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ltbstract 

The paper presents a generalized approach to the optimal design of linearly elastic -
perfectly plastic bar structures construeted of prismatic members. The goal is to minimize the 
volume of the structure subject to the constraints so that at certain points in the structure the 
elastic displacements and the permanent plastic displacements caused by a one-parameter 
static load and by a high intensity short-time dynamic pressure. respectively, do not exceed 
the given allowable displacement and also the structure under the action of a mnlti-parameter 
static loading shakes down. The paper presents the yariational and mathematical programming 
formulation of the problems when the above constraints separately and also simnltaneously 
are taken into consideration and illustrates the application by numerical examples. 

1. Introduction 

In the analysis and design of structures various loading conditions and 
several design criteria have to be taken into consideration. 

A certain arrangement of the loads must be carried by the structure in 
elastic stage such that the displaccments do not exceed the allowable elastic 
displacements. In addition, when the structure is submitted to a multi-param­
eter loading then plastic deformations might be permitted, but it must be 
proved that during the entire loading history these deformations do not ac­
cumulate unrestrictedly, i.e. the structure shakes down. 

In some cases special extreme loads (e.g. earthquake, explosion, impact) 
should also be taken into account. Then again plastic deformations might be 
allowed but they should not exceed the values which lead to local failure or to 
the collapse of the entire structure. In the optimal design usually the volume 
of the structure is the objective function and the constraints might he the 
design criteria descrihed above. Considering these criteria separately several 
independent optimal solutions can he determined which can form the basis 
of the design e.g. by choosing for every point of the structure the maximum 
cross-sectional area obtained hy the separate solutions [2, 4]. A more general 
solution can he ohtained however if all or several of the prescrihed design 
criteria are simultaneously taken into consideration. This calculation leads to 
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a single optimal solution which can be used directly to the design of the struc­
ture. 

In the follo''ving the variational and mathematical programming for­
mulation of the optimal design problems described above will be presented. 

2. Fundamentals 

In the following linearly elastic - perfectly plastic bar structures (frames, 
trusses) with given shape and geometry ·will. be considered. The structure is 
composed of i 1,2, ... , n prismatic members with given lengths Ii and with 
unknown cross-sectional areas Ai as design variables. It is assumed that the 
specific stiffness Si and the specific elastic and plastic strengths R~ and Rf 
of the members can be expressed in terms of Ai in the following general forms 
[2, 4]: 

(1) 

Here rp, 1p, Q, 0:., f3 and y are appropriately chosen constants and E and ay 

denote the Young's ~odulus and the yield stress of the material, recpectively. 
For example in the case of beams and frames Si' R~ and Rf denote the specific 
bending stiffness, the maximum elastic moment l'\'f~ and the fully plastic mo­
ment 2Hf of the members. When the beam or frame has rectangular cross­
sections with fixed vvidth bi and variable height hi eqs. (1) reduce to 

(2) 

(3) 

a 
RI! = MI! = -Y-Ar. 

I I 4b
i 

(4) 

When the structure has sandwich cross-sections with fixed height hi then 
eqs. (1) become 

h'?­
Si=E-l Ai, 

4 
(5) 

(6) 
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In the folio-wing three different loading conditions will be considered: 
a) a one-parameter static load Fo(x) "\vith given distribution and intensity; 
b) a multi-parameter static loading defined by the loads FJ(x), Fz(x), ... , 

F p(x) which can act independently or simultaneously; 
c) a high intensity, short-time dynamic pressure Fd(x, t) defined by the 

rela tionships 
Fd(X, t) = p(t) Fg(x), 

"·1 
p(t) Po, if 0 (7) 

p(t) = 0, if t> to' 

Here x denotes the coordinate measured along the axis of the bars and 
t is the time. 

Considering the assumptions, loading conditions and the design criteria 
described aboye the optimal design of a bar structure might be specified in the 
follov.ing form. 

With the cross-sectional areas Ai as design variables and the volume 

11 

V(Ai) = ~ liAi; (i = 1,2, ... , n) (8) 
i= 1 

of the structure as objective function we determine the design that minimizes 
V subject to the following constraints. 

a) Under the action of the static load Fo(x) the structure does not un­
dergo plastic deformations and at given points j = 1,2, ... , m the elastic 

displacements wj do not exceed the allowable elastic displacements W~j' i.e. 

