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Ahstract 

A discrete model made for the analysis of state-changing processes of granular assemblies 
is introduced here. Our numerical experiments can help in the analysis of some theoretically 
suggested variables that could be used later in the macro-level description of the behaviour 
of granular materials. 

1. Introduction 

The development in computer technics opened new possibilities in the 
research of constitutive equations of granular materials. Based on the theoret­
ical results, new kinds of constitutive equations can be derived or previously 
suggested ideas can be tested. 

Thermodynamical constitutive equations are more and more often used. 
Beside the traditional variables like stress and strain, there are so-called inter­
nal variables applied in these equations. In case of granular materials these 
variables should probalJly depend on the state of the internal microstructure 
of the material. 

There are several theoretical suggestions how to define internal variables; 
but most of them have never been tested by numerical or physical experiments. 
Our aim has been to develop a numerical model able to follow the changes in 
the microstructure; then to use this model for the analysis of the behaviour 
of certain suggested variables during state-changing processes. Our final goal 
is to find state variables that could be efficiently used in the engineering prac­
tice. 

Our first results will be introduced here. 

2. The chosen internal vadahles 

In the early 1980s M. Satake ([1], [2], [3]) suggested an interesting 
method based on graph theory for the geometrical description of the assemblies. 
Since his description about the internal state of assemblies seemed to be easy 
to use and sufficient, we chose these variables to analyse first. 
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Also in the 1980s, a stress-partitioning method was suggested by P. A. 
Cundall ([4]); these variables were chosen as the second group of the analysed 
internal variables. 

Before introducing our numerical model, let us briefly summarize these 
suggestions. 

2.1. The Satake-variables 

Satake modelled the granular material as an assembly of randomly ar­
ranged discs in t\\'O dimensions, or spheres in three dimensions. We deal ,vith 
2D models only. 

In a sufficiently large assembly of touching grains the follO'lving variables 
were defined: 

- The so-called fabric tensor, calculated from the unit normal vectors 
at contact points, or from the vectors of the replaced graph edges (see Figure 1): 

(~n1nJ) i (i lP5j 
p=l c=l ) (i, j 1, 2). (1) <f'ij= 

N N m 

~m ~ ~lc' 
p=l p=l c=l 

Here N is the number of grains in the analysed domain R; m is the num­
ber of contacts of particle p; n~ is the unit normal vector at contact c of par­
ticle p; l~ is the vector of the graph edge belonging to contact c; le is the length 
of the graph edge (the distance between the centres of the touching grains). 

The replaced graph can always be uniquely decided for a given arrange­
ment of discs: the nodes are the centres of the discs, and the edges connect 
the nodes which correspond to touching grains. 

replaced graph 

Fig. 1 
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- The branch tensor, a variable that can be considered as a kind of 
'weighted fabric tensor' (the weights are the replaced graph edge lengths): 

(2) 

The contact tensor, also a kind of 'weighted fabric tensor', defined as 

i r· i scnIni) 
C 1 c= 1 

ij === J.V m (3) 

where the sC 'weights' al'e the lengths of the dual graph edges. The dual 
graph is given by the common tangents of touching grains (see Figure 2). 

The graph porosity, based on the two graphs above: 

IV 

.4. .:2 ill 
v R = _-,-p_=_l __ 

AR 
(4) 

where A is the area defined by the graph edges (see Figure 3), and AR is the 
total area of the domain R. A can be calculated as 

6 

- l­
A =-8[ 

2 

dual graph 

Fig. 2 

(5) 
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Computation of graph-porosity 

Fig. 3 

where 

l'R has an interesting physical meaning: the work done by the F contact forces 
on the corresponding Llu relative displacements can be expressed "with the help 
of the internal work done by the internal stresses on the strains in the follo'w­
ing manner: 

l'RAR(cr· ;E' .) = ~ 1 F Lln. 
1" l,j ..;;;. 9 

(R) ~ 

(6) 

After these geometrical variables, let us see now Cundall's stress parti-
tions. 

2.2. Cundall's stress analysis 

Similarly to Satake, Cundall modelled the granular material hy a 2D 
random assemhly of perfectly rigid, touching grains. 

From the original domain R an A area can be separated which is not 
disturhed hy any houndary conditions (external loads acting directly on a 
grain, kinematical constraints, etc.). For the A area the average stress tensor 
can he defined: 

- 1 j' d l 
cri; = - cri j--':1. 

'-"4. ' 
(7) 

(A) 
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If all the grains are circular: 

I N ( m aij = - .2 RP .2 nfFj) . 
A p=l c=l 

(8) 

Here RP is the radius of particle p, and m is the number of contact points 
of particle p. 

