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The ideal elastic-plastic and locking-contact behaviour of structures can be handled in
a unified manner on the basis of the total duality between the two unilateral phenomena.

The relating variational inequality problems lead to mathematical programming
problems.

The mathematical programming problems relating to the finite element realization of
the state change analvsis of structures with general unilateral plastic-locking connections is
presented here.

Iniroduction

The numerical analysis of siructures with unilateral connections repre-
senting the locking-contacting or plastic behaviour leads to mathematical
programming problems. The elements of a body or structure whose stresses or
strains or their combinations are governed by prescribed inequality conditions
are termed conditional, subdifferential or unilateral joinis. As typical unilate-
ral connections, during a loading process, contacts develop (locking of gaps)
or points plastificate, causing the physical nonlinearity of the structure. The
ideal elastic-plastic and locking-contact behaviour of struectures can be
handled in a unified manner on the hasis of the relating polygon-type mate-
rial laws and the concerning nondifferentiable but subdifferentiable energy
functionals and the relating variational principles modified by the sign-de-
pendent variables of the inequality subsidiary conditions. This variational
inequality problems lead to mathematical programming problems in the case
of a numerical approach like a finite element analysis presented here.

Analysing the behaviour of the conditional joints [1, 2, 3, 4], it has be-
come obvious that similarly to the plastic property, also the locking-contact
behaviour can be treated as a material characteristic [5, 6]. Consequently, the
simultaneous elastic-plastic and locking-contact behaviour can mathemati-
cally be handled together [7]. On the basis of the numerical approaches of
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elasto-plastic analyses [8, 9, 10, 11, 12] and unilateral contact problems
[13, 14, 15, 16], by mathematical programming applications, a unified method
has been developed to the case of the simultaneous presence of the dual phenom-
ena mentioned above.

1. State variables and inequality conditions of the {inite
element model

Let ¢ and e be the vectors of the siress and strain functions relating to a
single finite element of volume V:
6T = [04x Ogy 0w Oy Gyz Gazlo

ef = [exx Exy Exz Eyy &y el

[

in which the functions are e.g.:
Oy == G:.:j.'(s‘, 7. C) and Exy == E::y(f? s :)

where x, ¥, z sign the global and £, #, { note the local coordinate system.
Vector u contains the unknown displacement functions in the element volume
V and v shows the given displacement functions on its surface S

ul = [u, w, w), Vo= [ee v, v
We denote further the functions of the volume forees by g:

g’ =[g: & &l

while vector p represents the given forces on the surface Sp and vector r con-
tains the unknown reaction forces on the surface S :

PT = [px Py Pz]: rT = [T« Ty ]

All the mentioned vectors relate to the global system, e.g.:

Uy = Zl,\',(xf ¥ :): Uy = vx(x: i :)- g = & (1\-: ¥ 5):

7 o

Px = pxl%. ¥, 2), 1= rdx s 5).

In the case of a state change analysis, the quasi-static velocities of these
state variables will be used, marked by a dot like 1, 6, ete.

The inequality conditions of the ideal unilateral connections of a single
element are

F=DNoc—ua<0, (1)
relating to plastificating points and

f=Me—-B<O (2)
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in the case of locking points, where vectors « and f§ contain stress and sirain
type scalars, resp.

Further we introduce the plastic and locking potential velocities in the
form of

F=N¢ and f= Mé, (3)

which are positive by a loading process, zero by a plastic or a locking state
and negative when unloading takes place.

Hypermatrices M and N contain all the gradients of the planes belong-
ing to the plastic and locking polyhedrons illustrating the conditions

F=0 and £{=0

relating to the node points of the clement. For example the k-th element of
hypermatrix N is

N O — ™ nk k L
SNp= | O Opp . .. Diyg
n§ af, ... nf
k k k (4)
Oy D ... Tgg
koK
_nf nf .. nf

where k represents the serial number of the nodal point and n’i"j is the j-th com-
ponent of the unit normal vector nf relating to the i-th plane of the six-dimen-
sional convex polyhedron of r pieces of plane. Since the number of the nodal
points of the element is p, the gradient hypermatrix N reads: '

NT =[N, N, ... Ny ... N, (5)

The modified variational principles relating to the inequality subsidiary
conditions (1), (2), (3) and the concerning sign-dependent state variables due
to the simultaneous elastie-plastic-locking-contact behaviour has been pub-
lished elsewhere [17, 18, 19, 20]. On the basis of the modified variational prin-
ciples the relating mathematical programming formulaations have also been
worked out.

