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Ahstract 

The physical noulinearity of the structures is examined in the elastic state. The problem 
is solved by finite element method and nonlinear mathematical programming. For the second 
case both the primal and the dual problems are discussed. The different methods of the solu­
tions are compared. 

1. Introduction 

The basic idea of the finite element method is to solve an unconstrained 
minimization problem. 

Nonlinearities occur in t·wo different forms. The first one is the physical 
or material nonlinearity from which nonlinear constitutive la'ws are derived. 
In this case the theory of small displacements is considered. The geometric 
nonlinearity is the second one, which is derived from the finite changes in the 
geometry of a deforming body. This category encompasses large strains and 
large displacements. Most generally, nonlinear problems are the combination 
of the above cases. 

The solution of nonlinear problems by the finite element method is 
usually done by one of the three basic techniques: incremental or step,vise 
procedures, iterative or Newton methods and step-iterative or mixed proce­
dures. 

The basic idea of the incremental or stepwise procedure is the subdivi­
sion of load into many smsJl partial loads or increments. The solution for each 

step of loading is obtained as an increment of the displacements. Usually, the 
tangent modul is used to compute the tangent stiffness matrix in the incre­
mental procedure. The equilibrium equations are satisfied in each step [1], [7]. 

The iterative procedure is a sequence of calculations in 'which the struc­
ture is fully loaded in each iteration. After each iteration the portion of the 
total loading that is not balanced is calculated and used in the next step to 
compute an additional increment of the displacements. This process is repeated 
until the equilibrium is approximated [2], [7]. 
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The step-iterative procedure is the combination of the incremental and 
iterative methods [7]. 

In this paper the physically nonlinear problems are discussed as a con­
strained minimization one and solved by nonlinear mathematical programming. 

2. The primal and dual problems of nonnnear elastic analysis 

The structure is divided into finite elements in the usual way. The shape 
functions are supposed in polynomial form on an unique domain in a curvilinear 
coordinate system. The relationships between the displacements and the 
strains (B) are determined according to the type of the element in the curvi­
linear coordinate system. 

€ = Bu + €o 

where: €: vector of strains 
u: vector of displacements 
€o: initial value of strains 
zi stress freedom in the j-th point of the element 
Si: displacement's freedom at the i-th node. 

(1) 

Using Jacobian and - if neccessary - linear transformations, equations 
(1) are in the global Cartesian system of the structure. The correlations be­
tween the loads and inner forces are given by transposing matrix B in a similar 
way. Integrating the stresses on the domain of element we get the inner 
forces. The equilibrium equations of an element are the following in the global 
Cartesian system: 

where 

JT*(J-l)* B*(O' + 0'0) dQ 
[) 

Q: domain of an element 
0': vector of stresses 
a 0: initial value of stresses 
f: vector ofloads 
J: matrix of J acobi transformation 
T: matrix of linear transformation. 

(2) 

The equilibrium equations of the structure are presented by the compi­
lation of (2). It is realized according to the joined nodes in the hyper rows and 
to the elements in the hyper columns. The boundary conditions are taken into 
consideration in the usual way. 

It means that the displacements are joined on the finite element nodes 
but the unknowns are the stresses of the elements. 
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According to the principle of stationary complementary strain energy, 
among the stress distributions of a structure which are in equilibrium with 
forces those will be valid where the complementary strain energy has stationa­
rity. In this way the principle of small displacements are supposed, therefore 
the stationary point is the global minimum and the compatibility equations 
are satisfied as well. 

The complementary strain energy of an element is: 
a 

Ut = S geT) dTdQ; (3) 
a, 

whele c = g( 0') is a function of the nonlinear elastic material's model according 
to Fig. 1. 

Summing up, the following mathematical programming problem has to 
be solved in the case of the whole structure. 

x[ ST*(J-l)*B*(O' + cso)dQ 
Q 

(4.a) 

m a 

~ S S g(T)dTdQ => min (4.b) 
Q Go 

where: m is the number of members and the compilation - denoted by x - is 
performed according to the nodes and members. 