Cundall separated this stress tensor into four partitions: 

where the four partitions are: 
Gij(s) shear stress tensor 
Giiv) normal variation stress tensor 
CiJf) fabric stress tensor 
Cii/i) isotropic stress tensor 

(9) 

First, the total contact force acting at a given contact point of a grain 
is split into normal and tangential components (see Figure 4). The shear stress 
is calculated from the tangential forces: 

I N m 

ay; = JE RP .2 [nIF} - (FknD n9 nj]. 
A P 1 c=l 

(10) 

Here Fi is the total contact force vector as sho, .. -n in the figure; ni is the unit 
contact normal vector. 

This partition corresponds to the mobilized shear forces; it is related to 
the tendency of the contacts to slide, so related to the dissipation of energy 
during the state-changing process. 

In the second step the average normal force belonging to the grain is 
separated from each normal force acting on the grain. From the remaining 
part, the normal variation stress component is calculated: 

- .2 RP .2 (Fknk)nInj I N m [ 

A p =l c=l l-~ .i (Fknk) 1 n1ni]' 
m c=l 

(ll) 

This partition corresponds to the variation in the magnitude of normal 
forces , .. ith angle; it reflects the eccentricity of forces acting on the grains, 
similarly to the classical buckling problems. 

The remaining part of the stress tensor may be split into the isotropic 
component 

(12) 

6* 



188 I. BOJT.4R-K. BAGI 

Decompsition of thp stresses (undoll, 19B3 

shear 
~orce 

normal 

force 

~ ~ 6!S' =+~ =+ =+ 
I) 

Fig. 4 

and into the fabric partition 

[
IN m ] ai . = - "" RP ...... FpcQV) n~n~ - (fo 8,· 

IJ A"&';"&'; I J .] 
- p=l c=l 

(13) 

that corresponds to the angular distribution on contact points thereby related 
to the anisotropy of the microstructure. 

We intend to analyse how these stress partitions change during loading 
processes, how they are influenced by the rearrangement of the microstruc­
ture, etc. 

And now let us introduce the numerical model. 
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3. Nmne"dcal model for the analysis of state-changing processes 

The calculations are hased on the classical displacement method. The 
unknowns are the horizontal and the vertical displacements and the rotations 
of the grains (see Figure 5): 

(H) 

The external loads consist of the following three components corre­
sponding to the displacements: 

f
Ci

) = [f~.i) 1 
f \[) 
• Y • 

f 'i) I 
,H -

(15) 

The relation bet\\-een the relati..-e displacements and the contact forces 
acting at the contact point of t-wo grains is described by the 'micro-material­
law' of the contact. At present two types of contacts are used in the model. 
In the first case (materials like concrete) the contact is rigid; beside the normal 
and shear forces, bending moment is also possible (see Figure 6ja). In the second 
case (materials like sand) the contact resists compression and shear force only. 

Relative displacements can be calculated from the absolute displacements 
of the grains by transformation matrices: 

where the T matrices are: 

Tce}) = [ cos (XC 

-sin (XC 

o 

sin XC 0] 
cos (XC Rej) 

o 1 

TCct) = [ cos (XC sin (XC 

-sin (XC cos (XC 

o 0 

(dual graf) 

Fig. 5 

(17) 

(18) 
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if. f'Jmber of grQin 

b, 

Fig. 6 

The external loads and the contact forces acting on a given grain have 
to be in equilibrium: 

(19) 

The 'micro-material-law' of the contact is expressed by the contact 
stiffness matrix k C

: 

(20) 

In total lack of experimental data 'we have only assumptions about k C
• 

The contact stiffness matrix assumed for the first type of contacts is: 

(21) 

where the shear stiffness depends on the normal stress acting at the contact: 

G = Go _ ,LlvnE 

s 

Here E is the normal elastic modulus, Go is the initial shear modulus, 
s is the length of the dual graph edge which belongs to the contact, and ,Ll is a 
'frictional' factor. 

Figure 7 shows the relation between each relative displacement and the 
corresponding contact force. If one of the contact force components exceeds a 
limit value, the contact is broken. 

In the second case k C has a simpler form: 

o 
Cs 
o ~l (22) 
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Connection be tween the nor me l force 
and the relativ displacement 

Shear force -relativ displacement 

where 

a" 

AM 
I 

Bending moment and relativ 

displacement 
c., 

Fig. 7 

G- -- G- ,LlvnE 
- 0----

s 

Go can be assumed to be much smaller than Go' 

b " 

Inserting (17) into (20), and using it to express (19), we get the equilibrium 
equations of a given grain: 

m 
fU) = ,2'TCCi)T kcvc. (23) 

c=l 

These equations can be collected for all grains so the global equilibrium 
of the assembly are given: 

F = Kg!obU, (24) 

(24) gives the relationship between the absolute displacements of the 
grains and the external forces, similarly to the classical finite element solutions. 
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The behaviour of the assembly is basically determined hy the parameters 
I · (91) 1 (99) usec In _ ann _ ..... 