2. Finite element approximations with respect to the strains or
stresses

During the incremental process of a state change analysis, the rate of the
state variable functions o, €, u, r and c,, e have to be determined, where c,
contains the funections of the locking stresses and ep gives the plastic strains.
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Let us first approximate the displacement rate function, for example .
by the linear combination of k

= 3 S, (6)

i=1 j=1

related to an element of n nodal points if each of the elements has a kinematical

degree of freedom m. Here <pJ are the hasis funetions of the interpolation and

p. are the scalar values and the derivatives of the displacement function
. at the nodal points. The expression reads in a matrix form

a = ("¢, (7)
where C" contains the basis functions. So the compatibility condition reads
¢ - NTA — DU =0, (8)
from which
¢ = DC¥é — NTA = Bé — NTA. (%)
where D is a differential operator as follows
BT = o 9 o 7
= 06 0 0 —
Ox oy Oz
] 5 8
6 — 0 — — 0
ov dx Oz
6] ]
60 0 — 0 o
L 0z dy oz |

and B = DC" is the so-called geometry matrix.
Approximating the plastic strain rates €, in the same way, we have

¢, = NTA. (10)
Let us remember to the definitions (4) and (5) of N, we obtain equivalently
) p I om .,
€P = Z Z’Anifj, m < 6, (11)
f=17=1f=1

consequently, we canregard the unit vectors n’;] as the basis functions of the
plastic strain rates and the values A as the relating nodal point scalars.

For the formulation of the approximation of the stress functions 6, we
introduce an elastic and a locking part of the stresses by the previously detailed
way (7) and (10)

6=0CTs and 6, = M*A (12)

where C° and M contain the basis functions and s and A represent the nodal
point scalar values of the stress functions. So the equilibrium equation reads:

TTDT(C TS + M*A) + g = 0. (12a)
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3. Mathematical programming formulation of plastic ;
connections ou the basis of strain approximation

Approximating! the compatible strains by (9), the quasistatic velocity of
the potential energy completed by the sign-dependent variable A >> 0 reads:

L

e, B) = 1€ A7) [ 2] Hm (13)

relating to a single finite element. Here K is the modified stiffness matrix:

pT H _ BT NT 4 <
= BB RNy o [ B K (14)
—~NHB NHNT | K, K, :
in which H iz the matrix of the Hocke’s law:
¢ = He (15)

relating to the elastic behaviour. Note that the matrix

K, = (BTHBAV (16)
v
is the classical stiffness matrix of the displacement method, which has been

extended to (14) due to the plastic conditions. Furthermore, q contains the
load conditions:

G=[a]=[ [O7Tear - [BTHEV -+ [CTTpaS + i,
. A Y > (17)
G — [NHé¢ 4V
- v

in which ¢, is the initial strain increasing by the same load parameter similarly
to the concentrated force load g, acting directly to the nodal points. T matrix
transforms the global coordinate system to the local one.

For formulating the mathematical programming problems, the variation-
al problem of the potentlal energy (13) has to be reduced to the sign-depen-
dent state variable A only. From the first variation of functioral (13) we ob-
tain the equilibrium condition of the element:

K, EKp]-[el—[ag >0
FEIREH a

Since d¢ is arbitrary, from the first inequality of (18) we obtain an equation
from which we have

[[06T OAT]-

¢ = —Ki'Kp,A + K7 ¢ (19)
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in term of A. Substituting (19) to functional (13), we obtain the expression of

the potential energy with respect to the sign-dependent state variable A only:

() :%AT - JN(H — HBK'BTH)NTJV - A—
- v (20&)
— AT. [(g_ + (NHBEK;'dV - ql],
\'4

or in a simplified form
p(fh) = %—ATAA — ATa, (20)
where

A=K, — K,K3j' K],

.. B (21)
a=q — KLK3q,.

The minimum conditions of the functional (20) lead to the variational
inequalities

S() = SAT - (AL — &) > 0 and 84,(A) = SATASA >0, (22)

since matrix A is positive semidefinite. The first variation in (22) is equivalent
to the flow law directly. Namely, taking into account expressions (3), (15),
(9) and (19), (21), the plastic potential velocity is as follows:

F— N6 =NHé = NHBé — NTA) =
= NHB(—Kz'K,A - Kl ) — NHNTA = 23)
= — (K, — KLEF KA — KLKF' G = —(AL — a).

