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Abstraet

The paper presents a generalized approach to the optimal design of linearly elastic —
perfectly plastic bar struectures constructed of prismatic members. The goal is to minimize the
volume of the structure subject to the constraints so that at certain points in the structure the
elastic displacements and the permanent plastic displacements caused by a one-parameter
static load and by a high intensity short-time dynamic pressure. respectively. do not exceed
the given allowable displacement and also the structure under the action of a multi-parameter
static loading shakes down. The paper presents the variational and mathematical programming
formulation of the problems when the above constraints separately and also simultaneocusly
are taken into consideration and illustrates the application by numerical examples.

1. Introduction

In the analysis and design of structures various loading conditions and
several design criteria have to be taken into consideration.

A certain arrangement of the loads must be carried by the structure in
elastic stage such that the displacements do not exceed the allowable elastic
displacements. In addition, when the structure is submitted to a multi-param-
eter loading then plastic deformations might be permitted, but it must be
proved that during the entire loading history these deformations do not ac-
cumulate unrestrictedly, i.e. the structure shakes down.

In some cases special exireme loads (e.g. earthquake, explosion, impact)
should also be taken into account. Then again plastic deformations might be
allowed but they should not exceed the values which lead to local failure or to
the collapse of the entire structure. In the optimal design usually the volume
of the structure is the objective function and the constraints might be the
design criteria described above. Considering these criteria separately several
independent optimal solutions can be determined which can form the basis
of the design e.g. by choosing for every point of the structure the maximum
cross-sectional area obtained by the separate solutions [2, 4]. A more general
solution can be obtained however if all or several of the prescribed design
criteria are simultaneously taken into consideration. This calculation leads to
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a single optimal solution which can be used directly to the design of the strue-
ture.

In the following the variational and mathematical programming for-
mulation of the optimal design problems described above will be presented.

2. Fundamentals

In the following linearly elastic — perfectly plastic bar structures (frames,
trusses) with given shape and geometry will be considered. The structure is
composed of i == 1,2, ..., n prismatic members with given lengths /; and with
unknown cross-sectional aveas 4; as design variables. It is assumed that the
specific stiffness S; and the specific elastic and plastie strengths R} and RY
of the members can be expressed in terms of 4; in the following general forms

[2. 41:

S[ = (pE:if.
R = yo, A7, 1)
RP = po, A7

Here ¢, v, 0, o, 8 and 7 are appropriately chosen constants and E and o,
denote the Young's Modulus and the yield stress of the material, recpectively'.
For example in the case of beams and frames S;, R} and R? denote the specific
bending stiffness, the maximum elastic moment M$ and the fully plastic mo-
ment M7 of the members. When the beam or frame has rectangular cross-
sections with fixed width b; and variable height h; egs. (1) reduce to

Si=EJ = 12Eb,, A3, (2)

Rt = M; =2 43, 3)
6b;

RP — MP = % 43 (4)
1 i 4b,

When the structure has sandwich cross-sections with fixed height h; then
eqs. (1) become

S; = E—]—:-: A, )
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In the following three different loading conditions will be considered:

a) a one-parameter static load Fy(x) with given distribution and intensity;

b) a multi-parameter static loading defined by the loads Fi(x), Fy(x), ...,
F (x) which can act independently or simultaneously;

c) a high intensity, short-time dynamic pressure F%x, t) defined by the
relationships

Fé(x.t) = p(z) Fi(x),
p(t) = py. if 02“{ t <ty (7
p(e) = 0, if > 1.

Here x denotes the coordinate measured along the axis of the bars and
¢ is the time.

Counsidering the assumptions, loading conditions and the design criteria
described above the optimal design of a bar structure might be specified in the
following form.

With the cross-sectional aveas 4; as design variables and the volume

n
Vid) = Shidr @(=12....,n) (8)
=1
of the structure as objective function we determine the design that minimizes
V subjeet to the following constraints.
a) Under the action of the static load Fiy(x) the structure does not un-
dergo plastic deformations and at given points j = 1,2, ..., m the elastic
displacemenis w} do not exceed the allowable elastic displacements w5, i.e.