Using Wolfe's procedure the dual problem is: 

-x J(g(cs) - g(cso»)dQ = x S €T*(J-l)*B*dQ (5.a) 
Q Q 

m a m 

~ J J g(T)dTdQ ~ J€T(J-l)B(O' + cro)dQ J €dQf => min. (5.b) 
Q CQ Q Q 

Equation (S.a) can be written in the follo\v-ing form: 

x [j (g(cr) - g(cro) + cT*(J-l)* B*)dQ] = O. (S.c) 

The value of the integral is equal to zero if the integrandus is zero. Mul­
tiplying by (cr - cro) the next form is valid: 

m m 

~ (g(cr) - g(cro») (cr - cro) + ~ €T(J-l)B(cr - cro) = O. (S.d) 

6" 

Fig. 1 
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Inserting into the objective function, using the displacements instead of 
the integral of the strains and transfoxming into the minimization problem 
the final form of the dual is: 

m 

.:2 \ (a - a o) (g(a) - g(ao)) 
o 

(6.a) 

Cl 

Jg(T)dTdD - JedDf=-min. (6.b) 
vo D 

It corresponds to the principle of stationary strain energy: among the 
displacements of a structure which satisfy the compatibility equations those 
will be valid 'where the strain energy has stationarity and similarly to the for­
mer case this is the global minimum. The stTuctuTe has an equilibTium state 
with these displacemeuts. 

3~ N-americal approximations 

AppToximating the integrals by Gauss-LegendTe's numerical method, 
problems (4) and (6) are in the following form: 
Primal: 

m N L 

.:2 .:2 g .:2 Cg( 0-) =- min 

where: u the Gaussian point on the axis u, 

Dual: 

]V number of the Gaussian points on the domain D, 
L number of the Gaussian points on the axis u. 

N 1 ::E qg(a) - g(o'o) = 0 
m N L 

::E 2E q(a - 0'0) (g(&) - g(O'o)) >. (qg(i)) - uf => min 

where: a is the Gaussian point. 

(7.a) 

(7.b) 

(8.a) 

(8.b) 

At the optimal point the constraints of both primal and dual problems 
are satisfied. 

In the linear case ('when g( 0') = F u) it is easy to check that the wellknown 
expression of the stiffness matrix is obtained by inserting the stresses from 
(8.a) into (7.a). 

Now we have thTee possibilities to determine the stresses and the dis­
placements of the structure: 
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i: In the usual ·way we solve the system of equations with nonlinear 
stiffness matrix. This procedme is described in the literature. [7, 9] The num­

N 

ber of the unknowns: ::E Si' 

i=l 

ii: Solving the nonlinear sYStem of equations 'which contains (7.a) and 
(8.a). The structme of the system of equations can be seen in Fig. 2. 

node element 

b 

(1 ;.:) 

Fig. 2 

The coefficient matrix has not a symmetric form. This is caused by the 
fact that the displacement and the stresses are determined at the nodes and 
at the Gaussian points, respectively. 

The next problem is the choice of the number of the Gaussian points. It 
is neccessary that the degree of the shape polynoms should be in accordance 
>vith them [8]. 

In the case of one-dimensional approximation [8] 

:x = 2r - 1 

where: r is the degree of the shape poly-noms. 
In multi-dimensional cases the number of Gaussian points can be deter­

mined by multiplying the numbers which are neccessary on the coordinate 
axis. The number (X is equal to the number of the Legendre polynom's roots 
and in this case the approximation has minimal error. 

- If (X> 2r - 1 the equations ,till be linear, 
- if (X < 2r - 1 some information contained in shape functions is lost. 

N m "-; 

The number of the unknowns: ::E Si -+- ::E ::E Zj 
i=l i=l j=l 

4 
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iii: The mathematical programming problems (7) or (8) are solved di­
rectly. In this case it does not cause any difficulty if 0::: > 2r - 1. 