Thus, changing the sign of the variational inequality (22), the stationarity
principle of the potential energy in term of the sign-dependent plastic strain

rates relates to the plastic potential velocities F directly:
SATF < 0. (24)

Since A >0 is a sign- dependent variable, the variation SA of it has to be
also sign-dependent. \amely if A = 0 then 6A > 0 because of the validity of
A + 6A > 0. But if A > 0 then oA may be arbitrary. The variational in-
equahty (94) says that 8A and F have opposite sign unless they are zero. For

example, if F = 0, then A is arbitrary, indicating the alw ays changing border
selecting the plastm and elastic domains V and V — = respectn ely. And if

F <0, then oA >> 0, according to the plastlc unloadma when A = 0. But in
elastic state, if F > 0, then A can hardly be nonpositive because here A=o.
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So the variational inequality (24) relates only to the plastic domain V),
expressing that
F<9and A>0 on ¥, (25)
Besides, the variational inequality (24) includes the complementary or ortho-
gonality condition, as well:
AT - F = 0. (26)
Now we give the primal-dual formulations of the quadratic programming problem
of the above detailed extremum problem:

Ql: min {%—AT.%A“ATMA > 0},

1)
Q2: max {— —1—[§T.~"Lf‘i% —AMh+a<0 A @}
2
with the relating linear complementary problem
LC: {AA—a - F=0/A>0 F<0 ATF =0). (28)

The primal problem Q1 is the most general principle, because it relates
to the entire domain V, problems Q2 and LC are limited to the plastic domain
vV,
" Problem )1 says that the velocity of the potential energy is minimized

by the actual plastic strain rates ép, since
—1—-[.‘3_%_!'1 — ATa = 1 J ATE (H — HBE;'BTH)NTAJV —

4 e

5
~ JATNH&AV - [ATNHBAT Kt =
v ans
(29)
= jég(H — HBK;'BTH)¢,dV —

— g é1(Hé, — HBEKG q)dV = 7,(é,) = min!
‘_/
Problem (J2 represents a complementary energy principle as follows:
1. ) ) .
_ S ATAA = —% j_/\_TN(H — HBK;!BTH)NTAJV —

&

T [ or e ~ e
= ——-JATB«H(H 1~ BK'BT)HNTAdV = (30)

—

- Jc (H-1 — BK;'BT)6,dV = 7,(6,) = max!

o



138 M. KURUTZ-KOVACS

which says that the actual stress rates 6 » due to the plastic strains, calculated
on the basis of the elastic behaviour of the structure, make the velocity of the
complementary energy maximal.

Problem LC expresses that the actual non-negative plastic strain rates
are always orthogonal to the non-positive plastic potential velocities.

4. Mathematical programming formulation of locking connections
on the basis of siress approximation

Approximating the stresses in equilibrium by (12), the quasi-statie veloe-
ity of the complementary energy completed by the sign-dependent variable
A > 6 reads:

PP 1 4 . § R £
a8, 3) = — —[§T AT] (L] | 5|4 T AT]- |0 (31)
2 A i,
relating to a single finite element. Here L is the modified flexibility matrix:
L= ([CH1CT CH-'M"]dV=[L, Ly,
VIMH-1C MH1MT Ly Ly |

in which € = (° contains the basis functions of the siresses. Note that the
matrix

(32)

L,= [CH-1CTdV (33)
1%

is the classical flexibility matrix of the force method, which has been extended
to (32) due to the contact or locking conditions. Furthermore, we introduce
the load vector

t=[{]|=[ — [€C&dV + [CnTvdS + T,
. e T A (34)
t.zl — (MédV + [MnTvdS
v S

which contains only kinematical-type loads, where t; acts divectly to the nodal
points, concentratedly.

For the mathematical programming formulation we have to eliminate
the non sign-dependent variables from the functional (31). From the first
variation of (31), we obtain the compatibility condition of the element:

[65T 6AT] - tl} J <0 (35)

— [ Ly le][é + [
Ly Ly 7\ i

Since 0s is arbitrary, from the first inequality of (35) we obtain an equation
from which we have

$ = —L'Lyd + Lt (36)
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in term of A. Substituting (36) to functional (31), we obtain the complementary
energy vith respect to the sign-dependent state variable A only:

a() = — SAT. (ME- - BOCTLP CH-YMTV - A 4
2

- v (378.)
+ AT . [i2 — (CHMTL;dV - il] ,
N

or in a simplified form
i) = — émx LATH, (37)

where
B =1L, — LJ.Tszll Ly,

. , (38)
b=1t, — L,Li'%.

