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Several measures for the dependence of two random variables are investigated in the
case of given marginals and assuming positively quadrant dependence. Beyond known quan-
tities (Spearman, Pearson correlation coefficient. etc.) three new measures are introduced
and compared with the others. In detail are investigated the A-dependent variables (Konijn)
moreover a special tvpe of bivariate distributions: a practical application in the hydrology of
flood peaks is included.

1. Iniroduction

Let IT™ = II7{F, G) be the set of all continucus cdf’s cumulative distri-
bution funetions (cdf’s) H on R® having continuous, strictly increasing marginal
cdf’s F and G. It will be assumed that F and G have finite variances.

Let H be a positively quadrant dependent, (Lehmann [6]). in which
case, it is well known that for H(x, v) the following inequality holds:

F(x)G(y) < H(x. y) < min [F(x). 6(y)] (1
for all x, .

For positively quadrant dependent c¢df’s we introduce the following con-
nection — function:
}V(x’ :y') — - H(x“ :y) - F(x)G(}’) (2)
min[F(x). 6(y)] — FG();

due to (1) 0 < 2(x, y) << 1. At the same time this is the deviation of H and
F. G relative to its maximum value. Let H*(x,y) = min [F(x), G(y)] which
is the “largest” bivariate cdf with marginals F(x) and G(y) resp. namely

HA*(oo, y) = min [1, G(y)] = G(y)

. . (3)
H~(x, o) = min [F(x), 1] = F(x)

In the case of a positive quadrant dependence, H(x, v) = F(x)G(y) is
the “‘smallest” bivariate cdf, with marginals F(x) and G(y) resp.

i=*
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If the random variables X and Y have a joint edf. H{x, y) > F(x)G(y)

then for a measure of their degree the following measure seems natural:

[ M. y)f)g(y)dxdy =
_ f .-) — Fx6()
mm[m ()] — F)G6(»)

—= —oo

(4)

f)g(y)dxdy = Ep[3(X, Y)]

which is the expected “relative” deviation between H and FG.

Proposition 1. If H >> FG and further ¥ and G are strictly increasing functions
of x and y respectiv 07'» then the measure 2* has the following properties:

(I) 2 =0 if X and Y are independent
#% =1 if there is a monotonically increasing functiomal — relation

between X and Y: ¥ = G-F(X)] or X = F-G(Y)]

(II) 7* is a monotonically increasing funection of H. in the sense that if
H, > H,, then 75 > i}

(I1I) #* is invariant under the concordant monotonic transformations of the
r. variables X and Y.

Proof: (I) From (4) it follows, that i* = 0 if H = FG and 7*=1if H =
= min (F. G). Let H = min (F. G), i
o F fF<G
G ifF_.G

Let now 3 > =z and F > G. then H = G i.e.

H(x;. 7.) = G(7,) = z== Flx

) where %, v, are the z-quantiles of F and
G resp.)

Hence: v, = G- F(£,)] for all ¢ [0, 1]. Similarly if F <~ G, then H = F and
H(i.53)= F(£) = % = G(7) ie. % — F1[G(F)]. 5. — G- [F(&)] # [0.1].

-4
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Let now Y = ¢(X) be a strictly increasing continuous function, then

%= 6(7) = P(Y < 3.) = P(e(X) < 5) =
— P[X < p=1(3.)] = P(X < &) = F(x)
ie. 6(7.) = F(&). 7, = G-[F(&)] 2 [0,1]
(I1) it follows, that for H, > H,

oo oc oc
~

. *0 - F (" ei -
M — Af =J I H, c fedxdy ——J J H, — FC fgdxdy =
min (F, G) — FG F’G)—FG
" H,—H
= ( Pt fgdxdy > 0
J min{F, G) — FG ’
(ITIT1) Let U = ¢(X), " = p(Y) where ¢ and p are both monotonically increasing

or both monotonically-decreasing then X = ¢~}U), Y = p~}V) and
Fi(u) = P(U < u) = Pl\q(X) << u) = P(X < g~Yu)) = Flp~Y(u)] = F(x)
Gile) = PV ) = P(p(Y) << ) = P(Y <y7'(0)) = Cly(v)] = G)
Hy(u,v) = P(U < u, V" v) = P(p(X) <u, p(Y) T v) =

= PIX <), Y <p ()] = Hlp~ () p720)] = Hlx.)

