
MATHEMATICAL MODEL FOR SOLIDS 
UNDER THE SURFACE OF THE EARTH* 

Z. SIKI 

Department of Surveying, Institute of Geodesy, Surveying and Photogrammetry, 
Technical University, H-1521 Budapest 

Received July 3, 1989 

Presented by Prof. Dr. F. Sarkozy 

Abstract 

Geometric models for solids under the surface of the Earth are discussed in this paper. 
V;'e have developed a tv;o and a half dimensional model and program for geologic applications. 
V;' e introduce a conceptual scheme for the full 3D geometric model as well. 

Preface 

:Many systems were developed to handle and manipulate three dimen
sional objects. The developers of these systems tried to implement general 
purpose systems for mechanical engineering or architecture. There is no 
standard to model mineral resources for geological or mining aspects. 

We have been trying to develop a t·wo and a half and a three dimen
sional geometric model for these purposes. We examined the method to model 
three dimensional objects, then developed a mixed model to descrihe natural 
and artifical ohjects under the surface of the earth. We considered some of 
the necessary algorithms to manipulate our model and the restrictions in
voh'ed in it. 

An overview of solid modeling methods 

Well known geometric models [5, 8, 9, 16, 17, 19] are discussed shortly 
in this paragraph. We have considered only the methods usahle for our aims: 

sweeping 
Constructive Solid Geometry (CSG) 
cell decomposition 
Boundary Representation (BR) 

Sweeping is useful to model prism-like or solid of rotation-like objects. 
An object is created by mo'wing a volume or polygon along a trajectory. There 
are t·wo types of sweeping, translational and rotational. 

* The ~ational Scientific Research Foundation gives financial assistance to the research 
discussed in this paper. ~ 
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Constructive Solid Geometry (CSG) uses set operations to represent 
a solid. Generally three operations are used: section (n), union (U) and set 
difference (-). Sometimes a fourth operation is introduced called glueing (G). 
A solid is represented as a binary tree where the nodes are set operations and 
the leaves are primitives (half spaces or previously defined solids). A half 
space divides the space into two parts inside and outside. CSG is a very good 
model for regular objects and the set operations are useful not only for storing 
hut creating and modifying them. 

Cell decomposition is a special case of CSG. There is only one type of 
primitives (cells) topologically and the cells are glued (no holes or common 
interiors among the adjacent primitives). Two types of primitives are usually 
used: regular (cub", or block) or irregular (tetrahedron). Cube cells are usually 
encoded into octrce. In easE' of tetrahedrons the points of the solid to model 
are used to make the decomposition. We get a linear approxmation of the 
solid. With regular cells the approximation is worse but the regular elements 
can be handled more easily. Cell decomposition is used to model sculptured 
objects and it is suitable for finitE' element analysis. 

Boundary representation is the nearest to human sense. The solids are 
described by their houndaries. Boundary is represented hy faces, edges and 
vertices with the topology. BR indicates a hierarchic data structure with 
one to manv relations. 

The developed models 

At the heginning of our research we divided our task into two part3: 

not fully 3D model 
(so called 21/2 D model) 
full 3D model 

A two and a half dimensional model for geologic applications 

The 21/2 D model supports geologic applications for larger areas with 
lower resolution. The model is based on layers. Each layer has an upper and 
a lower boundary which must be single valued, with only one z value for each 

x, y pair. The houndaries which do not fulfil this condition have to be divided 
into single valued parts. The boundaries must he given by scattered points or 
contour lines. From these data a triangle mesh is generated [14] for each 
boundary. The model is limited to a block called model space. A layer can he 
defined for the whole model space or for one or more parts of it. The bound
aries of partly defined layers must be closed (e.g. the upper and lower border 
must meet exactly) otherwise the calculated volumes and surfaces will be 
false. 
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Besides layers faults aTe allowed. This part of the model is being worked 
out. Faults can he stored as planes with a validity polygon. The elevations 
at the two sides of the face of a fault can be calculated in two ways. It can he 
interpolated from points of border on the same side of the face of fault or 
from given values at the intersection of the fault and the boundary. 

