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Abstract 

Several mea"lU('S for the dependence of two random variables are investigated in the 
case of given marginab and assuming po:;itively quadrant dependence. Beyond k'itown quan­
tities (Spearman. Pearson correlation coefficient. etc.) three new measures are introduced 
and compared with the others. In detail are investigated the I.-dependent yariables (Konijn) 
moreoyer a special type of biyuriate distributions: a practical application in the hydrology of 
flood peaks is included. 

1. Introduction 

Let IT+- = n+(F, G) be the set of all continuous cdf's cumulative distri­
bution functions (cdf's) H on R? having continuous, strictly increasing marginal 
cdf's F and G. It will be assumC'd that F and G have finite variances. 

Let H be a positively quadrant depmdent, (Lehmann [6]), in which 
case, it is well known that for H(x, y) the following inequality holds: 

F(x)G(y) ::::: H(x, y) < min [F(x), G(y)] (1) 

for all x, J. 
For positively quadrant dependent cdf's we introduce the follo"'ing con-

nection function: 

;.(x. y) = H(x, y) F(x)G(y) 
, min[F(x), G(y)] - F(x)G(y); 

(2) 

due to (1) 0 < I.(x, y) < 1. At the same time this is the deviation of Hand 

F, G relative to its maximum value. Let H+(x,y) = min [F(x). G(y)] which 
is the "largest" bivariate cdf , ... ith marginals F(x) and G(y) resp. namely 

H+(=,y) = min [I, G(y)] = G()') 

H+(x, =) = min [F(x), 1] = F(x) 
(3) 

In the case of a positive quadrant dependence, Ho(x, y) = F(x)G(y) is 
the "smallest" bivariate cdf, with marginals F(x) and G(y) resp. 

1* 
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If the random variables X and Y have a joint cdf. H(x, y) > F(x)GCy) 
then for a measure of their degree the following measure seems natural: 

1.* = f J I.(X, y)f(x)g(y)dxdy = 

= J j - f(x) g(v) dxdr 
min[F(x)G(y)] _ F(x)G(y) w. . 

(4) 

which is the expected "relative" dn'iation between Hand FG. 

Proposition 1. If H FG and further F and G an' strictly increasing function:-
of x and y respectively. then tIll' measul'f' !.* has the follo\\'ing propertl"'-: 

(I) 1.* = 0 if X and Y arf' independent 
1.* 1 if there IS a monotonically increasing functional - relation 

between X and Y: Y G-l[P(X)) or X = P-l[G(Y)] 

(Il) ),* is a monotonically increasing function of H. in the sense that if 

Hc:2: HI' thcn N > ;.I' 
(Ill) !.* is inYal'iant under the concordant monotollic transformations of the 

1'. yariables X and Y. 

Proof: (I) From (4) it follo\\'s, that 1.* == 0 if H 
= min (F, G). Let H = min (F, G). i.e. 

H 

Let now /3 > :x and F > G, then H 

if P G 

if F> G 

G i.e. 

FG and 1.* 1 if H 

H(i,;) , ,v,) = G(5'~) :x == F(xJ where xx' y~ are the :x-quantiles of F and 
G resp.) 

Hence: f" = G-l[F(xxn for all :x E [0, 1]. Similarly if F < G. then H = F and 

F(;\:x) =:x G()"·~) i.e. x, = F-l[G(yJ], .Yx G-l[F(x,)]:xE [0,1]. 