, do I«
Filw) = filw) = flp= () 20 = fia) 2
6i0) = &(e) = el (0] L) = ) 2

VETT T H(u.v) — F(u)G,(v)
= i g (v)du dv =
AU, V) J J min[Fy(u), G,(v)] — Fy()G(v) f(l (v)

—oc oo

£

([ He @y 0] = Pl @I w) e
J’v J min [F[(f—l(u (][qr-l ] F[(P_l(ll)]G[l){,‘-l(U)]fl( )gl( )

[ o) = FWOW) gy mx,
.J .J mln[F(x)“ G(y)] _ F(.'C)G(:)) j( )O(.}) 34 / ( . )

— e

q.e.d
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2. Investigation of some nonparametric measurns of association
in case of a positively quadrant dependence

There are very many possibilities to construct measures of association
and a lot of them have been proposed. Among the most familiar measures
we mention the following nonparametric ones:

oo

Fe= T (correlation coefficient. Pearson) (2.1.)
i iy (H — FG)fgdxdy
e=12 § { (H— FG)fgdxdy = ———- (2.2)
T g { [min(F. 6) — FGlfgdxdy
(Spearman)
) [ [ (Hh— FGfg)dx dy
=4 | g thxdv_l_é“f"*‘ (2.3)
T S | [min(F, G) — FGfg dydx
(Kendall)
o [ (H— FCyfgdxdy
u=90 V \ (H — FGyfgdxdy = —— - (2.4)
R {§ [min(F.G) — FGPfzdxdy
(Hoeffding)
Y = [; (Blum — Kiefer— Rosenblatt) (2.5)
g=4HE,7)— 1= H (—”“%e_,{é):’ F (-“3'»:.-)0()’;-)~ (2.6)
U min F(x., y,) — F(%)G(y,)
(Blomgvist)
K = 4sup | H(x,y) — F(x)G(y) | (Schweizer-Wolff) (2.7)
(z.5)

It is not difficult to construct other measures. For the case of a positively
quadrant dependence bevond A* we propose the following further measures:

» = 90 g y (H — FG)[min(F. G) — FG]fg dx dy =

{ | (H — FG)[min(F.G) — FG]fgdvdy  (2.8)

—T ——as

{7 [min(F. 6) — FGJfg dx dy

——_ OO
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T H— FG
o J J VFI — F)G(I — G) Jg dx dy 2.9)
g* F (H — FG)dx dy
. =— (2.10)
¢ { [min(F, 6) — FGldx dy -

where r; is the correlation coefficient if the joint distribution of X and Y
is H*(x,y) = min [ F(x), G(y)]. For different H's the values of the mentioned
measures depend on H in a fairly simple way. Some relations among them

are contained in the following proposition.

Proposition 2.1.

D 2]
2E > = 2.1 T > = 2.5
> (2.1) > (2.5)
A > (2.2) u > 0.625 o2 2.6)
— V90
pn<rv<y =14 (2.3) y= e (2.7)
>0 (2.4) 3* > 0.625 ¢ (2.8)

Proof: (2.1) follows from the fact, that min (F,G) — FG g—i—; namely

in case F << G, min(F,G) — FG = F(1 —G) < F(1 — F)g%
in case F> G, min(F,G) — FG = G(1 — F < G(1 — G) g%
.. (( H-Fc cor 0
i = g dx dy >4 H — FG)fgdx dy = =
J [min(F,G)-—FGfC ey J J( M drdy =
(2.2) follows from the fact that r. — —. } J(minF, G — FG) dxdy < 1
(2.3) is a consequence of the inequality of Schwarz. Namely
[ | (H — FG)[min(F,G) — FG)fg dvdy <
<[ | (H— F6Pfgdxdy]:[ { | [min(F,G) — FGCRfg dx dy]:,

—O 3T OO w0
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hence
P ‘l”’; 1 . I
— <L e < Vu=1,
0 ['90 190
further
.930_ — j J (H — FG)[min(F, G) — FClfg dx dy >
> J J(H FGY gduzy__;
(2.4) follows from the fact, that if F <{ G, then 1 — F > 1 — G, ie.
VFa—6) <160~ )
F(1 — 6) < VF(1 — F)G(1 — 6)
and if F> G

G(1—- F)< V F(1 — F)G(1 — G) consequently

fH FGfadrdyw ﬂ.%_%fcdxd}>

~G

<G
= J H— FG fedxdy = o
F(1— FY¢1—G)