If 0::: < 2r 1 the result will not be right. 
In the primal problem the matrix of constraints has full row rank. 

nl cti 

Separating the free variables the number of the unknowns is: ~ .::E Zj-
N i=lj=l 

- ~Si' 
i=l 

The dual problem contains nonlinear functions in the constraints, hence 
the separation of the free unknowns is difficult. 

J.\l m Ct.i 

The number of unknowns remains: ::E si + ~ ~ Zj' 
i=l i=l j=l 

Summarizing the i;-th case generally has less unknowns than the primal 
but the solution needs more difficult procedure than using a nonlinear pro­
gramming method. The ii;-th case and the dual resulted the same number of 
unknowns but they are too large for the practice. 

4. Numerical experiences 

If Hooke's law is avaible (linear case) many examples give the same result 
in the above cases. The CPU time cannot be compared because the different 
cases were run on different computers. 

If the phenomenon has a hyperelastic character the Green models can be 
used for the constitutive law. These suppose that the complementary energy 
function can be given in the polynomial form of the stress deviators. In this 
case the complementary energy function contains unknown stresses of more 
than second degree. This means it is nonconvex in the whole stress space, it 
has some convex part only [3], [6]. 

According to the Drucker theorem the phenomenon is stable if the Hes­
sian matrix of the complementary energy function is positive definite. (The 
positive definity of the Hessian matrix is the necessary condition of convexity 
at a given point.) [4] Using the Green models the Hessian matrix depends on 
the stresses and its definity cannot be predicted. It is numerically impossible 
to handle this question in every iterative step. 

In the following example we used the Green model in the next form: 
Q = aJ2 bI1Jz 

where a and b are material coefficients determined by experiments, 11 
and J2 are the stress deviators, namely: 

J -I (Jx - (Jo 2-
Tyx 

Txy I + I (Jy - (Jo Tyz II + I (Jx - (Jo "'z Txz "'0 1

1

-

(Jy - (Jo 1 T zy (Jz (Jo Tzx v v 
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Analysing the function Q (determining the coordinates of the extreme 
points, the sign of gradients etc.) we give limits for the stresses and by the 
help of them a convex domain is defined and the energy function is convex 
on it. 

This means that the problem can be solved by nonlinear programming 
where beside the linear equations we have nonlinear inequalities and a 
nonlinear objective function. 

Fig. 3 

If some inequalities are active at the optimal point (that is the optimal 
point lies on the bound), it cannot be kno"wn whether we have a limit state or 
the problem has no solution on the stable domain of the constitutive law. If 
the optimal point lies in the interior, the result satisfies the compatibility 
equations too. 

Example: 
A thick shell was computed by an isoparametrical element "with 9 nodes. 

The stresses were definied at 9 Gaussian points. The normal stresses are ne­
glected. Isotropic material is applied. 

The constants are: a = 10.0 
b = 0.3 

The dimensions of the shell can be seen in Fig. 3. 
The programpackage l\HNOS was used for solving the problem. 
The number of unknown stresses 45 

equalities : 30 
inequalities : 18 

From the equalities 28 was eliminated so we had 17 free unknowns and 
2 equalities in the MINOS. 

4* 
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The results: 

Gaussian Stresses 
point 

I1z "y Tzy 'ry;: T z :::: 

0.47208 0.25581 0.25638 0.53851 -0.46040 

2 -0.70830 -0.16157 -0.64950 -0.04539'1 -0.0015999 

3 -0.47022 -0.38811 -0.027903 0.025735 -0.088,1,38 

4 -0.19693 -0.52732 0.024904 0.12254 0.0036696 

5 -0.77691 -1.0337 0.052662 -0.21104 0.21203 

6 -0.065857 0.21370 -0.092120 -0.076517 0.1484·9 

7 0.36573 0.31500 -0.3'1264 -0.26327 0.15212 

8 0.8168,t -0.5'1385 0.14057 0.12545 -0.20318 

9 -0.16713 0.080269 -0.080043 -0.091~·t4, 0.12279 
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