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Abstraet

An important question in geoscienees is the physical interpretation of global geoid
forms and the improvement of our knowledge on the inner structure of the Earth. The authors
saggest a new method which separates geoid heights due to upper known density inhomo-
genities from geoid heights of inner unknown mass distributions. The interpretation of remain-
ing geoid forms becomes presumably simpler after removing the effect of known masses from
the full geoid. This paper deals with the mathematical solution of the effects of known sur-
face mass distributions capable of computer computation and presents some results of initial
numerical computations.

Recent terrestrial and satellite measurements make it possible to deter-
mine global geoid reliable up to a few meters. Hence, characteristic quan-
titles of geoids coustitute perhaps the most accurate data availalile regard-
ing the geophysical information of the total Earth.

At present it is not possible to explain the physical background of large
geoid anomalies; this fundamental task iz in connection with the internal
constitution of the Earth. Accordingly, the physical background of geoid
anomalies in which we are interested -- the 3-D density function #(x, v, z)
of Earth’s inhomogeneous density distribution ~ have to be determined from
the Earth’s known potential field IW(r, 6, 1) or geoid shape. This is the famous
zeophysical inverse problem which has, unfortunately no unambiguous mathe-
matical solution [5]. Owing to this fact, the physical interpretation of global
geoid anomalies has not vet been given.

In the following a new and simple method is presented which offers the
possibility of determining the Earth’s density distribution more precisely [13].

The basic method of solution is to separate the effects of known and
unknown masses responsible for geoid undulations. First, geoid anomalies due
to known masses on and near the Earth’s surface are determined (i.e. geoid
anomalies which correspond to the distribution of topographic masses along
the surface. isostatic cmnpensating masses and. among others. plate tectonic
density models are calculated). In the second step, geoid undulations of well-
known mass distributions are subtracted from the real geoid undulations
of the Earth: and finally in the third step, we try to explain the remaining

simple geoid shapes. As on expects, these remaining geoid anomalies show
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the global effect of deeper unknown dewsity distributions inside the Earth.
On constructing plausible earth density models from all the geophysical
(seismic, geomagnetic, geothermic) data available, the interpretation of the
remaining geoid undulations can be achieved, but the geoid anomalies of
these models have to be evaluated. From such Earth models only one may be
accepted which produces the picture of the remaining geoid undulations. This
final step of physical interpretation of global geoid anomalies is the most
difficult one.
This paper aims at the evaluation of the first two steps.

wm

1. Evaluatien of influences of topographic and isostatic masse

First let us have a brief look into the strategy of the computational
method. The gravitational potential of a body comprised in the domain ¢ of
density #{x. v, =) in an external point P is given by the integral expression

o ‘ dm i H“J I (x.y.5)dxdyds )

[r— P+ =P+ =)

where the notations are seen in Fig. 1 and k is Newton's constant of gravita-
tion.

When e consider the effect of topographic and isostatic masses, ¢ is
the domain bounded by the phv sical surface of the Earth and density distri-
bution demonstrated in Fig. 2. This model is capable of computatmn in such
a way that the Earth is subdivided into two parts with regular but unknown
inhomogeneous deunsity distribution and on upper part with known inhomo-
geneous density distribution. This splitting up is performed so that the total
mass and shape of the model must be the same as for the real Earth. Elements
of mass required for integration were constructed according to Fig. 2 and
Fig. 3. Individual mass elements lie between the compensation surface and
the Earth’s surface; in lateral direction they are bounded by meridian planes
and vertical planes perpendicular to that of the meridians. The mass fm; of
each element can be composed of several parts of different densities depending
on the topography itself as the isostatic model, illustrated in Fig. 3. indicates
[14]. The gravitational potential per unit mass of the i-th. mass element
Am; at point P is
Am;

gi} -va == rlf
l;

o~

where [, denotes the distance between the centre of mass of a mass element
Im; and point P according te Iig. 2. The total gravitational potential at P
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can be expressed by numerical approximation of integral (1) and equation