———x o X

To see (2.5) we have to compare

t=4 { {Hhdcdy —4 { | FGfedxdy

—— D —ng s

and

oo o oo oo

.g..zﬂ" J‘Hfgdxdy—ALf fFchdxdw

—_ne —ae —T -

For H > FG, the relation

{ [ Hfgdxdy= { | FGhdvdy < | | Hhdvdy (Konijn [4])

—o ——ae —oe —oc —ac ~—oc

is valid and it follows that

w |r0
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(2.6) is a consequence of Schwarz in inequality according to which

[ [ (H— FO)fgdxdyP< [ { (H— FGpfgdxdy- | | 12 fedudy

—oc oo —oc ~—oc —oc ——oc

and
( 0
12 90

hence
"> - o® = 0.625¢°

and

—_ /90
y=lu>"=0

12

3 Investigation of a positive A-dependence
Konijn [4] investigated the following type of cdf.
H;,=/min(F.G)+- (11— AHFG (071 (3.1)

It is obvious. that H, > FG i.e. H, is positively quadrant dependent.

Proposition 3.1. If the r.v's X and Y have joint distribution function H;. then

JFmg=y =% =1=K=gq=/ (3.2)
T < 3 (3.3)
r< 2 (3.4)
w=12< 7 (3.5)

Proof: For the statement (3.1) we have

o oe o ES

5 i H, — FG
/.* P A od_ d I “. d;' d - /,\..
J Jmm(F,G)_F(;fc © e ’J ‘fg v dy

—TC g —oe —%

¢=12 [ | (H,—FG)fgdvdy=127 | | [min(F.G) — FGfzdvdy = J

1
g the second integral ET) which follows from the sequence of equalities:
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o 20

Jﬁ J [min(F, G) — FGfg dx dy = J f F(l — G)fg dxdy +

—o0 —oc F=G

F=YG)

fG(l—F)f,dxdy_J(l—G) f Ffdx] gdy +

Yemeon A= e DD

fdx__f Gt — G¥gdy +

GH(F)

~J' l—F)( J(G dy

y=—20

x=7

v = Vy being according to 2.4 and 3.1 we have

w=902 | | [min(F,G)— FGC}fgdxdy —

—oc ~oc

as the relation

J Jﬂ [min(F, G) — FGfg dx dy — 9—10

—— T30

is well known.
For the statement concerning » we have

—_—s —a

% = 4sup (H, — FG) =4 i sup[min(F,G) — FG] =47 -—=1

(xv} (xv)

11 1 1 1 .
— A H (%) ——|= 4]} =t (1 —})—— —| =4
q [.(;92) 4J [2 ( )4 4]

To see that 3.3 holds let us denote min (F, G) by H*. Konijn [4] has shown

that
Ol 1 S 1
I‘JHTh"‘dde:—;-. J J‘th*dxdyz'[JH’fgdtdyzg-

D
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hence

t=4 { [ Hhdcdy—1=4 ( [ (H, — FO), dxdy +

—og —30 D —tO

+4 [ [ FG(h, — fe)dx dy
where h; = Jh+ + (1 — A)fz.
This way by simple computation we get:

)
T = =+ 5 4<% (equality holds in the case of 2 = 1 only).

(3.4) Can be seen by direct computation:

~ [min(F, G)

010,

— FC1 4, dy = jr. < 2

T =

(H,— FG)dx dy — ’ J
010

(ro =1 if G- F(x)] = ax + b, where a > 0)

Relation (3.5) is obvious:

Remark: Let H; = 7, min (F,G) + (1 — 7)FG i = 1.2, then

ca oo

f J (H} — FG)dx dy —
0'160

o

. J } [min(F, G) — FGldx dy = srs i=1,2
0105 )
Here
S J | [min(F. 6) — FGldx dy —
G109y N
_ [ | 6 trf@e— [ s | yg(y)dy}
G109
i.e. - h )
r;il _ }.1
Ths B }'2

Theorem 1. shows that if the joint distribution of the random variables X and
Y is H;, = 2 min (F,G) -+ (1 — 7)FG, then the coefficient . expresses itself
the degree of positive association between the r.v.s.
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Corollary 3.1.: If for the edf H > FG holds and we calculate the measures

wp =25y =0, 0y =, 0y = AN ay =0, ug =%, 0, =q oy =T,

Gg =T, Uy = M
then we can find the linear combination of min (F, ) and FG,

Hf = ;min(F,G) + (1 — J)FG  (i=1,2,...,10)

for which of = o; (i=1,2,...,10)
where
Jo= AT, =0, Ag=p, Ay =AFF di= o, A= A =4¢q,
be=V1+37—1 /s:l‘v ;vm:!f?
T

