+K: :
coto 500

QDOTHN $\mathrm{F}=$
D.ド!

Fig． 21

¢：\％ers－－－		$\sec 19620$
	EEG	40.02060800
－\because－		THES -
	0	DEC－
$: 1 F-1: 6050$	$\text { THE }-6 \mathrm{~B}, \mathrm{~B}=$	$\begin{array}{r} 20,02=18+2 e: 1 F 22 \end{array}$
	E：K＝SE－S：N．：	12－0
\％	$4: 16$ dwaccorb	
：；Mp	Q＝56RTMEN－ET	
二小 a	OM－	
$\because \cdots \mathrm{Om}$	1：COTC E42	2tcoce 48
C．EqCM S S\％	תat \％－－20Rerd $\mathrm{O}=$	6：1F ：ORQ2AND 0＝
$: 5 x-0$	GBTHEN LE：S＝	40QTHA LET SE
8：Fof u－1T0		$5+62$
LS ：WA， C	640．SECMT 58.62	260：salde（sxan）
	K2，cncie ：740	
F－s us＂Pp．rn	：EFRINT	cosie ： 9 9：
6e\％S．marts：	\therefore TxS	\％R：
	$\cdots \mathrm{F}+\mathrm{T}$	日日，－2，
：\％	，NEX	ten，¢a，Ma
	gandursyonx＝	0
	COSUE 166e： $5=0$	3：CS ：MPUT MO
＂．a \quad ：：MFUT	：28－0．43－0．65	otinue $\%$
	\therefore cote 485	$: k$
	censcosue ：sep：	EE：$\%$
7 ：＋6：	INPUT＂\therefore－	
		$\square=$
	B：S＝is： 6 ¢：$=$	
		66e
－1／		205： 2 F － A （THEN
So：M PPUT		
S日guprint ：Acju	36QTHEN LET H	70．CSI2E 3：LFPMNT
ting wosn：	－TEG 4 A	\because HTF＝SECTION：
Ye 3：PRNV \because	E日B： $1=14+20: 901$	：Pe：s
s，	QOHES E－\％＝	Sup
：	－1－3	－－を，
：PRNT		， AE 人 $=0$
：00，1）：50：	AN C－SE0－	
－：$: 9=1: 02=9$	SET SODME ：StK	$=\mathrm{P}$ P－ $4=2$
cssue 1740	2：60to 200	cosue ls25
	695： 1 m－200¢n 0 －	960．0LS ：MPUT ：St
	anortan	
	$5+6$	＇：

Fig． 22

Fig. 23

Fig. 24

$\begin{gathered} \text { 12DELFRINT : }: \\ \text { CSIZE } 3 ; \\ \text { GREMN } \\ \text { GNEM: } \end{gathered}$	1220：TAB 3：LPRINT R\＄：S＝RB： GOSUB 1740：9 ＝RP： $\operatorname{cosub} 17$ $C B: S=R A:$ cosuz 1740	
\＃FEDAT	1285：！W＝18日and	：355：1F K ¢＝以＂And
－－－－－－．：	$\square=360$ THEN	U4＝1THES ：24
COSu8 1528	LET PA＝DEG P	5
1220：114 0（2，2），A	A：PR＝DEE PR：	：360：1F K $\$=$－ 4 9nd
（ 5 （2），Ps（2）：A	CB＝DEG PB：RE	U4＝0then 125
	＝DEG RB：RP＝	0
2）${ }^{\prime \prime} \mathrm{B}^{\prime \prime}$ ： $\mathrm{N}=2 \mathrm{Z}$	TEG RP：RA－	：265：1F KS＝：${ }^{\text {a }}$
－05u5 1525	DEG RA	THEN 2 C
：T0Sue ：ड00．		1－20：c512\％ 3
	－FR：G＝RP－RE：	LPRINT
	E＝RA－RF	MAREK＂：
cosub 1500	1302：IF（A＋B）－W0R	
6：1F－ 19	C $\mathrm{C}+\mathrm{E}=\mathrm{WTHEN}$	
THEN ：250	1780	LPRINT
0： $1.70=0$	13：2：$=2: 3=1:$	－－－－－－－＂：
HEW ：245	cosub 1650：7	cosue is．2e
	§ー马：21：口马，	1280．01m $0.2 .2:$
798：6070 130	－2－23＋A：	（54） 75.4 ： 4
2	GOSUB 1700：	S（1）＝＂A：As
1250：C4＝0：CLS；	Y YY：$P \times=\chi$ P	$2)=8^{\prime \prime} \cdot 483$
THFUT＂P P．a	315： $1=0 Y: \times 1=0 \times$	
umber S．mork	1320：1－1：1＝2：	T＇： $1=4 ; 6053$
：$:=S, * 1$ PPO）	GOSUB 1650：	1525
$=\because: F A, \quad \mid$（PR）	З $-\square 1=03-E:$	： $590: 605481500$.
	72－03＋6：	
＝＂；PB	S0sue 1700：	1古＝＂0：9
12ED：ULS ：EMPUT	OR：RX＝XP	COSUE ：5en
R P．rumber S	－32E： $2=0 Y: \times 2=0 \times$	395：1F IS＝＂R＂．
．mork：${ }^{\text {P }}$ ¢	13ड2：万Y＝RY－PY：DX＝	THEN 14．0
！（RE）＝$=$ R	PX－PX：COSUR	
	$1655: 03=0.01$	THEU ： 405
1（RA）＝＇， RA $^{\text {a }}$	－03－0：02－03：	1405：14．：：0054
20：TAR 2：LPRINT		790：6010 149
P\＄：Ss＝：＝＂：	－8： $18=1$	5
＝PA：COEJE ：	コきニ：	4：2： $4=2: \leq E$
40：SmPR：	G05u8 1700	INPUT $=\because \ldots$
COSUE 1．740：5	1240： $03=$－ $01=03-6$	umber S．now
$=P E: \operatorname{cosub} 17$	：D2＝03＋E，$=2$	
40		$=\cdots=8, \quad 16 P \%$
	1345：0Y－ $22: 0 \times=\times 2$ ；	$=: P P R,: \mid P A)$
	cosue 1702	$={ }^{19}: P A$