Fig. 1 
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Let now Y = q(X) be a strictly increasing continuous function, then 

fJ. = G(yJ P(Y < y,J = P(cp(X) < y~) = 

= P[X < (p-l(y~)] = P(X < xJ = F(x~) 

i.e. G(y~) = F(x~),j~ G-l[F(x~)] fJ.E [0,1] 

(II) it follows, that for H2 > HI 

f f 
- FG 

;o~' - }1 = ,min (F,. G) _ FG ~~- 1 ft~~= f f H FG 

min(F, G) - FG 

---~---- f.t:{,dxdv > 0 rf Ho- H J 

v min (F, G) - FG '- 0" 

(Ill) Let U = (((X), V = lp( Y) where ({ and lp are both monotonically increasing 

or both monotonically-decreasing then X = IT -I( U), Y = lp- l( V) and 

FI(ll) P(U < u) P(q:(X) < u) = P(X < rp-I(u» F['T- 1(u)] = F(x) 

G1(v) = P(V <) P(lp(Y) < 1') P(Y < lp-l(V») = G[V'(v)] = G(y) 

H1(u, v) = P(U < It, V< v) = P(rp(X) < ll, 7p(Y) < v) = 

= P[X < rp-7(u), Y < lp-l(V)] = H[q-l(U), lp-l(r)] = H(x,y) 

f(x) dx 
dll 

= f JO . H(x, y) - F(x)G(y) ° f(x)g(y)dxdy = }.*(X, Y) 
mm[F(x), G(y)] - F(x)G(y) 

q.e.d 
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2. Investigation of some nonparametric measurns of association 
in case of a positively quadrant dependence 

There are very many possibilities to construct measures of association 
and a lot of them have heen proposed. Among the most familiar measures 
we mention the following nonparametric ones: 

J J (H - FG)dxdy 
r = -------.-- (correlation coefficient, Pearson) (2.l.) 

= = J J (H - FG)fgdxdy 

!:! = 12 r r (H - FG)fgdxdy = -=-=-.. -- ------- (2.2) 

J J [min( F, G) - FG]fg dx cly 

(Spearman) 

= = 7 .1.\ (Hh - FGfg)dx cl)' 
T = 4 J J Hh clxcly - 1 = -=- -: ___ ~= (2.3) 

-= -= 3 J .\' [min( F, G) - FG]fg dydx 

(Kendall) 

\' r (H FG)2fg clx dy 

,u = 90 J .\' (H - FGffg clx cly = -: ___ ~~ - (2.4) 

-=-= .\' .\' [min(F, G) - FGFfgdxcly 

(Hoeffding) 

i' = l'p (Blum-Kiefer-Rosenhlatt) (2 . .5) 

H(x~, Yt) - F(x})G(j}) 

min F(xt, Yt) - F(xt)G(5't) 

(Blomqvist) 

K = 4 sup I H(x, .y) - F(x)G(y) I (Schweizer-W olff) 
(x.y) 

(2.6) 

(2.7) 

It is not difficult to construct other measures. For the case of a positively 
quadrant dependence beyond ?,* we propose the following further measures: 

v = 90 ,r J (H - FG)[min(F, G) - FG]fg clx cly 

J J (H - FG)[min(F, G) - FG]fg dx cly (2.8) 

J ,r [min(F, G) - FGJ2fg dx cly 
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S S 
H- FG 

w = VF(l _ F)G(l _ G) fg dx dy (2.9) 

J J (H - FG)dx dy 
1.* * = ---=---=---------

r 
(2.10) 

S .\ [min( F, G) - FG]dx dy 

where r + is the correlation coefficient if the joint distribution of X and Y 
is H+(x,y) = min [F(x), G(y)]. For different H's the values of the mentioned 
measures depend on H in a fairly simple way. Some relations among them 
are contained in the foUo'wing proposition. 

Proposition 2.l. 

).* >..!L 
- 3 

}.** >- r 

i.* > w 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

0 
(2.5) 't >~ 

3 

f1 0.625 r/ 2.6) 

V90 
(2.7) "':>--0 

I "- 12 ~ 

}.* 0.625 cl (2.8) 

1 
Proof: (2.1) follows from the fact, that min (F, G) - FG 4; namely 

in case F < G, min(F, G) - FG = F(l - G) < F(l - F):S::: ~ 

in case F> G, min(F, G) - FG = G(l - F < G(l - G) < ~ 
= c-c 

i.* = . . fg dx dy > 4 (H - FG)fg dx d.y =....:::... j' f H - FG j' S 0 

mm( F, G) - FG 3 

(2.2) follo"ws from the fact that r.;. = -- I (minF, G - FG) dx dy :s::: ] 1 . J 
0'10'2 ) 