Qi ~ R~; 
wj W~j; 

(i = 1, 2, ... , n), 

(j = 1,2, ... , m). 

(9) 

(10) 

Here Q~ denotes the maximum internal force caused by the load Fo(x) in 
the i-th member of the elastic structure and R~ is defined by eq. (1). 

b) The plastic deformations caused by the multi-parameter loading do 
not accumulate unrestrictedly, i.e. the structure shakes down. 

c) At given points j = 1,2, ... m, in the structure the plastic displace­
ments wf caused by the dynamic pressure Fd(x, t) do not exceed the allowable 
plastic displacements wgi' i.e. 

wf wgj ; (j = 1,2, ... , m). (ll) 

Using eqs. (1) the constraint defined by eq. (9) can be written in the form 

where (12) 
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In case of beams or frames "with fixed ,vidth bi and variable height hi eq. 
(3) yields 

Aio = (6b i Mf)1/2 
. ay 

(I2a) 

Here NIf denotes the maximUIIl elastic hending moment caused by the load 
Fo(x) in the i-th member of the structure. 

Using the above relationships and introducing the independent "slack 
variahles" ai' el' gj the inequalities (9)-(11) can be converted into equality 
constraints which have the following forms 

(9a) 

(lOa) 

(lla) 

Next, we discuss the above design constraints in detail and present sep­
arately the variational and mathematical progTamming formulation of each 
optimal design problem. Thereafter we ,,,ill formulate a more general approach 
when in the optimal design all the loading conditions and displacement con­
straints are simultaneously taken into consideration. 

3. Static analysis of the elastic stl.'llcture 

Under the action of the static load Fo(x) the structure under considera­
tion is in elastic state and the corresponding internal force distribution is de­
noted by QS(x, SJ Then the elastic displacement U"j at the point j in the struc­
ture can be obtained from the following relationship 

(13) 

Here Qf(x) denotes any statically admissible intemal force distribution equi­
librating a "dummy unit force" acting at the point j in the direction of wj. 
Note that Qe(x, Si) is function of the design variable Ai' Qf(x) is, however, 
independent of it. Introducing the flexibility coefficient 

fu(Si) = JQS(x, Si)Qj>(x)dx (H) 
I, 

the elastic displacement constraint (lOa) can be expressed in the form 

Cj= 11 i fuS(Si) - W~j + e] = 0; (j 
i=l i 

1,2, ... , m). (15) 
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3.1. Variational formulation 

Using variational formulation the optimal design Ai satisfying the geo­
metric and design constraints (9a) and (15) is identified with the stationarity 
of the functional 

11 m ri 11 f, .. (S.) '[ 
1 "",' 1 I "'" - " ~ I] I. e 

e = ,~.Ili i 1- .~ I·jll .~--. - i - WOj 
, 1 ] = 1 i 1 = 1 SI i 

e~] ....L 
] t 

(16) 

Here l'j and %j denote Lagrangian multipliers. The variation of the func­
tional le 'with respect to the variables Ai' e j and a i yields the following equa­
tions: 

-T-%i --- - . - (1 SAi,O)_ 0', 
SA; 

(i 1,2, ... , n), 

Sle = I.jej = 0: (j = 1,2, ... , m), 
Sej 

Sle _ _ _. 
-- - %iai - 0, (i = 1,2, ... , n). 
Sai 

(17) 

(18) 

(19) 

From eqs. (18) and (19) fonows that along the structure either ej or I'j 
and either %i or ai must vanish. Considering these "switching conditions" thc 
structure can be subdivided into different regions. 

In the region where ej = ° and %i = ° eqs. (15) and (17) provide n + m 
equations for the determination of _.( and IT Where, on the other hand, 

ej = ° and ai = 0, eq. (9a) yields the solution Ai = A IO • 

In the region where ?'j = 0 according to eq. (17) %i 0 therefore, in-
dependently of the value of ej' ai must vanish. Hence for this region eq. (9a) 
provides again the solution Ai = AiD' 

We can conclude that the above variational formulation uniquely defines 
the optimal solution of our problem. 