B<R; (i=1,2,....n), 9)
w; <<wgs (j=1,2,....m). (10)

Here @ denotes the maximum internal force caused by the load Fy(x)in
the i-th member of the elastic structure and Rf is defined by eq. (1).

b) The plastic deformations caused by the mulii-parameter loading do
not accumulate unrestrictedly, i.e. the structure shakes down.

c) At given points j = 1,2, ...m, in the structure the plastic displace-
ments w? caused by the dynamic pressure F%x, t) do not exceed the allowable
plastic displacements wf}, i.e.

wfgw{;}; G=1L2,...,m). (11)
Using eqs. (1) the constraint defined by eq. (9) can be written in the form
A; > Ay
where (12)

A=

ﬁ)llﬁ .

yoy,
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In case of beams or frames with fixed width b; and variable height h; eq.
(3) yields

2

[66 M

o

—éiio - (123.)

Here M7 denotes the maximum elastic bending moment caused by the load
Fy(x) in the i-th member of the structure.

Using the above relationships and introducing the independent “slack
variables” a;, e;, g; the inequalities (9)—(11) can be converted into equality
constraints which have the following forms

(di — Agg) — af = 0, ()
(wjf — ng N 8? = 0, (10a)
(w? — wf) + g5 = 0. (11a)

Next, we discuss the above design constraints in detail and present sep-
arately the variational and mathematical programming formulation of each
optimal design problem. Thereafter we will formulate a more general approach
when in the optimal design all the loading conditions and displacement con-
straints are simultaneously taken into consideration.

3. Siatic analysis of the elastic structure

Under the action of the static load F(x) the structure under considera-
tion is in elastic state and the corresponding internal force distribution is de-
noted by Q%(x, S)). Then the elastic displacement ¢ at the point j in the struc-
ture can be obtained from the following relationship

i};‘ ~ w)_ dzx. ()
=1y i

N
w; =

Here Q]D(”L) denotes any statically admissible internal force distribution equi-
librating a “dummy unit force” acting at the point j in the direction of wf.
Note that Q%(x, S;) is function of the design variable A, QD(;L) is. however,
independent of it. Introducmg the flexibility coefficient

S0 = [ @t 500 (14)
the elastic displacement constraint (10a) can be expressed in the form

Com | 33D e Lm0 (=1.2.....m). (15)
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3.1. Variational formulation

Using variational formulation the optimal design A; satisfying the geo-
metric and design constraints (9a) and (15) is identified with the stationarity
of the functional

n mofon Sy
Jo= >4l + ZM[ §‘£]—(—~l—‘ — w§; e -

= | - J
i=1 j=1 i S; i

(16)

Here 7; and »; denote Lagrangian multipliers. The variation of the func-
tional J, with respect to the variables 4, e; and a; yields the following equa-
'[TO'!Q

37” m ”r. ;az
g+ 3 ”’Iiff ~ f ——-—{ -
A, =1 (S 1S, 8.4; (17)
Ere
211 — Odi =0; (i=12 ..., n)
. 94;
e Ge=0: (=1.2,...,m) 18
gAt J
aej-
s,
T—E-z %i(l,’:O; (?: 1, 2,...:71). (19)
oa;

From egs. (18) and (19) follows that along the structure either e; or
and either »; or ¢; must vanish. Considering these “switching conditions’ the
structure can be subdivided into different regions.

In the region where e; = 0 and »; = 0 eqgs. (15) and (17) provide n + m
equations for the determination of 4; and 7, Where, on the other hand,
e; = 0 and @; = 0, eq. (9a) yields the solution 4; = A,

In the region where 4, = 0 according to eq. (17) ;= 0 therefore, in-
dependently of the value of e;, a; must vanish. Hence for this region eq. (9a)
provides again the solution 4, = A,

We can conclude that the above variational formulation uniquely defines
the optimal solution of our problem.