(24-) is a physically non-linear prohlem: as it can be seen in Figure 7: 

(25) 

4. The analysis 

The analysed assembly (Figure 8) is bounded by a rectangular area. The 
sizes of this area have to be given first; the randomly generated grains are 
dropped do"wn into this 'box" one after the other. 

Every grain must find a stable position hy heing supported hy the 
others or l)y the edges of the area so that this procedure would lead to a stahle 

structure. 
The radius of the grains randomly changes between a given minimum 

and maximum value; any given sieve curve can be simulated. 
Different contact properties can be prescribed in given horizontal and 

vertical strips of the area, or the different contact types can be randomly 
distributed in the assembly. 

Any grain ean be fixed or have prescribed displacements. In our recent 
model the loads consist of concentrated forces or moments acting directly on 
the grains, or linearly distributed forces acting on the edges of the area. 

b 

The domon is filled up by 

1 
dropping do'Wn the 
grains 

o 

Fig. 8 

Q I b = Qr~trQry 

R"'in.- Rrru. 
~--~ 

IP (R) 

I cr=J 
RC-le 

!P(R) 

I~ 

R 

Rmin Rm{JXR 
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We apply the widely used Newton-Raphson method to follow the state­
changing process. The loading process is given by a series of load steps. In a 
given load step the change of the stiffnesses is foIlo·wed by iteration steps until 
the equilibrium state that belongs to the load step is found: the analysed 
variables can he calculated in the equilibrium states or in all iteration steps. 

5. Numerical examples 

Two simple examples will be introduced to illustrate the usability of the 
model. Experiments on really characteristic assemblies containing 800-1000 
grains have just been started. 

9 shows an example consisting of three discs with uniform ra­
dius. The horizontal displacement of grain 2. is sho-wn in Figure 10/a. As it 
can he seen in Figure 10jh, the behaviour of the model is very similar to the 
Doughil-models used in continuum-mechanics for the description of elastic­
fracturing materials. 

0., 

(2) 
u 

Fig. 9 

Fig. 10 

DOUGILL - model 

elastic -fracturirg 
material 

decreasing parameters 

E 

b., 
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is.O 

1. lood step 3. lood step 

Fig. 11 

29 

Fig. 12 

15.0 

26.0 

6 lood step 

T 
I 

code: 3 
~_ type:2 

lOde, 
tYfJe1 

~-

code 3 
C) type 2 g 
C) 

_f_ 

Figure 11 shows the forces acting on grain 3. in different load steps. 
An assembly that consists of 32 grains can be seen in Figure 12. The 

assembly is loaded by uniform compression. Stronger contacts are applied in 
two strips of the area to avoid local fracture around the concentrated forces 
and the supports. 

Figure 13 shows the change of the replaced graph during the state­
changing process. Each graph edge corresponds to a contact so the crashing 
of the assembly can be followed this way. 
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Fig. 13 

The Cundall-partitions are calculated during the process: 

Loadstcp: 
O"ij{» (iik) O"u(f) (1(i) 

Loadfactor 

1. [5.305 0J l8.843 0J [0.
744 

-.742J (1.00) o -5.305 o -8.843 -15.180 

2. l6.'159 01 [10.530 0 I [ .892 0 I 
(1.20) o -6.'159 o -10.530 o -.893 -18.206 

3. l7.628 0J l12.203 01 [1.039 01 
(1.40) o -7.628 o -12.203, o -1.039 -21.231 

4. l8.811 0 l [13.865 01 l1.l86 0J 
(1.60) o -8.811 o -13.865 o -1.186 -24.255 

5. f 10.363 0] l13.651 0J [2.784 01 
(1.80) o -10.363 o -13.651 o -2.784, -27.333 

In this case the dominant part is the isotropic compression component; 
the shear and normal ariation partitions are also significant. The fabric stress 
partition that measures the anisotropy is negligible now. 
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6. Further development 

At present we are 'working on the analysis of the behaviour of the Stake­
and Cundall-parameters in large assemblies loaded until crashing. 

We intend to determine the parameters used in the micro-material-laws 
by identification examinations. The behaviour of the model could be compared 
\vith the results of simple physical experiments (shearing tests, linear ten­
sion etc.) 

Numerically and theoretically it "will be one of the most complicated 

problems how to take into consideration the effects of large displacements of 
the grains; the solution of this problem is indispensable for the proper analysis 
of sand-like assemblies. 
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