Fig． 25

E：CLS ：INPUT R P．number E －nark：＂） RD）＝：：RD， $P P=: P F$ $R C)=": R$	
	こ！
	U3＝1
FB．COCUE -7	
$4 \mathrm{Q}: \mathrm{EFPR}$ ：	cosue lyan
Cucue 1748：	1450： 1 1－DE－W－E）：
FPASOSUE	ロ2＝02－（W－r）
48	
－AB 3：1FSN－	$=2$
ce．9－9	
Cate $\because 25$	cosue lvez
R－：COSUE	Es：Cls ：$: 40$
A8， 58 RC ：	Cont mue \because \％
CGSve 17a	$3: 3 \mathrm{cs}$
IF M－180nm	
Q EE0then	く $\mathrm{K} \$=\mathrm{N}$
IET PE－DEE F	THEN $1 \leq 5 E$
E：PROESG FE：	
FAnDEE Pa，	U4＝：－4ES ：
FIEE RDEAF＝	5
DEG RP：RC：	10：IF $6 \pm=\cdots$
DEE RC	UC＝0THE： 43
	Q
－FE：C＝RC－RP：	
E＝R－RD	THEN 22
\％¢f ABymat	520：LF－1．0．3－0
	1：TAE 5
1－E2	LFETM Es：$=$
c：$-2: 3=1$	5E－4\％612－
COSUE 2650：	LPRIM
30010．02－6	SETURN
－8，D2－03＋6	1S2S：REM DATA UNE
－－¢ ：	UT
COSUE ：\％DR：	1536：70R Har 0
Y－Ye． $\mathrm{PX=Y}$	LS ：ME C
$\because=\square Y: \bigcirc 0 \%$	PRIVT－S\％：
	＊－，mant： 5
Cosub iber：	．monke：；
3－10．0．$=13-6$	WAT ：NF：T
$\cdots \mathrm{E}$－ $02=06+\mathrm{O}$	pstescheFs
c\％rgeve ：\％	
Q0，PY：－Yp；	

15SE:REM FRINT CO
ORDIMATE ITS
T
S60:FOF $\because=0 \mathrm{~N}$
TAF z:LFRDT
Fsind enta
"

LPRDE "X=";
A(H: Z
tprint :ryo:
© (\%. :)
LPR:4:
1565:MENT:
ごロ: LPRIT
....: : RETURN
1580:ClS : MPUT:
Neu F number
Smonk.": Us
:RET SO
15se: LS , AFUT :
Recsins An
6: \% : S
FBTUR
60日: 1APL: "M=": A
: "G-". B: 5mf
Ss=" $0=\cdots$
GOSLE :740:5