A program was developed for IBM PC XT/AT or compatibles to manipu
late the 21/2 D model. This program is really a graphic inquiry system which 
can he used with some IBM PC standard graphic cards CGA, Hercules, EGA, 

VEG A. The program makes it possihle to display the whole model or a part 
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Fig. 1. Logical structure of thE' 2'/ cD model 

of it and to modify the hOTders and faults locally. Each fUIlction of the pro
gram can be reached through pop-up menus which can be manipulated "with 

keyboard or mouse. 
Different display methods are implemented to get the most from stored 

data. The following types of projection are supported: 

perspective 
axonometry 
axonometry to the xy plane (map) 
axonometry to thc plane of section (profilc) 

A part of thc model can be displayed cut by Hrtical planes which may he 
given by a convex or concave polygon in the xy plane. The graphic screen 
can he diyided into several vie-wports to yiew the model from different points 

of view at the same time. The resolution of the graphic screen highly influ
ences the rational numhers of non-overlapping viewports on the screen. 

There are different methods to display the upper boundary of the highest 
lwrspectiyic or axollometrie projected layers. Triangle mesh, rectangle mesh. 
contours can he selected to mak(' the picture more spectacular. 

Only the selected layers are included in the visualisation. Selection can 
he made by attrihutes of layers or illdiyidnally. The surface of the horders 
and the volume of selectC'cl layers can he calculated. 

10 
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Besides the screen only Epson printers are allowed as output device 
(alphanumeric or graphic hardcopy) but we plan to implement plotter drivers 
and logical output to other systems. 

3D ~Iodel for mining and geological applications 

lVIany 3D solid modeling systems were developed for engineering applica
tions. However, they cannot be applied in our case because complete informa
tion is needed for the modeling solid. We have only incomplete information 
about the distribution of substances under the surface of the Earth. Infor
mation can be coHeeted from different sources: 

drill holes 

maps 
geophysical observations 
surveying of caves, mines, 
the surface of the Earth. 

i - -------------- -_._----- --'-- ------~.-----"-- -----

Fig. 2. Output of the 21/2D system 
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Another significant difference to engineering applications is that the horder 
among different minerals cannot be drawn unambiguously. The border can be 
defined by a cut off value (a given percent of a mineral). The cut off value 
depends on the kind of mineral, economic mining etc. From this point of 
view scalar fields would be the most suitable to model them. The distribution 
of minerals can he estimated from the incomplete information like a scalar
vector function: 

U f(v) = f(x, y, ;;) 

The scalar-vector function and a cut off value determine the shape of the 
solid. The function and thc cut off value define a set (half space) as: 

f(x, y, ;;) cut off value 

These types of sets can he used ,,-ith CSG because only an inside-outsids 
function is needed for CSG to manipulate solids or can be trallsform(~d to cell 
decomposition. 

Fig. 3. Tetrahedron cells 

If we consider that not only natural hut artificial (man-made) ohjects 
are under the surface of the earth (drifts, pits etc.) it would be effective to 
use the same or similar geometric-model for hoth natural and artificial ohjects. 
In the case of artificial objects BR, CSG or sweeping would he suitahle, in 
contrast with natural objects where cell decomposition would he used as the 
most efficient method to store sculptured solids. BR would he good in both 

cases if the volume were not so important in mining applications. So it seems 
that different methods would he good to model the two types of objects. But 
if we consider that cell decomposition is a special case of CSG then we can 
realize that cell decomposition and CSG can be comhined easily without the 
permanently repeated transformations from one model to the other. 

Only linear geometric elements are allowed in our model except scalar 
fields. This linear approximation [23] does not deform significantly our model 
hecause: 

10* 
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a) any geometric plement can be approximated by linear elements with 
arbitrary precision 

b) this error is smaller than the error of the estimation from the in
eomplete information. 
\Ve have to distinguish cayes from other natural objects because they can 
be suryeyed. If n~presentatiye cross sections are measured in the CUYC then 

its boundary can he approximated 'with a spatial triangle mesh [11. 14]. It is 
true for (existing artificial objects as well. 
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We prefer tetrahedrons in cell decomposition to blocks because tetra
hedrons give a better approximation and the number of tetrahedrons is inde
pendent of the resolution. Trigonal prisms may be used as cells if only vertical 
drift holes are given. A trigonal prism can be decomposed into three tetra
hedrons. 