3.2. Mathematical programming formulation

In order to obtain a suitable form to the application of mathematical
programming let us introduce a new design variable
. 1 A=
Y= —=""—,
Si (PE

(20)
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Then the ohjective function (8) is expressed in the form

P(Y) = ShigEY) 1)

i=1

and the constraints (9a), (13) and (15) become

s "%
0<Y <= [Q | (22)
<;EE ¥oy
’ ,‘—— wg; < 0. (23)
1

In case of statically determinate structures the flexibility coefficients f;;
and the internal forces §F are independent of Y, therefore the constraints (22)
and (23) are linear functions of Y; and omlvy the objective function (21) is
nonlinear. This relatively simple mathematlcal programming problem can be
solved by Wolfe’s reduced gradient method [10].

In case of statically indeterminate structures f;; and @] are functions of
Y, therefore eqs. (22) and (23) are highly nonlinear. To solve the problem the
following iterative procedure can be applied.

First. we assume appropriate initial values (Y), (e.q. (Y}), = const.) for
the design variables, determine (f;;), and (¢}), and solve the problem as it was
described ahove.

Next, from the obtained design variables (Y;); we determine the coeffi-
cients (f;;), and internal forces (¢}), and solve the problem again.

This procedure has to be continued until the difference between two
consecutive steps is sufficiently small.

4. Shzkedown analysis of the elasto-plastic structure

The condition of shakedown of a linearly elastic — perfeetly plastic,

statically g times indeterminate structure is defined by the following relation-
ships [6, 7]

QF(Sy) + Of < RE,
7S + OF = —RE.

Here QT#%(S,) and QT%(S,) denote the maximum and minimum values
of the internal forces of the linearly elastic structure calculated from all the
possible combinations of the multi- parameter loading Fi(x), Fy(x), ..., Fy(x)
at the critical cross-sections k= 1,2,...,s and R? and QF are the plastic
strengths (e.q. plastic moments) and the self-equilibrating internal residual

forces of the critical cross-sections, respectively. The latter can be expressed

} (k=1.2,...,5). (24)
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in terms of the unknown statically indeterminate forces X, (I =1,2,...,49)
in linear forms

g
QI‘? = ZGZ:I;{I; (k = 1', 2., S), (2‘))
=1
where a,; are constant coefficients. Note that Q7®*, Q" and R? are functions
of the design variables 4, OF and X, are, however, independent of them.
Inserting eq. (25) into eqs. (24) and introducing the independent “‘slack
variables™ d, and f; the condition of shakedown can be defined as

g - 2
f = OF(S) ~ FauX,— RE - di=0.|
=t U k=1.2,...,5)  (26a—h)
. q
T = Qi:nm(si) - auX; -+ Rf — ff = O-i
[=1

In addition, to fulfil some constructional requirements, it might be necessary
to prescribe a minimum value A4, for the cross-scetional area. This geometrical
constraint is expressed as

(4 — Ay)) —a?=0; E=1,2,...,n) (27)

where g; is a slack variable.

4.1. Variational formulation

The variational formulation of the optimal design A; satisfying the con-
straints (26a—Db) and (27) is identified with the stationarity of the functional

n . q -
Jo= Std -~ S [@f““‘(sfw gak,.x,—Rﬁ+dﬁ]+

i=1 k=1

q n
+ Sn [Q;z““(s + X, - RE f%} L Sadi — 4o — o).
I=1

k=1 i=1

(28)

Here 1, v, and x; denote Lagrangian multipliers. The variation of the
functional .J; with respect to the variables 4;, X, d,, f; and q; leads to the fol-
lowing equations:

8J, _ 2} aX(S) 85, ORp
84 =. 1 aAi 8Ai (99)
s [00Fi(S,) 0S; aRg . )
] . + i — 0 = 1. 2, LR
+ 2 [ as, o4,  a4,| ¢ &
vk)akl == 0; (l — 1, 2, “ . q), (30)

aXz = 1
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%)
8—:;—5 = d, =0 (k=12 ...,53), (31)
0J; =rnfr=0 (=12, ...,53). (32)

Of

Considering the °

‘switching conditions™ (30)—(32) different regions can
be distinguished in the structure.