3.2. }\tfathematical programming formulation 

In order to obtain a suitable form to the application of mathematical 
programming let us introduce a ne,',- design variable 

y, __ ~_ Ai~ 
I - Si - qyE . (20) 
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Then the objective function (8) is expressed in the form 

n 
V(Yi) = .:z li((rEYi)-l!~ (21) 

i=l 

and the constraints (9a), (13) and (15) become 

(22) 

(23) 

In case of statically determinate structures the flexibility coefficients J;j 
and the internal forces Q~ are independent of therefore the constraints (22) 
and (23) are linear functions of Y i and only the objective function (21) is 
nonlinear. This relatively simple mathematical programming problem can be 
solved by Wolfe's reduced gradient method [10]. 

In case of statically indeterminate structures J;j and Qt are functions of 
Y i therefore eqs. (22) and (23) are highly nonlinear. To solve the problem the 
following iterative procedure can be applied. 

First, we assume appropriate initial values (Y;)o (e.q. (YJo = const.) for 
the design variables, determine (J;)o and (QDo and solve the problem as it was 
described ahove. 

Next, from the obtained design variahles (Yi)l we determine the coeffi­
cients (J;j)l and internal forces (Q7)1 and solve the problem again. 

This procedure has to be continued until the difference hetween two 
consecutive steps is sufficiently small. 

4. Shakedown analysis of the elasto-plastic structure 

The condition of shakedo·wn of a linearly elastic perfectly plastic, 
static ally q times indeterminate structure is defined hy the follovving relation­
ships [6,7] 

QraX(Si) + Q~ s;: R{, } 

Qrin(Si) Q~ > -R{. 
(k = 1, 2, ... , s). (24) 

Here Q~ax(Si) and Q~in(s;) denote the maximum and minimum values 
of the internal forces of the linearly elastic structure calculated from all the 
possible comhinations of the multi-parameter loading F 1(x), F 2(x), ... , Fp(x) 
at the critical cross-sections k = 1, 2, ... ,s and Rf and Qf are the plastic 
strengths (e.q. plastic moments) and the self-equilibrating internal residual 
forces of the critical cross-sections, respectively. The latter can be expressed 
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in terms of the unknown statically indeterminate forces Xl (1 = I, 2, ... , q) 
in linear forms 

a 

Qf = :! ai:lXI; (k 1,2, ... ,8), (25) 
1=1 

where akl are constant coefficients. Note that Q~ax, Q~in and Rf are functions 
of the design variables Ai' Qf and Xl are, however, independent of them. 

Inserting eq. (25) into eqs. (24) and introducing the independent "slack 
variables" dk and fk the condition of shakedown can be defined as 

Cs - Qmax(s) kl - k i 

q 

::2 au X z - Rf 
1=1 

d~ = 0,1 
J (k 1,2, ... ,8) (26a-b) 

n o. j 
In addition, to fulfil some constructional requirements, it might be necessary 
to prescribe a minimum value Ao for the cross-sectional area. This geometrical 
constraint is expressed as 

(Ai _. Ao) - aT = 0; (i = 1,2, ... , n), (27) 

where ai is a slack variable. 

4.1. Variational formulation 

The variational formulation of the optimal design Ai satisfying the con­
straints (26a-b) and (27) is identified ,..,lth the stationarity of the functional 

J s = i liAi + i Pk [QraX(Si) + i ak/XZ - Rf + d~] + 
i=l k=l 1=1 

-'- .:2 r" [Qrin(Si) + i a,ilXZ -'- Rf - n] + i %i(Ai - Ao - a7)· 
1<=1 1=1 i=l 

(28) 

Here {-l", v" and 'Xi denote Lagrangian multipliers. The variation of the 
functional Js with respect to the variables Ai' Xl' d", ir, and ai leads to the fol­
lowing equations: 

'()js = li + i ,u" aQrax(Si) aSi _ aRf + 
aA i 1<=1 aSi aAi aA i 

+ i J1k [aQrin(Si) aSi + aRfJ + 'Xi = 0; (i = 1,2, ... , n), 
k=l aSi aAi aA i 

(29) 

S 

::2 ({-ll< + v,,)akl = 0; (1 = 1,2, ... , q), (30) 
1<=1 
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aJs 
ad" = p"d" = 0; (k = 1,2, ... , 5), (31) 

1,2, ... , 5). (32) 

Considering the "switching conditions" (30)-(32) different regions can 
be distinguished in the structure. 