Theorem 3.3: If rvis. X and Y have the joint c¢df H = /i min (F.G) -

—+ (1 — 2)FG then the regression curve of Y with respect to X has the form

E(Y]X) = %) = ¥(x) = 26~ [F(x)] - (1 — )E(Y) (3.6)

Proof: The conditional cdf of Y under the condition X = «.
1 9H(x.v)

G ’.'; =
(¥ x) IS
As
oo JF -+ (1 — A FG if F<{G
"6 = (1 — D FG if Fo=G
it follows that in this case
G(wx) =, L+ {1 — 26 if FLG
(1 — A6 if F>G
and we obtain:
Fo) = [ ydG(y.x) = sy + (L— 7) | yG(y)dy =

= G- F(x)] - (1 — 2)E(Y)
which is true as in case

F=G, y=G-Fx)].

Remark 1: Let the joint cdf of r.v.is. X and Y be a two-dimensional normal
cdf, with marginals:
N(my, ¢;) and N(my, 6,)
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and with correlation coefficient r.
Then F(x) = @(if—-m—l} G(y) = @ ‘3—_6#"_] where @ () is the stan-
1 2
dard normal edf.
The equation of the quantile curve is:
- o,
#) = 6P =2 (x = mo) + m,
0y

The equation of the regression line of Y with respect to X is

wx)=r O2 (x — my) +— m,
!
Hence
vix) = rG-1Fx)] + (1 — nNE(Y) (3.7)

i.e. the relation (3.6) helds for bivariate normal distributions as well substitut-

ing A =r.
From this fact we get the following theorem:

Theorem 3.4: Let H be a two dimensional normal edf with correlation coef-
ficient r and with marginals F and G; let further

Hy=rmn(F.G)+-(1—nFG. (3.8)

Then for H and H, the correlation coefficients. as also the regression lines

coincide.

Remark 2: This way (3.7) is a necessary condition for a two dimensional cdf.
H(x, y) with normal marginals ' and G resp. to be two a dimensional nor-
mal cdf.
The faet. that (3.7) is not a sufficient condition for two a dimensional
normality shows the following example: (Rényi [8]. pp. 317—318).
Let H(x.y) be a two variate cdf having density function:
x2 2

h(x.y) = -;1—- (J2e 2 —e ™) e L (12e 2 — e ™)™

-

The marginal densities are:

1 5 1 ¥
flx) = —e *and =—— esp.
(®) i g(y) 72 resp

Q

A simple calculation shows that r(X, Y) = 0, but X and Y are not independent,
as h(z, y) = f(*)g(y)-
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The conditional density function of Y under the condition X = x is

x2 2 x2
1 S 2 P

s =00 o (T ) T (T T e

flx) 12

The regression function of Y with vespeet to X is:

1

s

- r 1 I~y :iz :f —?
Fx) = j yelydy =—==(2—¢ ?) J ye ¥y +
2=
+Yﬂezfa§J?—fﬂ@:ozEw)

The equation of the quantile curve is: ¥y = G~ F(x)] = %. Since r = 0

Yx) = 0%+ (1 — 0)E(Y)
i.e. (3.7) holds.
The relation (3.8) is a somewhat more attractive example for the fact
that (3.7) is not a sufficient condition for the bivariate normality.

4. Realition for q, p, T, and A* in some special type of distributions

(4.1) Let us consider the bivariate distribution H, which has the general

appearance of Fig. 2.

]

NG
S | NN

RN
A NN
AV IR AN
!
. LS NN
|
I
|
|
§
|

b3
X ---=

%o s _, X
—é— [N
Fig. 2
For this bivariate distribution
o
go=4a—1, m.m:lji (4.1)




QU ADRANT DEPENDENT BIVARIATE DISTRIBUTIONS 15

Kruskal [4] has shown, that in this case

opg=1——{1 — Tg=1— "+ =
o 16( % T 1

4
=] - (1 — ie. p>71
16( 9 0>

(4.2)

Proposition 4.1: For the cdf. H,

(—9?

