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\Ve will describe in the paper how the approximate dynamical stiffness matrix can be 
produced in a significantly simpler way than known from literature in case of displacement 
functions written as the power series of frequency w. The displacement functions dependent 
on w have to be used only at the production of mass matrix and there only in one of the factors 
of the matrix series. At big tasks the method of suhspace iteration can be suitably used for 
the calculation of circular frequency in number necessary in practice. We will shO"\~ how this 
method can be used for mass matrices dependent on co making the definition of the sought 
circular frequencies within one iteration method possible. 

1. Producing approximate dynamical stiffness matrix 

In course of the dynamical use of the method of finite element the ele­
mental dynamical stiffness matrix should be wTitten with dynamical displace­
ment functions containing the effect of distributing inertia force on the 
oscillating element. In case of beams there is possibility to ealculate beam 
end force helonging to dynamical displacement of unit heam end. To do it the 
differential equation of the vihrating beam is to he solved under given hound­
ary conditions and the dynamical stiffness matrix is obtained in the following 
form [1] 

Here 

K(w) = J B*(w)DB(w)dV 
W) 

M(w) = Q J N*(w)N(w)dV 
(V) 

(1) 

(2) 

(3) 

The elements of matrix N( w) are displacement functions gIVIng the relation 
hetween nodal point displacements and the displacements of inside points, if 
they are kno"wll matrix B( w) describing the relation bet"ween nodal point 
displacements and deformation in inside points can be calculated. 

e in (3) is the density of the material of the element, while matrix D is 
giving the relation between strain and stress. 

2* 
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The dynamical stiffness matrix can be disintegrated in the following 
form [2]: 

Here Kst is the stiffness matrix used at statical tests, while 

M(w) = e S N*(w)NstdV 
(V) 

(4) 

(5) 

The elements of matrix NSI are the so-called statical displacement functions. 
If not beam elements are tested exact production of displacement func­

tions is not possible. If approximation N*(w) ~ Nst is used at relations (3) and 
(5) the approximate form of the dynamical stiffness matrix is 

(6) 

·where 1\1 is the so-called consistent mass matrix. While calculating with the 
consistent mass matrix the circular frequency of the structure is obtained 
approximately. The above approximation can he improved by concentrating 
division for elements. Przemieniecki [1] suggested that dynamical displace­
ment functions should be approximated by a pO'wer series where the displace­
ment functions appearing as the multipliers of the power of ware produced 
starting from statical displacement functions that is 

(7) 

(We can prove that the elements of matrices N of odd indices are equal ,.,.ith 
zero.) 

The using expressions (2) and (3) 

K( ) - S(B* I OR ' 4B* I )D(B i 2B I AB' )d T7 
OJ r8 si T (J)-.o:...v2 1 W 4 T • • • sf I 0) 2 T 0)- 4 -:- . .. . v 

(V) (8) 

M(w) ~"" Q \ (Ntt + co2 Ni + co4 N4 + .. . )(Nst 
(V) 

Gupta [3] used relations (8) and (9) at the dynamical calculations of discs. 
It is clear that the approximate dynamical stiffness matrix is obtained 

in a simple form if the dynamical stiffness matrix is disintegrated in accor­
dance , ... ith (4). Matrix Ksl is known from statical test while 

M~ ( ) - r (N* I 2 N* I 4 NI) N d V w - e \ 1 st T W 2 T co - .1 T . •. si 

(V) 
(10) 

Thus 

(11) 

Here Mo is the consistent mass matrix. 



CALCULATIOS OF CIRCULAR FREQUESCY BY SUBSPACE-ITERATIOS 125 

Some components of the mass matrix belonging to the bar performing 
axial oscillation are given as illustration 

M ~ ':lll-: ~] + 15 r ~ ~ -JI + 

l -=--1 ,~1 
2 L8 

31 -

32 

1 

lp6 I -- 1 
14.25 

11_ 127 
128 

127]1 128 

1 

(12) 

Here A is the cross-section area, 1 is the length of the beam, lp2 = li 0)2 and 

E is the Young's modulus. 