In the region where d~ 0, fl: ~ ~ 0 and %i = 0 according to eq. (32) 
JI/i must vanish. Then, eqs. (26a), (29) and (30) provide (s -+- n + q) equations 
for the determination of )'k' Xl and Ai' 

On the other hand, in the region where cll: .. " 0, fl; = 0 and %i 0 accord­
ing to eq. (31) p;, must vanish. Hence, eqs. (26b), (29) and (30) provide again 
(5 -i- n --l- q) equations for the determination of )'l:' Xi and Ai' 

In the region where dIe =, 0, fir 0 and %i = 0 both PI; and JI" can be 
different from zero. Now eqs. (26a-h), (29) and (30) provide (2s + n q) 
equations from which PI;' JI", Xl and Ai can he calculated. 

It can he easily seen that in all the remaining parts of the structure the 
ahove switching conditions yield a constrained solution i.e. in these regions 
Ai = Ao' Hence, 'we can conclude that the ahove variational formulation 
uniquely defines the optimum solution of the prohlem. 

4.2. l\:Iathematical programming formulation 

Introducing a new design variahle 

Rf Q GyA} (33) 

and inserting this relationship into the ohjective function (8) the mathematical 
programming formulation of the prohlem under consideration can he defined 
as helo·w. 
Minimize 

V(Rf) (34) 

suhject to 

1,2, ... , 5) (3Sa) 

(3Sh) 

Here the last equation corresponds to the geometrical constraint defined hy 
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eq. (27). This is a nonlinear mathematical programming problem which can 
be solved by iteration. 

AssUI~ing appropriate initial values (Rf)o (e.g. (Rf)o = const.) we deter­
mine (SJo and the corresponding internal forces (Q~ax)o and (Q~in)o' Then ,ve 
get a mathematical programming problem in which only the objective function 
is nonlinear. Soh-ing this problem by the use of the reduced gradient method 
we determine (XI)l and (Rf)l' From these (S;)l the corrected values (Q~ax)l and 
(Q~ill)l can be calculated and the above procedure can be continued until the 
difference bet"ween two consecutive steps is sufficiently small. 

structure 

The maximum permanent displacements of a rigid - perfectly plastic 
structure suhjected to a high intensity short-time dynamic pressure given by 
eq. (7) can be determined among others by the kinematic approximation [3, 5]. 
The basic idea of this approximation is that during the dynamic response the 
structure has stationary motion which is descrihed hy a function expressed in 
product form 

wP(x, t) = W(t)ul(x). (36) 

Here w"(x) denotes any arhitrary kinematically admissihle displacement field 
(yield mechanism) and W(t) is an unkno"wn displacement parameter function. 
W(t) is determined hy the differential equation of motion of the structure and 
reaches its maximum value WP when the structure comes to standstill. Omit­
ting the details for WP the following expression can he obtained [5, 6] 

Here 

K 

r Fg(x)w"(x)dx 
L 

Tl 

Q ~ Ai J [ul'(x)J2dx 
i= 1 li 

(37) 

(38) 

Q is the density per unit volume of the material and plc denotes the kinemati­
cally admissible multiplier associated with the load Fg(x) and displacement 
field u/:(x) and is defined by the expression (6) 

(39) 
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Here q7 denotes the sum of the absolute values of the generalized strains 
(e.g. rotations) occuring in the perfectly plastic cross-sections (e.g. in the plastic 
hinges) of the bar i. 

Making use of eq. (37) the approximate values of the maximum plastic 
displacements at the points j = 1, 2, ... , m in the structure can be expressed 
in the form 

(40) 

Note that the accuracy of the approximation might be improved hy 
introducing several kinematic ally admissible displacement fields [5, 6]. Then, 
the maximum values of the permanent displacement ohtained hy the use of 
these displacement fields are competent in the design. 