The maximum conditions of the functional (37) lead to the variational
inequalities

S A) = SAT(—BX - b) < 0 and &#(A) = —ATBOA <0,  (39)

since matrix B is positive semidefinite. The first variation in (39) is equivalent
to the locking law directly. Namely, considering the expressions (3), (15),
(12a) and (36), (38) the locking potential velocity reads:

f=Mé=MH6=_—MH-YCT$ + MTA) = ME-1CT(L3 LA — LlE,) —
— MH-IM™X = —(L,, — LLLF LA — LLLG, = —BA L b, (40)

So the stationarity principle of the complementary energy in term of the sign-
dependent locking stress rates relates to the locking potential velocities f di-
rectly:

SATE < 0. (41)

We know that the sign-dependent A > 0 has sign-dependent variation 5
which has to be positive, if A= 0, because yNERE)\ > 0. Since the variational
inequality (41) says that A and f have opposite sign unless they are zero, it
relates only to the locking domain V, V. Namely iff>0on V— ¥, then
SA can hardly be nonpositive because here A= 0. The condition f = 0, if
S\ can be arbitrary, separates the domains ¥, and V' — V. The condition (41)
states that

f<0and A>0 on V, (42)
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Besides, the variational inequality (41) includes the complementary or ortho-
gonality condition, too:

AT -f=0. (43)

We now give the primal-dual formulations of the quadratic programming
problem relating to the extremum problem:

L

Ql: max {——%?\TB?\—KT’Q}’& @}

{(44)
R [ ST S !
Q2: min t——}\TBREB?\ b<0, A> i,
> |
with the relating linear complementary problem :
LC:{—BA-b+i=0A2>0 £<0 ATf=10}, (45)
Note that these problems are equivalent to the following ones, changing

the signs and the type of the extremum simultaneously

Q1: min {%—'{TEX— ATh A > @}!

Q2: max {— %RTBX I W ¢, '}\_>_(}

Br—b—Ff=0[A>0 £<0, iTé{=10}

which are formally equal to the mathematical programming problems (27) and
(28) relating o the potential energy formulation of the inequality problem of
the plastic behaviour. This fact is also a proof of the high duality existing bet-
ween the plastic and locking behaviour of the materials or structures.

Problem Q1 in (44) says that the velocity of the complementary energy
is maximized by the actual locking stress rates 6,, since:

— 1ATBA £ ATh = _% fiTM(H—l _ H-1CTLG CH-Y)MTAdY -
P
JAT‘JGO(ZT/ ~JKTMnTVdS JxTWH LCTdV - Ltk —
1% Su
- _% J 6T(H-1 — H-1CTL CH-Y) 6,V + Jc,( — H-iCTL;E)dV +
\% Vv
- J 6T nTvdS = #,(6) = max! (46)

Sy
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Problem Q2 in (44) represents a potential energy principle as follows:

iiTBi:%J;\T%ﬁ(H L H-ICTLE CH-YMTAITY =
- V

E)

s LTS 1
:.B_J;\TM;H YH — CTLFIC)H1MTALY = (47)

which says that the actual strain rates ¢, due to the locking stresses, calculated
on the basis of the elastic behaviour of the structure, make the velocity of the
potential energy minimal.

Problem LT expresses that the actual non-negativo locking stress rates

are always orthegonal to the non-positive locking potential ]001t16<

On the basis of the duality existing between the plastic and locking phe-
nomena, a hybrid variational principle has been worked out. This principle
relates only to the sign-dependent state variables. namely to the multipliers
A and A of the plastic sirain rates ¢, and the locking stress rates &, respec-
tively. For eliminating any variables from a functional of a variational prin-
ciple, relations among the variables have to be introduced previously.

Let us start from the generalized Hu-Washizu variational principle relat-
ing to the state change analysis of a single finite element with plastic-locking

points:

(@, . 6, i, A) = J (%éTHé LATMe] av —
\s
—fﬁngV ——j[(é L ATN — DTw)T - (6 + MTA)]dV — (48)
“J“iT}idS '“f[(fl — v)T + £]dS = stationary.