=1

Proof: For any points (x. v) £ R? but the points of the vectangle T, H(x, y) =
= min (F. G) holds, from which follows that:

g =1— ijfg dx dy TJJ‘ H— FG 7 dx dy (4.3)
' T

min(F, G) — FG

- U gl de — | 1y A—gp
ij dxd“_jfU gl dx*[l * 2) 16
T 4 \.'_i
[ H— FC fz dx dy > min H— FG fg dx dy
min(F, G) — FG min( F, G) — FG
H — FG

A simple calculation shows that min

(et min(F, G) — FG

From (4.3) follows that

(1—g)? (1 —¢q)? (1—g¢? ,
-+ =1 T . 4.4
16 1% 16 =0=T (4

3 >1—

(4.2) Let us consider now the bivariate distribution H defined inside the
unit square for which the probability mass is uniformly spread within the

two squares T7:

oo o3}

0, -
9

i}

el ) o

The support of this distribution can be seen in Fig. 3
Kruskal [5] has given for this distribution the following values

1 3 3



16 J. REIMANN

[N

%

We can show that for this distribution

- 4 -
MFe=dln2 — 2 e — (4.5
5
To see this we proceed as follows:
Within the square T):
xy 9 .
Hixy) = -2~ = 2. Fix) =% Gly) =7,
2

Hence: H — FG = xy and

'Un H— It fedxdy = J Y dedy + Af al dxdy =
min (F, G) — FG i I—w ) JJ 1 —x

Ty T4 Ty
.y x
= 24 J dx} dy -+ f ;L dyJ dx =
1—y 1 —=x
»=0 y=0
=21In ——W_JJ H FC dx dy
min (F. G) — FG

Within the square T, and T:
H(x, y) = min (F. G) therefore

JJ- H — FG dxdy =i
min (F, G) — 2

T.+T,

Hence:

—
g
-
=T
e
Ulln\:-

dedy =4In2 — 2 ~
FGfg y
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(4.3) D. Morgenstern [7] investigated the following type of bivariate distribu-
tion:
= FG -~ «F(1 — F)G(1 — G) (4.6)
where —1 <2 <1

In case of a positively quadrant dependence § <l % <{ 1 must hold. For this
distribution:

H, — FG &
dy = G(1 - F dx d
JJ min (F.G) — FG7° T T “JJ ( ) fe dx dy +
—oc ——2G F<G
. e F—YG)
-xf J Fl—6G)fgdxdy =u j G( J (EWF)fdx}gdy—i—
F>Cv: Voo Xm=—nc
. G~ (F) w
Pl '/ G3
o | oF] ] <1—C>ad9]fdw» | (G°——,-]>gdy+
! Z
Xem—0o0 V=—o —_—00
- i 5
v [ [P e =2 s
: LJ ( fdx D o
o = 12 J J (H, — FGC)fs dx dy — zg.f(F_ Fo)f dx J (G — GYgd ='§
— 4 Hy(i f»).~1—4(is_ lo1=2
& R 4 16 4
It is easy to show, that
o= bl v-—:},”?:—‘a_< and v=—E—y_: 0.3 i.e.
10 1T
1 . -
T oG > (4.7)

For the case of exponential marginals in (4.6) ie. F=1— ¢ and
G =1 — ¢ Gumbel [2] has shown that the correlation coefficient has the
value

In this case

> 0L g =1y

o
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(4.4) Let us now consider the following one parameter family of bivariate
distributions:

H, = min (F,G){1 — (1 — F)(1 — G)] where 0<{a<{1 (4.8)

5. Approximate values of a two-dimensional cdf H
in case of positively quadrant-dependence

Let H the joint cdf of the pair of random variables X and Y, and let
the marginal cdf-s F and G respectively. We suppose, that

H> FG.

We shall compare the probability of any quadrant X <x, Y < y under the
distribution H with the corresponding probability under the distribution
H =} min (F, G) + (1 — ) FG for suitable chosen value of 7.

First of all, we shall determine the value of A, for which the relation:

p(2) = {

ac oo
R —

{ (H, — HYfz dx dy = min (5.1)
holds.
As H, — H= (H; — FG) — (H — FG) the minimum-problem can Dbe

written in the following form:

¢(7) =

g

T (H, — F6)— (H— FOPfedxdy =  (5.2)

— 2 { { [min(F.G) — FCPfgdxdy — 24 { [ [min (F.G) — FG] -
[H— FGlfgdxdy + [ [ (H— FGPfedxdy = min.

Due to (2.4) and (2.8) the equation (5.2) has the following form:

¢a(;,):%_%+9“0, (5.3)
The function ¢{7) takes its minimum if
27 — 29
() = — 0 = 0 deif A=y (5.4)

Then
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By (2.3)
1 < u < v therefore

y — y2

<2

p(v) < <

< =~ 0.0027. (5.6)
90 360

From (5.5) it follows that the smaller the difference between p and 1% the
better the approximation of H by H,. If H= H,, then y= 22, v = 1 i.e.
¢(r) = 0.