Inserting eqs. (38) and (39) into eq. (40) and introducing the notations 

G J Fg(x)zvk(X)dx. Di = J [u.:k(x)J2dx (41) 
L ~ 

for the design constraint (lla) we get the expression 

Pot~:lwjl (' !oG _ 1) gJ = 0: (j = 1, 2, ... , m) 
'> "V D A "V RP-k ~q ~ i- i ~ iqi 

i= 1 ;=1 (42) 

and the geometrical constraint (27) has the form 

(Ai a; = 0; (i 1,2, ... , n). (43) 

5.1. Variational formulation 

The variational formulation of optimal design Ai satisfying the design 
and geometric constraints (42) and (43) is identified ,dth the stationarity of 
the functional 

n 

+ ~%i(Ai 
i=l 

Here 1j!j and %i denote Lagrangian multipliers. The variation of the func­
tional Jp v,.ith respect to the variables Ai' gj and ai yields the follo~g equa­
tions: 
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Slp 
Sai 

'Xi 0; (i = 1,2, ... , n), 

lj1jgj = 0; (j = 1,2, ... , m), 

%iai = 0; (i = 1,2, ... , n). 
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(45) 

(46) 

(47) 

Similarly to the former problems we can see that for the region where 
gj = 0 and 'Xi = 0 an unconstrained solution can be obtained for the deter­
mination of and lpj' In the other parts of the structure we get a constrained 
solution, i.e. Ai = Ao' Hence, the above variational formulation uniquely 
defines the optimal solution of the problem under consideration. 

5.2. jlfathematical programming formulation 

The mathematical programming formulation of the problem under con­
sideration is as follows. 
Minimize 

subject to 

Pot&GlwJI 
n 

2(2 ~ DiAi 
i=1 

n 
V(Ai) = ~ li Ai (48) 

i= 1 

, G 

(
Po _ 1) - wP < o· n Oj - , 

~RP-k 
.,.;;;;,; i qi 

'i=1 ' 

(j = 1, 2, ... , m) (49) 

AO - Ai < 0; (i = 1,2, ... , n). (50) 

This nonlinear mathematical programming problem can be solved by 
iteration. Assuming proper initial values (Ai)o (e.q. (A)o = const.) we calcu­
late (Rf)o' Then we get a linear mathematical programming problem from 
which (AJ1 and (Rf)l can be obtained. Then we have to repeat the above 
procedure until the requested accuracy is reached. 

6. A unified approach to optimal design 

In the above investigations we took the three loading conditions and 
displacement constraints separately into consideration and obtained three in­
dependent optimal solutions for the structure. To find a single solution which 
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satisfies all the design criteria and leads to the minimum volume of the struc­
ture we have to unify the above solutions including all the design constraints 
in the variational formulation. This problem cau be defined as follows. 

The optimal design AI that takes the three loading cases into considera­
tion and satisfies the three displacement constraints described ahove and the 
geometrical constraint (9-a) and (13) is identified with the stationarity of the 
functional 

n s 

Jg = .";2IIA! .";2 [PkCh -+- )!kCf:zJ 
1=1 k=l 

m n 
-- .";21pjCj -'- .";2 %I(AI - Aio - aT). (51) 

j 1 1=1 

H~re }'p p", v" and \Jj are Lagrangian multipliers and Cj, Ct1' Ct2 and ct denote 
the functions given by eqs. (15), (26a-b) and (42). 

The variation of the functional J g with respect to the variables .r(, er 
die' '~{' gj and a i leads to the equation 

oJg = l; -'- i /.; oC'} -'- i [Plc OCJ;l )!/{ oGr,:!] +-
oAI j=l oA I k=l oA I oAI 

-:... i 1j'J oC1 -:- %! (I OA io ") = 0: (i = L 2, ... , n) 
j=l oA; oA; 

and to the switching conditions 

s 
.";2 (!Jk +- l'd a!:1 
k=l 

(52) 

(53) 

Following our former considcrations it can be stated that the above 
variational formulation uniquely defincs the optimal solution of the generalized 
prohlem. 

Solving the generalized prohlem by the use of mathematical programming 
the same iterative procedure can be applied which was described ahove. 

7. Dual formulation and multicriterion optimization 

Consider the case where the displacements under consideration are con­
fined merely to a specific point B in the structure. Then the functions 1{)~(Ai) 
and 1{)~(AJ of the elastic and permanent displacements at the point B can he 
regarded as objective functions and the optimization problem might he formu­
lated in various ways. 
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a) minimum volume: 
fi.xed elastic displacement: 
fixed permanent displacement: 
shakedown of structure. 

b) minimum elastic displacement: 
fixed volume: 
fixed permanent displacement: 
shakedown of structure. 

c) minimum permanent displacement: 
fixed volume: 
fixed elastic displacement: 
shakedown of structure. 