Fig. 6. Prisms and tetrahedrons 

Tetrahedrons can be stored simply by their four -wrtices. NI) topology 
IS needed because any three points of the tetrahedron make a face. Another 
possibility to store tetrahedrons is hy their four planes like CSG. There is no 
Deed to store the binary tree because it is the samp for vvery tetrahedron. 

)-Ianipulation of solids given by CSG hinary tree 

Binary trees are widely used in computing hecause many data structures 
can be modeled by them and their structure is fairly simple. Recursive data 
structures and algorithms are generally used in connection with hinary trees. 
The following Pascal declarations define a minimal hinary tree structure to 

store solids with plane faces. 

type 
node_type = (section, union, difference, plane); 
node_ptr = ~node; 

node = record 
ease typ: node_type of section, union, difference: 

(left_child: node_ptr; 
right_child: node_ptr); 
plane: (a, h, c, cl: real); 

end; 
Using this data structure a recursive inside outside function can be defined 

for a spatial point. 
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function inside (x, y, z: real; root: node_ptr): boolean; 

begin 
inside: = false: {suppose outside} 

if root < > NIL then {shift out empty solid} 
with root '" do 
case typ of 

section: 
inside: = inside (x, J, z, lefcchild) and 

inside (x, J, z, right_child); 
nnion: 

inside: 

difference: 
inside: 

plane: 

inside (x, y. z, left_child) or 
inside (x, J. z. right_child): 

inside (x, -", z, lefcchild) and 
not inside (x, J', z. righcchild); 

inside: (a*x -;- b*y c*= + d» = 0: 
end; {case} 

end; {inside} 

The set operations can easily be made between two solids. Only their 
binary trees have to be connected with the given operator (section, union. 
difference). No calculation is needed at all. Besides this benefit there are some 
disadvantages of CSG. We cannot display a solid directly stored in binary 
tree. Another problem with CSG is that we cannot find out easily if the solid 

is empty (e.g. empty set). Unfortunately this type of description of solids is 
not unique, the same solid can be described by several different binary trees. 
But this problem cau be solved by transforming the tree into a standard 
format [12,20,24). 

Let us go down to the displaying problem of solids stored in CSG struc
ture. Two solutions can be imagined: 

a) by the transformation of the CSG structure to another for example 
to BR 

b) the binary tree contains implicitly every information needed to dis

play it, let us try to pull it out. 
First let us deal with the transformation of the CSG structure to BR· 

The faces and the vertices of the solid can also be described by the same 
binary tree. We can define the co-planar one or more facps of the solid by 

the same binary tree only one half space has to be replaced by its border 

(e.g. instead of a '" x -;- b '" y -'- c '" z + cl> 0 use a * x b '" Y -'- c * z -
+ d = 0). To get co-linear onp or more edges two half spaces haye to be 
replaced by their border. At last three half spaces haye to be replaced by their 
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border to get a vertex. Replacing half spaces by their border (in our case it 
is a planc) the result may be an empty set. This way the faces, edges, vertices 
of a solid cau he defined as set operations. It is not enough to draw them yet. 
Further recursive algorithms have to he applied to solve the whole problem 
[21, 22]. It is not a very easy and quick way to display a solid. 

Let us try to solvc the displaying problem from the original CSG tree 
without transformations. The z buffer algorithm can help us [7, 15]. It is 
a hidden surface eliminating algorithm. By the help of z buffer algorithm 
a shaded picture of the solid can be displayed. This algorithm supposes a 
colour raster display device. The z buffer algorithm calculates depth infor
mation at each pixel for every geometrical object which hides it (e.g. the 
projecting ray to the pixel intersects the horder of solid) and displays the 
ncarest with a convenient colour. Since thc horder of solid i:;: not known in 
CSG wc have to extend the algorithm. We can only calculate the point of 
intersection hetween projection ray and the border of half spaces (plane). 
After it we have to decide whether the point of intersection belongs to the 
solid hy the help of inside function. The colour of the pixel can be calculated 
from the normal vector of the horder at the point of intersection and a light 
direction [7, 15]. This modified z buffer algorithm can Le used for Honlinear 
half spaces as welL e.g. sphere, cylinder, hyperholoid, torus. 
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