Su S5

For eliminating the non sign-dependent variables &, 7, €, u from the
functional, we express them in term of the sign-dependent ones A and A by
using the compatibility and equilibrium equations with all the boundary con-
ditions and the constitutive transformation, as well.
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First we introduce the approximation of (7) type:
u=TTCé
in which & consists of the values of the displacement function u, at the nodal
points of the element.
In this way from the compatibility equation of the element
¢+ NTA —DTa=0on V (49)

we can obtain the strain function ¢ in term of the nodal point displacement
values
¢ = DCé — NTA (50)
related to the local coordinate system.
Substituting the form of the Hooke’s law
¢=H"'¢ (51)
for (49), we have
H-16 L NTA — DCe=0, (52)
from which ¢ can be expressed in the similar form to (50):
6 — HDCé — HNTA. (53)
The equilibrium equation
TTDT(6 ~ MTA) - g =0 on V (54)

relates to the volume of the element but we have to reduce all the foree type
loadings to the nodal points because most of the loads are generally acting on
the nodal points directly.

The equilibrium boundary conditions
S TTnT(é L MTH) —
p—T'nl(c+ M 7\) 0 on S, (55)
f — TTnT(6 +- MTA) =0 on S,

relates to the surface load functions and we have a load q, too, acting directly
on the nodal points. So the loads in the equilibrium equation (54) and in the
boundary conditions (55) have to be concentrated to the nodal points by using
the same reduction functions € of (48):

q=Tg, + (CTTpdS — [C'Tg (56)
Sp 1%
related to the local coordinate system. Consequently the equilibrium condi-

tions (54) and (55) have to be drawn together in a common expression relating
to the local system: ‘

[DTCT(G + MTA)dV — ¢ = 0. (57)
\
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Now we can use the expression (53) of 6 by substituting it for (57)

{DTCT(HDCé — HNTA - MTh)dV — g = 0. (58)

v

Considering that &, A and A contain equally scalars and so they can be taken
out from the integrals, we have:

(DTCTHDCJV - &6 — (DTCTHNTAV - A + (DTCTMTdV -4 — ¢ = 0.
v v 4

(59)
Finally we can express é in term of the sign-dependent A and A:
é=K-1 (BTHNTAV - A —K-* (BTMTdV - %A + K4 (60)
Here ’ ‘f
K =K,= [DTCTHDCIV = [BTHBJV (61)
v 7

is the classical stiffness matrix of the element related to the local system and
B = DC (62)

is the so-called geometry matrix which contains the derivatives of the basic
functions. If we have any kinematical type loadings, for example an initial
strain €, then the expression (60) of é is completed by the term of

K-t (BTH¢dV = K-t (63)

v
After determining & — &(A, A), we can express u = w(A, ), ¢ = &(A, A) and
6 = (A, 7A), by applying expression (60) in (48), (50) and (53), respectively.
Finally, by substituting u, € and 6 for the original expression of the Hu-
Washizu functional (48), we obtain a new functional o and a new variational

principle, the so called activization energy principle related to the active state
of the points, the plastic and locking behaviour of the finite element:

ﬁpl —_— :-‘CPI(A, 7.\) —

LraTim f N. . J[H— HBK—B'H HBK- P‘.T ............... ] ~m_
2 MB K-1BTH —K-1 BTMT A
" . . _ — T : -1 3
— i [N T R B Ly 4]+
. HB K-1BTH K1 q

-+ constants = stationary,
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or in a more useful form

1

Aol A) = [AT AT] { ’:‘ u

Ay,
Agy

L____..._l

rﬁ"] AT AT
[ o]

= stationary (65
- 0[] s

a,

subject to A. > 6 and 7\. > 0.

This functicnal is expressed only in term of the sign-dependent plastic
strain rates and locking stress rates. But this extremum problem has a lot of
other subsidiary conditions, namely all of the canonical equations of the elasti-
city, the equilibrium and the compatibility equations with all the boundary
conditions and the elastic material law, as well. What can then this principle
express? Of course, it describes the plastic and locking behaviour, namely, the
plastic flow law and the locking law are characLexized by it, just like the pre-
viously detailed principles = (/E.) = min! and = (}\) = max!, but separately.
Consequently, the functional :'cp_,(A, ?\) has a saddle point by the actual solu-
tion because of the contrasted characteristic of its variables, having A as a
strain and A as a stress tvpe variable.