In the region where d, = 0, f, == 0 and »; = 0 according to eq. (32)
v, must vanish, Then, eqgs. (26a), (29) and (30) provide (s - n 4 q) equations
for the determination of r,, X, and A,

On the other hand. in the region where d, = 0, f,==0 and »; = 0 accord-
ing to eq. (31) u,. must vanish. Hence, eqgs. (26b), (29} and (30) provide again
(s - n - g) equations for the determination of »,, X, and 4,

In the region where d, = 0, f, = 0 and »; = 0 both u, and », can be
different from zero. Now eqgs. (26a—Db), (29) and (30) provide (2s ~n -+ q)
equations from which y,, v,. X, and 4, can be calculated.

It can be easily seen that in all the remaining parts of the structure the
above switching conditions vield a constrained solution i.e. in these regions
A; = A, Hence, we can conclude that the above variational formulation
uniquely defines the optimum solution of the problem.

4.2. Mathematical programming formulation

Introducing a new design variable
RP = o0, 47 (33)

and inserting this relationship into the objective function (8) the mathematical
programming formulation of the problem under consideration can be defined
as below.

Minimize
n 1 o\ 1/
vre) — >, [ L) (34)
i=1 \ QG\
subject to
q
0F(S) + 3 ayX, < RY|
IT (E=1,2,....5) (352)
Qin(Sy) + S auX; > RP
=1
RP > R = oo, 3. (35b)

Here the last equation corresponds to the geometrical constraint defined by
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eq. (27). This is a nonlinear mathematical programming problem which can
be solved by iteration.

Assuming appropriate initial values (R?), (e.g. (RP), = const.) we deter-
mine (S;), and the corresponding internal forces (Q7'®%), and (Q'®),. Then we
get a mathematical programming problem in which only the objective function
is nonlinear. Solving this problem by the use of the reduced gradient method
we determine (X)), and (R?),. From these (S;); the corrected values (Q7**), and
(Q™), can be calculated and the above procedure can be continued until the
difference beitween two consecutive steps is sufficiently small.

5. Dynamie analysis of the rigid-perfectly plastic structure
The maximum permanent displacements of a rigid — perfectly plastic
structure subjected to a high intensity short-time dynamic pressure given by
eq. (7) can be determined among others by the kinematic approximation [3, 5].
The basic idea of this approximation is that during the dynamic response the
structure has stationary motion which is described by a function expressed in
product form

wP(x, t) = W(t)w"(x). (36)

Here 1"(x) denotes anv arbitrary kinematically admissible displacement tield
(yield mechanism) and W{(z) is an unknown displacement parameter function.
W (t) is determined by the differential equation of motion of the structure and
reaches its maximum value W7 when the structure comes to standstill. Omit-
ting the details for W7 the following expression can be obtained [5, 6]

wr — L K |2 —1]. (37)
P k }
= P ;
Here
[ Fi(x)w"(x)dx
K=—= ) (38)
o 34, j [ (x) ]2 dx
i=1 I;

o is the density per unit volume of the material and p* denotes the kinemati-
cally admissible multiplier associated with the load Fj§(x) and displacement
field w"(x) and is defined by the expression (6)

> ket

R =1 (39)
= C R ) 10 () dx
[ Fé(a) () d
L
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Here ¥ denotes the sum of the absolute values of the generalized strains
(e.g. rotations) occuring in the perfectly plastic cross-sections (e.g. in the plastic
hinges) of the bar 7.

Making use of eq. (37) the approximate values of the maximum plastic
displacements at the points j = 1,2, ..., m in the structure can be expressed

in the form

WS = prj‘-' = %Kpof% (flﬁ - 1J w;‘f. (40)

4

Note that the accuracy of the approximation might be improved by
introducing several kinematically admissible displacement fields [5, 6]. Then,
the maximum values of the permanent displacement obtained by the use of
these displacement fields ave competent in the design.