2. Calculation of circular frequency 

If there are only two members in expression (11) circular frequencies 
0) and free vectors v can be obtained from the solution of the homogeneous 

equation (K = Kst) 

0, (13) 

Relation (13) can be reduced to a double size eigenvallle problem 

(14) 

Gupta gives an expedient solution of this eigenvalue problem taking the struc­
ture of matrices in (14) into consideration in [4]. 

If more than two members from relation (11) are taken into considera­
tion the homogeneous equation 

o (15) 

is to be solved. 
To calculate the eigenvalues and eigenvectors in [5] the method for 

definition of the n smallest absolute value generalized eigenvalues and that of 
the eigenvectors belonging to them of matrix of mth degree and nth order was 
used. This method gives the eigenvalues and eigenvectors belonging to equation 

II 'm I A 'm-I, A ~ I A I - 0 
). T I)' T'" lc!.m-1/· T m,V- (16) 
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by the calculation of the eigenvalues and eigenvectors of matrix Y where 
matrix Y can be obtained from the solution of the non-linear matrix equation 

ym Am o. (17) 

The disadvantage of the method is that it cannot take the band structure of 
the stiffness and mass matrix into consideration thus cannot be used for the 
solution of big tasks. 

The method of subspace-iteration for the solution of generalized eigen­

vector tasks can be used for the definition of certain number of oscillating 
forms and oscillating numhers of big systems in a suitahle way [7]. 

Sotiropoulos [6] suggests the method of suhspace-iteration in case of 
ma8S matrix dependent on w in a way that in 

"'5'" 
",- J.UI 11.11 't' (13) 

task in each iteration step the elements helonging to the given iteration step 
l\I( co) are calculated by a previously given approximate value of any frequency 
WT' The method is convergent hut only the circular frequency from among the 

ones helonging to subspace can be accepted as the solution of task (15) that 
gradually modified matrix l\1( ())). If our task at the structure is to define a cer­
tain numher of frequency the suhspace-iteration is used as many times as many 
eigenvalues are to be calculated. The question 'whether the necessary circular 
frequency and oscillating form belonging to it can he calculated by using suh­
space-iteration only once is rightful. In the following a method is shown to do it. 

Task at (15) can he again reduced to a generalized eigenvalue task hy 
introducing a new unknown: 

Ay = i,By. 

(19) 

(20) 

The subspace-iteration method shown in [7] can be used to define eigenvectors 
y and eigenvalues helonging to them. Matrices of size m X m for the definition 
of the smallest eigenvalue m can he calculated 'with expressions 

Kk+l = XI+l Yk(Xf+lAXk+1) 

Mk+l = XI+l Yk+l(XI+lBXk+l) 

where the length of the vector bunch of the right now is (; + 1) n. 

(21) 

(22) 
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The matrix of Y" can be calculated from expression 

ll'Io ll'lz M.l . . . 

:Mz 
(23) 

"where 
X" contains the kth approximation of vectors v 
w~ is the diagonal matrix containing eigenvalues given in kth approxima-

tion. 
Matrix Y" can be calculated as a block while at symmetrical band matrices 
Mo, 1\[2 ••• 1\ls it is enough to store the elements in the upper band. 

Matrix X" +1 can be obtained by solving the equation system 

(24) 

We can see that 

-X(S) - X s-2 
"+1 - "WI-: 

and only matrix X~2~ 1 is to be calculated by the solution of the equation 

system KX~~l = Y~) of original size. 

Matrix Y" + 1 can be obtained after performing the follo'wing matrix 

Y'H ~,~ 1\lz 1\14 Ms XW) 

-,Y'" 
... 1-:+1 - _1-:+1 

X" 
y(z) 

1-:+1 

1\1-1 XkW~ Y(4) 
1-:+1 

Ms Xk wi- 2 _ l Y'" 1-:+1 
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Matrix Yk + 1 can be calculated again as blocks by multiplication 'with the 
vector bunch containing column m of band matrices of original size. 