(2) as

d]ll,‘
L

Vo=V -4V, =V, + kY

with V5 being the potential of the unknown inner part with an assumed
regular density distribution.
Since the disturbing potential

T,=TV,— Up (4)

is needed for computing geoid anomalies instead of the potential ¥V, the
gravitational part U% of normal potential U, have to be subtracted from
gravitational potential ¥V, defined through (3). (The definition of normal
potential will be dealt with later on.) We mention that in the preceeding
only the gravitational potential was treated because the centrifugal potential
Vi vanishes by subtraction: Ty = W, — Up. since Wy =V, + V., Uy =
= Up + Uy and Vo= Up.

Finally, the separation IV, between level surface of our model’s gravity
and normal potential can be expressed using the simplified Bruns® formula.
With the notations of Fig. 4

Np=-2, (3)

Fig. 4. Separation of geopotential and spheropotential surfaces
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holds, where 7, is the intensity of normal gravity. When point P lies on the
geoid, the separation N = T/y, of the geoid above the ellipsoid (geoid undula-
tion) can be determined.

In practical computations it is advantageous to develop T in (4) into
a spherical harmonic series. The idea of this method is determine first the
spherical harmonic coefficients of surface mass anomalies and then to use
these coefficients to express the disturbing potential function and the required
geoid undulations as well.

‘Cealized Earth’'s crust
naving thickness T, and
density

tevel eilipsoid

unknown but reguler inner

surfcce of
mass model

compensaticn

upper part of the
upper mantle -

naving density ¥
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Fig. 5. Model to produce normal gravity field

In this case the inner mass distribution as well as the upper part are
assumed to generate normal gravity fields as shown in Fig. 5, (i.e. idealized
crust of uniform depth T with homogeneous density #, and mantle lying
between bottom of crust and isostatic compensation depth of density ).
The normal field is supposed to coincide exactly with the international normal
gravity field of a level ellipsoid.

The evaluation of the gravitational potential of our model is split into
two parts. The main part consist of a rotationally and equatorially sym-
metrical normal field generated by an unknown inner regular density distribu-
tion with a mantle of uniform thickness and homogeneous density &, above
it; and finally, homogeneous crustal matter of density &, and thickness T,
According to our hypothesis, the external bounding surface of this body
coincides with the ellipsoidal level surface (level ellipsoid) of the international
normal gravity field, and the nmormal potential U, of this ellipsoid equals
that of the geoid. Hence the potential of this main part can be calculated
by the well-known formulas of the international normal gravity field.

A much smaller irregular part, demonstrated in Fig. 6, caused by the
upper part of the crust (physical surface of Earth) and the irregularities of
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Fig, 6. Model of disturbing potential computation

the crust-mantle boundary is added to the main part mentioned above. The
potential of this small irregular part is evaluated only under spherical ap-
proximation illustrated in Fig. 7.

On the basis of the previously introduced principle, the geoid computed
by Bruns® formula now refers to the level ellipsoid of normal gravity field,
i.e. the international reference ellipsoid. The potential U, of this ellipsoid
equals the potential of the geoid but the inner mass distribution of our model
(Fig. 2) still remains unknown. If this model — the potential of which we want
to develop into a spherical harmonic series — is introduced as above, there
will be no confusion at least in principle when the geoid heights of this model,
computed by Bruns’ formula. are subtracted from the global geoid since they
are referred to the same normal gravity field and reference ellipsoid. After
subtracting from the complete geoid. the resulting geoid heights will show
geoid forms of a body which comprises internal masses of unknown distribu-
tion inside the earth and its external part will reflect the effects of masses not
compensated according to the Airy— Heiskanen hypothesis.

2. Effect of neglecting flattening
It might cause considerable unjustified difficulties to use on ellipsoidal

shape for the regularly distributed inner mass, therefore it is convenient to
approximate the shape of this domain by a sphere and to measure ellipsoidal
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Fig. 8. Notations to investigate flattening neglection

topographic heights above this sphere. When the flattening of the ellipsoid
is neglected. i.e. it is approximated by a sphere, an obvious error is com-
mitted during disturbing potential computation; in our case. however, this
approximation can be justified [15].