V(AJ = min! 

lO'1(Ai) = w6B 
wIJ,(AJ = u·gB 

e ( .4 ' ., wB "-'ill = mIn: 
V(Ai) = Vo 
wP (4) - lOP B - i-OB 

wIJ,(A i ) = min ! 
V(Ai) = Vo 
w'1(A;) = W~B 
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Furthermore, if we consider more functions involved in the optimization 
procedure as the criterion of optimal design we get the problem of mztlticriterion 
optimization. Then, the simplest approach is if the obj ective function is construct­
ed as a set of the weighted individual criteria, as follows: 

Here 1f!1 > 0, 1f!2 :;::: 0 and 1f!3 > 0 are the weighting factors representing 
the relative importance of individual criteria. By their proper choice (includ­
ing ljJ i = 0) the optimization problem under consideration can be formulated 
in various ways. The more general formulation of multi criterion optimization 
is described elsewhere [1, 8, 10]. 

8. Numerical example 

Consider a frame composed of 3 prismatic bars which have rectangular 
cross-sections v;ith fixed breadth b = 10 cm and unknown height h (Fig. 1). 
The al;eas AI' A2 and A3 of the cross-sections are the design variables. The 
frame is composed of linearly elastic-perfectly plastic material with Young's 
Modulus E = 2 X 104 kNjcm2, yield stress Uv = 20 kNjcm2 and density 
Q = 8000 kg/m3 and subjected to two concent~ated forces Fl = 20 kN and 
F2 = 60 kN. Following our former investigations three different loading 
cases 'will he taken into consideration. 

a) Static analysis (ST). Under the action of the static forces Fl = 20 kN 
and F2 = 60 kN the structure must he in elastic stage and the horizontal and 
vertical elastic displacements at the points 1 and 4 should not exceed the al-
lowable elastic displacements wg1 7 cm and W54 = 12 cm, respectively. 

b) Shakedown analysis (SE). Under the action of the static variable forc-
es 0 < Fl < 20 kN and 0 <Fz 60 kN which can act separately or in 
combination, the structure has to shake down. 
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Fig. 1 

c) Dynamic analysis (DY). Under the action of the dynamic forces 
Pi = Po X 20 kN and F~ = Po X 60 kN the horizontal and vertical plastic 
displacp.ments at the points 1 and 4 should not exceed the allowable plastic 
displacements wgl = 14 cm and wg4 = 24 cm, respectively. In accordance v,-ith 
eq. (7) the intensity and the duration of the dynamic pressure is Po = 1.3 and 
to = 0.5 s, respectively. The possible yield mechanisms of the structure are 
shown in Fig. 2. These 4 mechanisms, however, depending on whether at the 

b., C., d, 

Fig. 2 

corners the plastic hinges develop in the columns or in the beam, lead to 12 
different solutions for the plastic displacements. To improve the accuracy of 
the approximate solution in the dynamic analysis all these displacements were 
taken into consideration and their maximum value was competent in the 
solution. 

The aim of our investigation is to determine the design variables AI' A2 
and A3 that minimize the volume 

V = 6Al + 10A2 6Aa 

of the frame subject to the constraints described above. 
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First we solved the problem by taking the three loading conditions 
independently into consideration. The results of these calculations are shown 
in the first three rows of the Table 1. 

Tahle 1 

CaEe Analy,i, 
A, A. A, V 

[cm'l [cm'l [cm'l [m'l 

1 ST 164-.6 288.4 384-.9 0.6181 

2 SH 100.5 168.3 148.6 0.3177 

3 DY 8::.1 176.8 176.8 0.3321 

4 ST -;- SH 164.6 288.4 384.9 0.6181 

5 SH -;- DY 101.0 175.8 168.9 0.3377 

6 ST+DY 16,t.6 288.4 384.9 0.6181 

7 ST+SH+DY 164.6 288.4 384.9 0.6181 
--"------

Then we determined the optimal solutions taking simultaneously the 
combinations of two loading cases and all the three loading cases, respectively 
into account. The last four rows of Table 1 contain the results of these investi­
gations. 

It is interesting to note that in the determination of the maximum plastic 
displacements caused by the dynamic load in case 3 the yield mechanism ,,,'as 
competent that had plastic hinges at the points 2, 4 and 5, while, in case 5 in 
the competent yield mechanism the plastic hinges were located at the points 
4 and 5. In cases 6 and 7 the constraint prescribed for the plastic displacements 
was inactive. 
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