The follo'v,ing expressions can be obtained for the stiffness and mass 
matrix with ordinal number in accordance with the number of eigenvectors 
belonging to subspace: 

While matrix Kk-"l is symmetrical (as A in 5.33 is symmetrical) matrix l\'Ik+l 

is not. Thus eigenvalues and eigenvectors can be both real and complex. If 
s = 2 that is the mass matrix consists of only t'NO members matrix will 
be symmetrical too that is all the eigenvalues and eigenvectors ,\ill be real. 

3. Numerical experiences 

The method introduced takes the band structure of stiffness and mass 
matrices into account. The coefficient matrix of the equation system neces­
sary in course of suhspace-iteration does not change, producing the right side 
of the equation system requires surplus time. The ordinal number of the eigen­
value prohlem belonging to the subspace does not increase either hut produc­
ing the stiffness and mass matrix belonging to the suhspace requires surplus 
time. If only components 1\10 and 1\-]2 are taken into account at the mass matrix 
the matrices of suhspace-iteration will be symmetrical and convergence is 
ensured even if eigenvalues appear. At subspace-iteration the number of ite­
ration steps does not increase if matrix 1.\12 is taken into account. If further 
members are taken into account from mass matrix B in (20) will not he sym­
metrical. In this case transformation QR was used to solve the eigenvalue task 
belonging to suhspace. The appearance of complex eigenvalues and eigenvec­
tors cannot he excluded either. Convergence cannot be ensured for these vec­
tors in course of suhspace-iteration. Thus they have to be excluded form the 
following iteration steps. Our experiences show' that the appearance of complex 
eigenvectors can he expected if the numher of sought circular frequencies 
reach half of the original ordinal number. (It does not appear in course of 
calculation 'with real structures.) We have to note that in case of the appear­
ance of complex eigenvectors thenumher of iteration steps to he llsedin subspace Q 

iteration can significantly increase. The figure shows a two support beam the 
oscillation number belonging to it "was calculated hy neglecting the effect of 
displacement inertia and shear strain. (For this purpose the exact value of 
circular frequency is known.) The beam was divided into ten parts and the 
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El = 10000 kNm2 

Fig. 1 

first ten vibration numbers of the system of twenty degrees of freedom were 
calculated in case of 

(28) 

gradually increasing the number of components taken into account. The table 
contains the exact circular frequencies (wr) and values 

106 • er = (29) 

where wr is the frequency given by the iteration method. As it is known w. 
approximates the value of Wr from above. 10-6 accuracy is prescribed for the 
values of eigenvalues following each other in the iteration method thus the 
approximation of the exact value can he expected "with this error. The values 
in the tahle give the multiplication factor of 10-6 error limit. Where circular 
frequencies approximates the exact value better than 10-6 the error was taken 
as zero. The results show the improvement of the approximation of circular 
frequencies well. If matrix l'ti( w) consists of four members more than one third 

Tahle I 

Exact circular frequencies and errors in case of different number of mass matrix components 

"" 10' x £,(}io) 10"x£,(:.rr,) 10' x £,(?,I,) 10' x .,pI,) 

1 9.86960 7 0 0 0 

2 39.4784· 106 0 0 0 

3 88.8264 535 1 0 0 
4, 157.914 1653 6 0 0 

5 246.740 3947 45 0 0 

6 355.306 7937 189 3 0 

7 483.611 14177 610 27 0 

8 631.655 23036 1640 128 9 

9 799.444 33820 3788 466 53 

10 986.960 109923 16211 2951 310 
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of circular frequencies can be obtained with accuracy prescribed for the so­
lution of eigenvalue task. Accuracy significantly increases even in case of two 
components. We have to note that if matrices 1\'1.j and l\f6 are taken into account 
complex eigenvalues also appeared in course of iteration. 

If the beam was divided into twenty parts and our aim was to define 10 
circular frequency (the number of vectors in subspace-iteration 'was 18) only 
real eigenvalues were found in course of the iteration method and the neces­
sary eigenvalues were obtained after 4 subspace iteration steps \vith 10-6 

relative error. 
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