To prove this, in Fig. 8. let F denote the domain bounded by the physical
surface of the Earth, E denote a rotational ellipsoid which closely approxi-
mates the shape of Earth, and G be the domain bounded by E and F. Now
the disturbing potential T, can be expressed as

COC By (% 9y (% y s
TPZVP—Uﬁ_kJJJ V(”I‘" )dxdyd;-k“f__‘i%i_)dxdyd; (6)
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where 4, is the density of model in Fig. 2. and 9, is the density of a body
producino the gravitational part of a normal gravity field. In the following
let ¥, denote the density distribution for which the two integrals on the right
side of (6) can he summed up into one integral over domain G:

LUJ') (*l)‘“) dx dy d (

~3

In the next step a coordinate transformation

x’ D-1 0 0 x
vi=lo b=t o |y )
F 0 0 D> z

is introduced where the numerical value of I depends on both semi major
and minor axes ¢ and b of the rotational ellipsoid E(a, b) or on the flattening

(a — b)/a:

j
3

i”_l-"f*'_
b 3

It can readily be seen that equation (8) transforms the (x, y.z) points of
a rotational ellipsoid E{a.b) into the points (1, v, 3") of a sphere of equal
volume to that of an ellipsoid. Differences of geographical latitudes of cor-
responding ¢ and @’ points remain below 6 minutes of arc using this trans-
formation (and taking into account the numerical value of flattening. ap-
proximately 1/300). Next, the transformation (8) of integral expression (7)
{note that density is not altered in corresponding points @ and (") and then
the Tavlor expansion of 1/l in the integrand when D = 1 vields

Tp,ZImUJﬁ &y )(h dy’ dz'

¢ 9)
3 —P—IT_L?] —1} o dy' dy

The term in hraces is the cosine of the angle between P’Q’ and plane
x’y’; so the maximum absolute value of the bracketed expression is 2. The
funetion 4,(x",y’,s’) in the integrand may either be positive or negative,
hence domain G has to be divided into two parts *G’ and ~G’ according to
its positive or negative sign. respectivelv. Now the disturbing potential T,
on the left side of (9) can also be expressed as the sum of positive *T,. and
negative ~Tp, quantities. Accordingly. if the flattening is neglected and only
the first terms of Taylor expansions of ~T,, and ~Tj, are kept, then the
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following estimation holds for absolute values of both quantities: the error
due to the second Taylor term is surely less than 2f/3 ~~ 1/400-th part in
~T,. and ~Tp, [10].

3. The potential of a given mass distribution in terms of spherieal harmonies

The gravitational potential I, of an arbitrary density distribution in
Fig. 9 over domain ¢ (the Earth) in an external point P is given by expres-
sion (1). With the notations of Fig. 9 this formula can be rewritten in spherical

polar coordinates in the form

He' O Y Pein @8 L,
=k U’ z dr' 40’ d:

(10)

rr e i
Substituting the spherical harmonic expansion of 1/l inte the above
expression (if terms of Oth order and of rotational symmetry are written
explicitly), the gravitational potential at an arbitrary outer point P(r, &, i}

I, = kM {1 - ‘é: _‘f’_) J. P. (cos @) -

is given by

r n=1'T .
. (11)
o n a 12 .
> {_. [Crym cos mi -+ Sy sin m2] Py (cos @)} ,
n=1m=117
where the total mass of body is M and a suitably chosen distance (« -7 r) [1].

< 2(r. 8, A}

Fig. 9. Notations to evaluate gravitational potential of an arbitrary body in spherical
coordinates
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The corresponding coefficients J,. C,,. S,, in (11) can be evaluated
if the density distribution inside the given body is known.

If m=0,
J/z = no = n:[a f (7’ COS @ )Q?( ’, , )dG’ (12)

holds true and for the case m == 0

{Clzm} _ 2 (n' - m) !