COSUE ․ 40
6es:
bugetirs
LEFGrGA:
B-THE =
1618:1F Uate0to
43

```
1540:G5'mA!Tg:
```

1540:G5'mA!Tg:
ORMMT "X!":P
ORMMT "X!":P
ま:!:\= :%
ま:!:\= :%
MNUT O(H:Z)
MNUT O(H:Z)
15SE:CLE {UGEOD

```
15SE:CLE {UGEOD
```



```
    *:":= ": 
```

 *:":= ":
 MPOT ASH, I
 MPOT ASH, I
 :NE%:S
    ```
    :NE%:S
```

Fig． 26

```
MGMS:G AQRHEN 
```

 Fig. 27

Fig. 28

HANSEN
MAREK
-- E巨as - - -
:403 Etone
150,275.200
790,999. 930
$x=$
$y=$
51.657.710
$x=132,329.318$
$790,603.72$
ZCEE stove
$153,42,30$
$792,725=2$

8
$\begin{array}{ll}y= & 242-28-22 \\ y= & 25-12-25\end{array}$
$\because 4 \mathrm{E}=$ store
$\therefore 20,27,904$
$752,-95.520$
3424 stone
$\therefore 52,329.516$
$\because 50,602,518$
- $\quad 3-10$
『न
$\therefore \because=$
$\because:=$
$\because \because .951 . .2$
$46: 3$ ane
$\mathrm{X}=\quad \therefore \mathrm{BE} .244,102$
$\because \quad 629.14 .312$
$\div 20 \approx 5 \sin$

$\because=\quad$ E25,922.402
$i=\quad$ DCD-20-0D
$1=\quad \therefore 4-26-39$
$=\quad 2 \div 2-22-55$
$122=:$ one
いここ, 984.:クラ
$\because=\quad 22,358.073$

DOUBLE
RESECTION

1224 sicne $52,320.510$ $72,603,520$

1225 s：－ne
152．860．280 79．826．140

206？：－

```
-53,510.5e
```

```
-53,510.5e
```

Fig． 29

Then, the number/name of the fixed points are entered which will be followed by the relevant coordinates. Initial data are also printed at the same time.

When entering the degree, it should be clearly stated if readings to directions or calculated angles involved in the process. Distance and coordinates are considered in mm, while angles are taken in degrees, minutes and seconds or in grades and its decimals when they appear on the display. Small dots will separate them from each other.

In the flowchart, input data will be followed by quotation mark whilst data blocks will be followed by an equation mark and a question mark alike. Finally, results are listed and printed, then the computation can continue.

The possibility of the solution of the problem will also be investigated and if there is no solution, running of the program halts

NO SOLUTION!

is printed, and

$$
\% * * \text { END } \% * * *
$$

remark can be seen on the display.
The author expresses his thanks to dr. F. A. Shepherd (University of Nottingham) for his advices.

Rerefences

1. Bodor, T.-Geró, P.: The BASIC programming technique. Számítástechnika-Alkalmazási Vallalat, Budapest. 1983 (in Hungarian).
2. Alcock, D.: Ismerd mes a BASIC nyelvet. Múszaki Könyvkiadó Budapest, 1983 (in Hungarian). Iliustrating BASIC. Cambridge University Press 1977.
3. Korn, A.-Corn, T. M.: Handbook of Mathematics. Múszaki Könywkiadó Budapest 1976 (in Hungarian).
4. Kádár, I.: PTA 4000 Hungarian word processor. Geodézia és Kartográfia Budapest, 1989 pp. 66-67 (in Hungarian).
5. Nagy, L.: Cadastral surveying Vol. III. (Manuscript). Székesfehérvár, 1983 (in Hungarian).
6. Papp, E.: Hewlett-Packard-67 Geo Software. National Cadastral and Mapping Bureau Research paper, Budapest, 1980 (in Hungarian).
7. Papp, E.: PTK-1096 Ki-160 Geo Software. National Cadastral and Mapping Burean Research paper. Budapest, 1981 (in Hungarian).
8. PTA 4000 computer and KA 160 printer. Owner's Manual and BASIC programming. Híradástechnikai Szövetkezet Budapest (in Hungarian).
9. Mofitt. H. F.-Bouchard. H.: Surveying sixth edition (1975).
10. Davies. R. E.-Foote. F. S.-James, M.-Anderson. E.-Mikhall, M.: Surveying, Theory and Practice (1980).

Erik Papp H-1521 Budapest