Inserting egs. (38) and (39) into eq. (40) and introducing the notations

G = | Fi(x)wh(x)dx. D; = | [wh(x)]2dx (41)
L I;

for the design constraint (11a) we get the expression

PG ick

= . HPOG ﬂl)—zugj+g}=O; G=12,...,m)
20 S D;A; RPgF
>RGP 42
and the geometrical constraint (27) has the form
(A4;—A) —ai=0; (i=12,...,n). (43)

5.1. Vartational formulation

The variational formulation of optimal design 4, satisfying the design
and geometric constraints (42) and (43) is identified with the stationarity of
the functional

,

n m 2031 4
JPZZIiAi+ZWJ PotoGI'u/jI (

>Ry

i=1

n
=1 j=1
! J 29 ZD,A,

i=1

“G—j—%+£+

(44)
LS (d — Ay — ).

i=1

Here y; and #; denote Lagrangian multipliers. The variation of the func-
tional J, with respect to the variables 4, g; and ¢; yields the following equa-
tions:
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oJ #2G 9 1 G \] & .
a;:l"%”PO‘)Z 84;| & ( 3 —1) >l
! oE o D; A; RPgk = (45)
i;; i‘% /
+o=0; @=12,...,n),
0
T =pg=0 (=12....,m), (46)
Og;
87, =xa=0 (E=12,...,n). 47)
8a,~

Similarly to the former problems we can see that for the region where
g; = 0 and x; = 0 an unconstrained solution can be obtained for the deter-
mination of 4; and y;. In the other parts of the structure we get a constrained
solution, i.e. 4, = 4, Hence, the above variational formulation uniquely
defines the optimal solution of the problem under consideration.

5.2. Mathematical programming formulation

The mathematical programming formulation of the problem under con-
sideration is as follows.

Minimize
V() = 4 (48)
subject to -
Potﬁf’wf ( fOG _ 1') — Wl <0 (j=1.2,...,m) (49)
20 DA, | 3 RPg
=1 e

Ay —A;<0; (i=1,2,...,n). (50)

This nonlinear mathematical programming problem can be solved by
iteration. Assuming proper initial values (4;), (e.q. (4;)o=const.) we calcu-
late (R?),. Then we get a linear mathematical programming problem from
which (4;); and (RF), can be obtained. Then we have to repeat the above
procedure until the requested accuracy is reached.

6. A unified approach to optimal design

In the above investigations we took the three loading conditions and
displacement constraints separately into consideration and obtained three in-
dependent optimal solutions for the structure. To find a single solution which
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satisfies all the design criteria and leads to the minimum volume of the struc-
ture we have to unify the above solutions including all the design constraints
in the variational formulation. This problem can be defined as follows.

The optimal design A, that takes the three loading cases into considera-
tion and satisfies the three displacement constraints described above and the
geometirical constraint (9-a) and (13) is identified with the stationarity of the
functional

n
Jr,r = Zl,‘fi_{ - ‘ZZ}Cj [ll, Ckl ; Vi C] )] -
=1

i=1 j=1 =

" Z’f" j 2;1 ui(Ap — Aig — af). (51)

J=1
Here 7, y1;. v, and ), are Lagrangian multlphelc and C5, i, i, and C;-j denote
the functlon: given by eqgs. (15). (26a—Db) and (42).
The variation of the functional J, with respect to the variables A, e
dy, fi» g; and a; leads to the equation
8J, mo, 9CE s a8Cs 0G5,
Ujb 2 y EE Z %:;“k k1 - " ] L
o4; 04; = 0A; 0A4; (52)
21 i % |1 8_4,»0‘)_0_ (i=1.2 n)
- hE - #; — = U: = . <. ...
j=1 04, |
and to the switching conditions
}J(’J = 05 ‘Ll;{d‘:{ = 07 2)1\.f1_: ES O_:
s 53
Z(/lv +v)ay =0, pg; =0, z[aizo.J (53)
F=1

Following our former considerations it can be stated that the above
variational formulation uniquely defines the optimal solution of the generalized
problem.

Solving the generalized problem by the use of mathematical programming
the same iterative procedure can be applied which was described above.

I

7. Dual formulation and multieriterion optimization

Consider the case where the displacements under counsideration are con-
fined merely to a specific point B in the structure. Then the functions w%(4;)
and w%(4;) of the elastic and permanent displacements at the point B can be
regarded as objective functions and the optimization problem might be formu-
lated in various ways.
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a) minimum volume : V(A;) = min!
fixed elastic displacement: wq(4;) = wig
fixed permanent displacement: wi(A;) = wly
shakedown of structure.

b) minimum elastic displacement : wh(A,) = min !
fixed volume: V(Ad) =T,
fixed permanent displacement: wh(4;) = wly

shakedown of structure.