= X
Sm Ma* (n-+m)!
e cos mi’ (13)
<[[f o prateos 0 o o0 ds
is valid where do denotes the volume element:
do = (r')2sin O dr’ 46" dJ .
If we substitute the following normalized form
1 (n—m)!
P (cosO) = ( n--1) 2 /- P,fcos O) ;
(n -+ m)!
1,if m=20 .
=1 (14
¢ {2, if m == 0} (14)

of Legendre polynoms P,(cos @) and associated Legendre functions Fp,,(cos 0)
into spherical harmonic series (1) then, of course, coefficients (12) and (13)
also have to be normalized:

I_C—,; . [ (n -+~ m)! Crim
US| ] i(2n + 1)(n — m) ! {Sun

) {1, ifm=20
1 o

2, if m==0. (15)

Since in our case integrals (12) and (13) have to be determined for the
model demonstrated in Fig. 2. the physical surface of the earth represents
the limits of integration. Once the coefficients of the spherical harmonic
series (11) are determined. disturbing potential T, can also be evaluated
by the same coefficients (as will be shown later).
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4. The evaluation of spherical harmonic coefficients by numerical quadratures

In the following a numerical quadrature method is introduced which is
approximate over the entire Earth surface but exact within each mass com-
partment. Numerical quadrature is accomplished by dividing the surface of
a sphere approximating the Earth by p — 1 parallel circles and s meridians
into ps area compariment. Topography is estimated by average heights over
these compartments. With notations of Fig. 10 let us denote

Fig 10. Notations for numerical integration

R =R—~T,—d;
and

R, =R+ by,

where hfy is the average height over a given area compartment, dl.j is the iso-
static root-thickness, T'j is the average crustal depth and R is radius of the
Earth’s equivolumal sphere.

First let us evaluate the triple integral in the right side of expression
(13) within integration limits shown in Fig. 10. One may readily evaluate the
simpler equation (12). Let us neglect for the moment the constant factor on
the left side of integral and introduce the following notation:

n , Jcos m# ars o e
:fff(r V' P (cos ©) {sin Y J HNr', &, V) do
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Using the above mentioned partitioning

Rij @ 2
s D e <5
I = 22 J J (r’)”.—— Prm(cos ) X
=1]J=1 )
R%; 05 A1y (16)

cos ms’ s .
> { ) 4,} GG, 07, ) sin @ dr' dO" d3 .

sin mAi :
holds. Since the density function 9(r’. 0. 2’) is independent of & and /’
within a single compartment and integration limits are constants with respeet
to @ and 7. the triple integral (15) can be factored into three single integrals:

I
=1 “}I , (an
R {[S p
where we have denoted:
R+7zij
I= f W) (Y2 dr (18)
R-Te—d;;
I »s: cosmzi’)| .
[Is} - j {Sin m/'.’} d’ (19)
&5,
I,= J P, (cos ) sin & d6& (20)
o,

We evaluate the first integral (18) in two basic cases, i.e. over continental
and oceanic areas. As it can be seen in Fig. 7 the continental case becomes

Riﬁ""
I, = J 9(r) ()2 dr =
T i (21)
R:T. R+hy;
=0 —0) | e s, [ ey
R_T:—dii R

where mean height h7y is positive and T, is the mean crustal thickness. and
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according to the isostatic model by Airy. On performing integration in (21)
and performing elementary manipulations, the expression

1 h 3
Io=——"19, R=3||1+ 2| 1|~
? n+3{"R [[1 R.I 1]

S, b V+3
1 — k15§ _ 1”
(#a—#) (R—Ty))

results where &, and 9, denotes average crustal and mantle density (&, =
= 2670 kg/m?, ¥, = 3270 kg/m?). In the same wayv the integral (18) can alse

(0= ) (R =Ty

~
be evaluated over oceanic areas covered by sea water. If I denotes mean
oceanic depth,

