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Abstract

It is important that large panel buildings have a sufficient safety against progressive

collapse. Recent researches [4] conducted in the Department of Civil Engineering Mechanies
have shown that a good approximation for the resistance of the structure can be obtained
if the dynamic analysis is replaced by a quasi-static plastic solution in which the damaged
structure is subjected to the dead load increased by a dynamic factor ¢ = 1.10—1.30. The
present paper deals with this problem.

From the point of view of progressive collapse, experience shows that
the weakest points of a large panel building are the joints. So the model
adopted consists of rigid panel elements connected by rigid-perfectly plastic
springs which represent normal and shear forces between the elements. Figure 1
shows the definition of the internal forces and their numbering on an element.
The yield condition used is simply —Q7, < 0, < Q7 ie. no interaction is
taken into account between the spring forces.

According to the statical theorem of limit analysis the problem can be
formulated as follows:

C*Q + mF, =0 (1)
N*Q <k @)
m = max!

Relation (1) represents the equilibrium equations and relation (2) is the yield
condition {1], [2].

By appropriate partitioning of the matrices and vectors, the size of the
problem can be reduced by matrix operations having only the redundant
internal forces and the limit load parameter as unknowns.

B*x - mb, <k (3)

m = max!
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a., local numbering of the panel edges
and positive direction of the infernal
forces

x,’

b, local numbering of the panel
COrnars

., definifion of the internal forces
along a panel edge
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where x represents the redundant internal forces. Due to the simple yield
condition, (3) can be partitioned in the following manner:
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where k¥ represents the positive and k~ the negative yield forces for the nor-
mal springs and k7, kI~ are the same quantities for the redundant ones. A* is
the influence matrix corresponding to the redundant internal forces and gz,
gives the internal forces due to the basic load F,.

The operations above correspond to choosing and solving a primary
isostatic structure of the original one. In some cases it is possible te choose a
primary structure such that no matrix operations and inversions are needed
to derive the reduced problem. Our case belongs to this class. By appropriate
choice of the redundant forees, the primary isostatic structure consists of a
set of spatial cantilevers as shown on a small e\a:m)l in Fig. 2. Observing a
convenient numbering rule for the panels and edges, it can be determined by
logical operations which are the zero and non-zero bloc ¢s of matrix A* and
vector a, Their structure is shown in Table 1. The elements of the non-zero
blocks can be calculated by simple equilibrium equations. The caleulations of
the elements of the block marked in Table 1 are illustrated in Fig. 3. It can
be mentioned that the present choice of the primary structure keeps the

sparsity of the pro})lem matrix.

For the solution of the linear programming problem in limit analysis,
usually the kinematic (dual) formulation is used as the number of rows of
matrix B* is greater than the number of its columns. This is not necessary
in this case because ranges can he applied on the consirained rows and hounds
on the column variables and the problem tableau reduces only to matrix A* in
this way. This results in the fact that the size of the basis is only slightly greater
in the static case than in the kinematic one. One can also mention that using
the kinematic formulation the whole matrix B should be stored as data.

The method was coded in FORTRAN language on the IBM 3031 com-
puter of the Hungarian Academy of Sciences. For the solution of the linear
programming problem the MPSX program package was used [3].

As in the case of spatial structures the number of unknowns and inequali-
ties increases very rapidly. a structure of small size shown in Fig. 4 was stud-
ied. The characteristics of the problem are the following:

number of panels: 32
number of global edges: 42
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Table 1
Edge cut
Panel edge 1 2 3 4 5 6
load
1 3
1 2
1 4
1 1
2 1
2 7 .
2 9 X
2 5 X
3 2
3 8
3 10
3 6 .
4 5 X
4 11 X
4 6
4 3
5 7
5 12
5 8
S 4 .
6 11 X .
6 10 X .
6 12 . . X
6 9 X X X .
i 9 X X X . X
T 15 X
7 17 X X X X X X
7 13 X .
8 10 X
8 16 .
8 18 X
8 14 .
9 13 X . .
9 19 X X X
9 14 .
9 11 > . X
10 15 . X
10 20 X X
10 16 .
10 12 X
#*X” non-zero block

TEE]

zero block
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Numbering of the panels and edges
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The isosfatic primary structure
and numbering of the redundant edges
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Fig, 2
number of internal forces: 32 X 24 == 768
number of equilibrium equations: 32 - 42 x 6 = 444
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number of redundancies:
size of the problem matrix including one
slack variable for each row: 445 X 770, density: 1.19%,.
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Yield mechanism {(Case N22)
m; =18960
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Normal forces in the horizontal sections [kN}
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Fig. 6
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The limits for the internal forces are shown in Table 2.

Table 2

Internal force

1:;; o Legg;‘ 1 2 3 4 5 6
1 1 50 4000 50 4000 300 300 300 300 600 600 0 0
1 2 100 4000 100 4000 150 150 150 150 300 300 0 0
2 1 106 4000 100 4000 150 150 150 150 300 300 0 0
2 2 50 4000 50 4000 300 300 300 300 600 600 0 0
3 1 100 4000 100 4000 4000 4000 4000 4000 600 600 0 0
3 2 100 4000 100 4000 4000 4000 4000 4000 600 600 1] 0

Yield values of the internal forces (kN)

The limit load parameter was calculated for three cases:

Numbe;agilsn:issing Limit load Sdl?:fi?,)time
1 0 20000 1.09
2 1 (23) 18960 1.17
3 2 (30, 23) 16025 1.25

The yield mechanism for case 2 is illustrated in Fig. 5, and Fig. 6 shows
the internal forces in the vertical springs connecting the vertical and horizontal
panels,
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