The first variations of the functional (A 7\) according to the variables

A and A, respeciively, yield the variational mec_{uahtles
Sqdry = SAT(AL A — AN —a) >0, (66)
O3 = AT(ApA - Ay A — a,) <0, (67)
representing the saddle point as a minimum point over the plastic strains and
as a maximum point over the locking stresses. .
Knowing that by (59) and (60) we obtain F as
F = Né = N(HBé — HNTA) =
= NHB (K—lé’ BTHNTAV - A — K—lvg BTMTdV - A - K—lfﬂ} — (68)
— NHNTA = —(A, A — ALR — &),
and from (50) and (60) f results:
f—Mé=MBé— NTA) =
=MB (K‘l JBTHNTdV ‘A —K-! VSBTMTdV FA L K‘W{) —  (69)
— MNTA = A,A - Ay A — 4y,
since MNT = 0 because V, UV, = 4.

So the variational inequalities (66) and (67) can be written in the form,
in harmony with the expressions (24) and (41)

S[AT iT][F}gO,

; (70)
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relating to the plastic and locking domains ¥, and V. The variational in-
equality (60) is equivalent to the unified inequality and complementary con-
ditions of (25), (26) and (42), (43):

A}z@, [']/@ and [ATAT].[F]=0,
Al |
or to the simplified form of

£>0, ¥ 0 and % 0. (72)

y
e potential velocities (6 ) and (69) read

th
B = —A,. —A Al—T—4, 1=A% — 3
¥ = ;r a5 12 A al§ = 2 (73)
£ i 4 4 4 Lo
' L B Sl A 25

and in this way, the mathematical programming problem relating to the saddle

T ]

Then the expressions o

point problem (65) can be reduced to the linear complementary problem

LC:ifAd —a —¥=0%2>0.5<8 Ty = 0}. (14)

This LC problem expresses that the actual non-negative plastic strain rates,
simultaneously with the locking stress inerements, are always orthogonal to
the non-positive plastic and locking potential velocities, respectively.

Of course, we can create the relating quadratic programming problems,
as well:

Q1: min{—%-_' E&.-&—é.{:&z@} (75)

Q2: max [»—1~ TAz1As —a <0, 2> @}. (76)

Taking the expressions of the potential velocities (68) and (69) into con-
sideration, the form of the energy (A, A) can be written in a form of
apu(f, A) = — ATF - ATf (77)
expressing that this functional contains the indicator functionals of the con-
vex sets

K = {e|f(e) < 6} (78)
relating to the locking phenomena and similarly
= {o[F(e) <0} (79)

referring to the plastification [7], since thein dicator functionals, by definition,
are
.o [ATESATME =0 if e¢K
Ju@ =11 ‘
oo, if €4 K 80
{ATF=ATN6=0ifch° 80)

T®) =1_ ¢ sexe
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Thus, we can state that the so called activization energy velocity 7.5pz of the
finite element consists of the indicator functionals. Since the indicator functio-
nals are really the Lagrange functions, extending the Lagrange multiplier
method to the case of inequality problems, evidently, the functiona!l of the
activization enmergy is a generalized Lagrange function.

If the expression (77) has no subsidiary conditions relating to the vari-
ables A, ?\ F and f then it can be taken into account as a functional of four
variables:

G = ag(A N F, f) = —ATE LATH, (81)

Thus, among the first variations of (81), beside the variations by A and A given

in (70), also the variations with respect to F and £ have to be done, too:
BT ¥T
S[FT ¥ ][ }> 0 (82)

which are equivalent to the conditions (71), of course.
We can obtain the functional (81) by the Lagrange multiplier method,

A

too. Let us start from the functional ﬁpl(A, A) of two variables, given in the
expression (65). The subsidiary conditions relating to the variables are the
inequalities of

A >0 and A > 0.

Introducing F < 0 and £ <C 0 as Lagrange multipliers of inequality type, we
obtain the Lagrange functions

ATF = 0 and ATf = 0. (83)

Adding the Lagrange functions (83) to the functional (65) we obtain a function-
al of four independent variables:

L ALTTA
Tpt 331?9 TAT 1 AT T
bt =g M []-aen i)

— [AT ?\T]{ f] = stationary. (84)

4

The first variations with respect to A and A are

SAT(ALA + AN — &, + F) =0, @)
o
AT(A A+A,,_2)\——aq—-f)=0
from which we have for F and f that
F = “(AnA + Amj‘ - é’l) (86)

TP= Ay A - AN — &,
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The variational principle of the activization energy jltpl has been applied

to frame structures. Numerical examples relating to the simultaneous elastie-
plastic-locking behaviour of structures have been worked out and published

in

3

16.

17.

18.

19.

20.

[3, 6, 17, 19, 20].
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