-

oo -
(5, — & )}N'.";. ne3 (23)
3 (2}(1 B ﬁk) (R N TO)n TSUJ‘ B (Qt}a _-’19!:) (Il{ _“JTD)) B 1“

is found where ¥, == 1030 kg/m?® is the density of sea water and

1
n-+3

. Gy — Gy
R S
J '&‘a . 29.1: i

denotes anti-root thickness from Airy’s isostatic equilibrium hypothesis.
The integral expressions (19) mav be evaluated to yield equations

I.=-—(sinm i, —sinm i) =
m
2 /i1 ——"‘ o . d/-
== —cos m sin m —,
m 2 2

1 s ,
Ig= — (cosm 2,y — cos m 2yy) =

2 i
= —— 81N N —
n

i, A

2.sin m

a

P

19 |-

where
AL =}, — 4;; = const.
Let us finally evaluate integral (20) ! After introducing the new variable

t = cos @ as above,
ti=Cos ©';,

ID == j Przm (t) dt B (25)

te=C08 By




172 L. VOLGYESI—GY. TOTH

holds true. This integral may be evaluated by a recursive method suitable
for computer calculations.

For this purpose let us start with the following expression which can
easily be verified by differentiating (14):

i AP o (B)
Pt)=)1—pg—m1l o
i (2) = | t 5 : 6
(2
. (26)
+ 1) 7= Prma ()

Moreover, it can be deduced from the differential equation of Legendre fune-
tions that

1
n(n 4+ 1)— m(m -+ 1) ~

an(t) =

Pr:. m-1 (t) - Pn, m-2 (t)

X [2(171 4+ 1) —

11— ¢%

holds. Note that expressions (26) and (27) became undetermined at poles.
i.e. when ¢ = cos @ or ¢ = sin y. Integration of (26) between limits ¢, and ¢,
and applving (27) produces the expression

1

[ Pom @ dt = = x
J n(n -+ 1) —m(m -+ 1)
t
2(m + 1 . _ — ‘
~ l_ _(n:j)— [1 1— 12 P omea(ty) — V1 — 12 Pr s ([1)} - (28)
— N
—"' - f Pn m+2 (t) dt}
m -+ 2 T

b

It is evident that integrals of P, (¢) are also needed in the above formula for
recursive computation. The desired expression can be gained by the integra-
tion of (cf. [4])

Po®)=1-3-5- ... -2n — 1)1 — )" (29)
which yields

1

n -

i
Jsz (¢)dt = : [P,m (tx)ty — Ppp (2)1, —
t

4
1Y

+n(2n —1)(2n — 3) j P, g, (t) dt:} . (30)

s
3
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Note that for the recursive computation of (30) a very disadvantageous error

accumulation occurs which can be avoided by using the method of [11}.
To summarize. the integral I, can now be calculated recursively — suit-

able for computer calculation — by formulas (26). (27), (28). (20). and (30).

3. Resulis of initial numerical computations

Numerical test computations were performed by the authors on the
basis of the previously described procedure. Computer programs were devel-
oped in the FORTRAN language on an IBM PC/AT computer. The first
program system computes C,,. S,, spherical harmonic coefficients from
input mean surface heights — using the above deseribed process — for the
Earth model sketched in Fig. 2. The second program of the system creates
geoid heights over previously given grid points from input C,p. S, coeffici-
ents. The third program interpolates contour maps of geoid heights.

Mean topographic heights were introduced over 1° 3 1% area blocks
into the calculation (this implies 64 800 data for the entire Earth). Spherical
harmonic series of disturbing potential were determined up to degrees n =
= m = 36, 50, 90, 180; however, since geoid shape due to topographic and
isostatic masses does not vary significantly with increasing degree (and, on
the contrary CPU times increased rapidly) the following test were accom-
plished only up to n = m = 90.

Geoid undulations due to topographic and isostatic masses can be seen
in Fig. 11. It can be established that geoid heights computed by spherical
harmonic series of disturbing potential are reasonable: maximum geoid un-
dulations of =10 : —30 m were obtained depending on the characteristics of
topography. We mention also here that since spatial positions of crust —
atmosphere (-ocean) and crust — mantle boundaries are not known precisely,
a minor translation of level surfaces of computed potential field may occur.
This translation, however, can be neglected for our purposes since the com-
puted geoid is needed for only interpretational purposes.