¢) minimum permanent displacemeni: w%(A4;) = min!
fixed volume: Vid) =V,
fixed elastic displacement: wh(A;) = wig
shakedown of structure.

Furthermore, if we consider more functions involved in the optimization
procedure as the criterion of optimal design we get the problem of multicriterion
optimization. Then, the simplest approach is if the objective functionis construct-
ed as a set of the weighted individual criteria, as follows:

F(dy) = p,V(Ai) + powi(4i) + pywh(4y).

Here 1y, > 0, 9, > 0 and v, > 0 are the weighting factors representing
the relative importance of individual criteria. By their proper choice (includ-
ing y; = 0) the optimization problem under consideration can be formulated
in various ways. The more general formulation of multicriterion optimization

is described elsewhere [1, 8, 10].

8. Numerical example

Consider a frame composed of 3 prismatic bars which have rectangular
cross-sections with fixed breadth b = 10 ecm and unknown height & (Fig. 1).
The areas A4,, 4, and A, of the cross-sections are the design variables. The
frame is composed of linearly elastic-perfectly plastic material with Young’s
Modulus E == 2x10* kNjem? vield stress o, = 20 kN/cm® and density
o = 8000 kg/m?® and subjected to two concentrated forces F, = 20 kN and
F, = 60 kN. Following our former investigations three different loading
cases will be taken into consideration.

a) Static analysis (ST). Under the action of the static forces F; = 20 kN
and F, = 60 kN the structure must be in elastic stage and the horizontal and
vertical elastic displacements at the points 1 and 4 should not exceed the al-
Iowable elastic displacements w§, = 7 em and wj, = 12 em, respectively.

b) Shakedown analysis (SH). Under the action of the static variahle fore-
es 0 << F, <20 kN and 0 < F, < 60 kN which can act separately or in
combination, the structure has to shake down.
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Fig. 1

¢) Dynamic analysis (DY). Under the action of the dynamic forces
F4 = py % 20 kN and F? = p, x 60 kN the horizontal and vertical plastic
displacements at the points 1 and 4 should not exceed the allowable plastic
displacements w§, = 14 cm and wf, =24 cm, respectively. In accordance with
eq. (7) the intensity and the duration of the dynamic pressure is p, = 1.3 and
to = 0.5 s, respectively. The possible yield mechanisms of the structure are
shown in Fig. 2. These 4 mechanisms, however, depending on whether at the

r; . LE
- ~4
. /\47 g 5

a b. C., d,

) 3

R

ah

Fig. 2

corners the plastic hinges develop in the columns or in the beam, lead to 12
different solutions for the plastic displacements. To improve the accuracy of
the approximate solution in the dynamic analysis all these displacements were
taken into consideration and their maximum value was competent in the
solution.

The aim of our investigation is to determine the design variables 4,, 4,
and A, that minimize the volume

V=64, + 104, - 64,

of the frame subject to the constraints described above.
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First we solved the problem by taking the three loading conditions
independently into consideration. The results of these calculations are shown
in the first three rows of the T'able 1.

Table 1
A, A, Ay v
Case Analysis [cm?] [em?} [em?] [m?]
1 ST 164.6 288.4 384.9 0.6181
2 SH 100.5 168.3 148.6 0.3177
3 DY 82.1 176.3 176.8 0.3321
4 ST + SH 164.6 288.4 364.9 0.6181
5 SH + DY 101.0 75.8 168.9 0.3377
6 ST + DY 164.6 288.4 384.9 0.6181
7 ST+SH-+-DY 164.6 288.4 384.9 0.6181

Then we determined the optimal solutions taking simultaneously the
combinations of two loading cases and all the three loading cases, respectively
into account. The last four rows of Table 1 contain the results of these investi-
gations.

It is interesting to note that in the determination of the maximum plastic
displacements caused by the dynamic load in case 3 the yield mechanism was
competent that had plastic hinges at the points 2, 4 and 5, while, in case 5 in
the competent yield mechanism the plastic hmges were located at the points
4 and 5. In cases 6 and 7 the constraint prescribed for the plastic displacements
was inactive.
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