Remark 1.

As H, — FG = ] [min (F, G) — FG] we can say that H, keeps the
proporiion between min (F, &) and FG.

Let us now introduce the following functions of the random variables
XNand Y:

UX.Y)=mn [F(X),(Y)] - HX., Y); (5.7)
VX, Y)=H(X,Y)— F(X)G(Y):
Z(X, Y) = min [F(X), G(Y)] — F(X)G(Y)
< 1) then
13

2
Uy=(1—2Z V,=3Z and U, =—"7, (5.8)
/

IfH=H,(0<

i.e. between the random variables U,, ¥, and Z there is a linear functional
relationship. It follows, that the correlation coefficients hetween the pairs

(U;. 2), (V,, Z), (U,, V) all are equal to 1.
T( Ui.v Z) = 1"( .Vi.v Z) == T(U;,v I‘,) =1 (59)

Remark 2.

In practical problems the two-dimensional cdf. H is usually unknown,
but in many cases we may suppose that its marginal cdf-s F and G are known.
If we have a sample (x,y,), (%5, 7:), ... (x,y,) we have the empirical two-
dimensional cdf. H, (x, v) and by means of F and G, we have a sample for U,
Vand Z:

U? = min [F(X)), 6(Y))] — H,(X,Y)),
V0 = H/(X,, Y) — F(X)6(Y)) and Z® = min F(x)G(y)) —
— F(X))G(Y)). t=1,2,....,n)

From this sample we can estimate the correlation coefficients in (5.9) and if
their values are close to 1 then we may expect, that the approximation of
H by H; “good” or even we may accept that the null hipotesis Hy: H = H,
holds.

2%
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Let us consider the following example taken from the flood-hvdrology.

Example. For the River Tisza in the period 1900—1970 in the second
quater of every year (1 Apr.—30 June) above the level ¢ = 650 cm the follow-
ing flood-Peaks were observed.

Table 1
Year X (em) Y (day) Year X (ecm) Y (day)
1901 29 3 1941 204 68
1902 14 3 1942 38 7
1907 108 42 51 11
1912 72 19 60 14
34 10
1914 128 22 1944 4 3
1915 110 35 1952 2 5
1916 73 13 1956 39 10
37 7
1919 266 49 1958 66 25
1920 16 2 1962 170 33
1922 124 36 1964 114 19
1924 220 31 1965 98 15
1932 273 42 1967 134 41
1937 33 11 1970 309 91
1940 197 38
40 8
23 5

Testing the goodness of fit show that the exendance X have the cdf:
F(x) =1 — %% and the duration of floods Y have the

cdf: G(y) =1 — e- 008

For the joint bivariate distribution of the pair (X, Y) the sample was obtained
from Table 1.

The value of the correlation coefficient between V= H, — FG and
Z = min (F,G) — FG is r(V,Z) ~ 0.9 so we may accept the validity of
hypothesis H,:
(5.10) H=H,=rmin [l — e M ] — e~ 0¥ L

(1 — ) (1 — e=001%) (1 — = 0:05Y)
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Now the estimated value of » is needed. For the cdf. H, the value of » agrees
with the value of g = 4 H, — 1. ef. {3.2). The estimation of the value of g is
very easy from the sample

For comparison of the value of H, and the empirical edf. H, le: us con-
sider these values in the quartile-points (%y5. ¥1p1)» (Fyos Yisa)s -« - (K0 Yafa):

H -Hn (H_Hn):
0.1935 0.000484

=]
o
—
3]
ut

0.225 01935 0.000992
(Foige Fu)s) 0.225 01935 0.000992
(Gaies Fuia) 0.2376 01935  0.001945
(o Fa12) 0.2376  0.1935  0.001945
(Fafer T1/2) 0.45 04516 0.000000

(e Tols) 0475  0.4838  0.00007

Rz 0.475 0.4838  0.00007
(Zsles Foja) 0712 0.68 0.00102

Hence the mean-quadratical derivation between H, and H, is:

o 20
2>

Mo

(H, — H,)?
————————— A (H, — HYfgdxdy = 0,00074.
9 o
In our example above the sample size (n = 31) is not large enough for carrying
out a test exaectly, but the high value of r along with the tabulation heur-
istically suggests the validity of our inference.
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