Our final goal is to interpret major geoid forms physically by separating
the effects due to well-known density anomalies; hence the next step is to
separate our computed topographic — isostatic effect from the full global
geoid shape. Fig. 12 illustrates the RAPP 1981 geoid which we chose to inter-
pret. Remaining geoid forms are demonstrated in Fig. 13 which were obtained
by subtracting geoid heights of Fig. 11 from the RAPP 1981 geoid. Fig. 13
shows that, unfortunately, our problem has not been simplified significantly
since geoid forms which do not contain the effect of topographic and iso-
static masses have not become simpler or easier to interpret. Anvway, the
separation process have to be continued, i.e. additional known mass inhomo-
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genities (e.g. density irregularities of plate tectonic models, ete.) have to be
considered and computable geoid heights due to masses have to be subtracted
from geoid heights demonstrated in Fig. 13. To achieve this, further investiga-
tions, additional computer software, collection and consideration of other geo-
physical data are needed.

Our investigations were commissioned by ‘OTKA’, contract No. 5-204

under the title “Global and local geoid investigations™.

T3

o3

u

6.

14.

Dr. Lajos VOoLeYEST

References

. Bmré, P.: Geodesy. University Lecture Notes, Technical University of Budapest. Tan-

kénvvkiadé, Budapest, 1985. (In Hungarian)

. DrEwEs, H.: Geophysical Interpretation of Global Geoid Undulations and Mean Gravity

Anomalies. Proceedings of the 5th Int. Symp. “Geodesy and Physics of the Eqrth B
Part 1., Potsdam, 1985.

. ForsBErG. R.: A Study of Terrain Reductions. Density Anomalies and Geophyvsieal

Inversion Methods in Gravity Field Modelling. Reports of the Dep. of Geod. Sci. and
Surv. The Ohio State University, Columbus, Ohio, Report No. 355. 1984,

. Korx, G. A.—Korx, T. M.: Mathematical Handbook for Scientists and Engineers. Mec-

Graw-Hill Book Company, 1968.

. Lavre~Ttiev, M. M.: Some Improperly Posed Problems of Mathematical Physies. Sprin-

cer-Verlag, Berlin, Heidelberg, New York. 1967.
Mogrrrz, H.: Elhp<oxda? Mass Distributions. Reports of the Dep. of Geod. Sci. The Ohio
State University, Columbus. Ohio, Report No. 206. 1973.

.Pavi, M. K.: Recurrence Relations for Integrals of Associated Legendre Functions.

Bulletin Geodesique. Vol. 32. 1978.

. St~ker, H.: An Isostatic Earth Model. Reports of the Dep. of Geod. Seci. The Ohio State

Unnersxt} Columbus, Ohio, Report No. 367. 1985.

. TorcE, W.: Geodesy. Walter de Gruyter. Berlin, New York, 1980.
. Téra. Gv.: The Impact of Known Masses Along the Earth’s Surface on Geoid Forms.

Diploma Thesis, Dep. of Geodesy Techn. Univ. of Budapest. 1985. (In Hungarian}

. TscrerNinG, C. C.—StU~gEL, H.: A Method for the Construction of Spheroidal Mass

Distributions Consistent with the Harmonic Part of the Earth’s Gravity Potential.
Manuscripta Geodaetica, Vol. 6. 1981,

2, Vorevest, L.—MoseR, M.: The Inner Structure of the Earth. Periodica Polvtechnies,

Chemical Eng. Budapest, Vol. 26. 1982.

. VoreyEst, L.: On the Physical Interpretation of Geoid Shape. Lecture held on a scientific

meeting for the 200th anniversary of the foundation of Technical University of Buda-
pest. 1982. (In Hungarian)

Vorcvesi, L.: Geophysics. University Lecture Notes. Technical University of Budapest
Tankdnyvkiadé, Budapest, 1982, (In Hungarian)

-1521, apes
Gyula Téta H-1521, Budapest