(2.3) is a consequence of the inequality of Schwarz, Namely 

J J (H - FG)[min(F, G) - FG] fg dx dy < 

< [ .r .f [(H - FG)2fg dx dy]1 [r .f [min(F, G) - FGFfg dx dy]!, 
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hence 

11 V~ 1 . - < -;='-:-=. I.e. l' ~ = ?', 
90 - V90 V90' 

further 

v J J (H - FG)[min(F, G) - FG]fg dx dy 
90 

> J J (H - FG)2fg dx dy = ~L~ 

(2.4) follows from the fact, that if F < G, then 1 - F::2: 1 - G, i.e. 

F(l G) < rG(l--p) 

F(l - G) < 
and if F > G 

G(l - F) < 

. '" J~S H - FG d d 
J." = F(l _ G) x y 

F;;;.G 

- F)G(l - G) consequently 

SS 
H - FG I'u dx d • > 
G(l _ F) Jb . .}-

F>G 

J r H- FG 

> . F(l - F)G(l - G) 
dx dy = (!) 

To see (2.5) we havc to compare 

T = 4 .\' .1' Hh dx dy - 4 J J FG fg dx dy 

and 

3 = 4 J J H fg dx dy - 4 J J FG fg dx dy 

For H > FG, the relation 

= = 
J .1' Hfg dx dy = .1' .1' FG h dx dy < J J Hh dx dy (Konijn [4]) 

is valid and it follo"ws that 

o i<....:::..-. 
- 3 
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(2.6) is a consequence of Schwarz in inequality according to which 

[ r S (H - FG)fg dx dy]2 .\ J (H - FG)2fg dx dy· J .\ 12 • fg dx dy 

and 

hence 

> 90 0 06"'" 0 L1 --0-=. ~;)O-
'-144- -

and 

3 Investigation of a positive 1_. dependence 

Konijn [4] inwstigated the follQ"',ving type of cdf. 

I. min (F, G) (1 i.)FG (O:S:: i. 1) (3.1) 

It is obyious. that Hi. ~ FG i.e. Hi. is positiyely quadrant dependent. 

Proposition 3.1. If the LV'S X and Y haye joint distribution function Hi.' then 

i.* = Q = i' = 1.** JI K=q=i. 

T I.; 

r :s:: I.; 

Proof: For the statement (3.1) we haye 

dx dy = I. J J fg dx dy = I.. 

= = 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

Q = 12 .\' .1' (Hj • - FG)fg dx dy = 12;,.1' .1' [min(F, G) - FG]fg dx dy = ;. 

1 
being the second integral 12 which follows from the sequence of equalities: 
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J J [min(F, G) - FG]fg dx dy = J f F(l - G)fg dx dy + 
Fs;,G 

F-l(G) 

+ f f G(l - F)fg dx dy = f (1 - G) [ J F f dx] g dy + 
F<G Y=-= x=-;::.c 

= G-l(F) = 

+ J (1- F)( J (Ggdy)f dx = ~ J(G2_ G3)gdY + 
X= 2 y=-= 

= 

+~. J (F2 - F3)fdx 
2 

1 

12 

;J = V~ being according to 2.4 and 3.1 we have 
, A...... ....... 

,u = 901.2 J .I' [min( F, G) FG]2 fg dx dy = }.2 

as the relation 

J J [min( F, G) FGFfg dx dy = 9~ 

is well known. 
For the statement concerning I' we have 

v = 90 \. r (H - FG)[min(F, G) - FG]fg dx dy = 

90 .r J [min( F, G) - FG]2fg dx dy = I. 

y. = 4 sup (Hi. - FG) = 4 I. sup [min(F, G) - FG] = 4 I . . ~ I. 
(xy) (xy) 4 

To see that 3.3 holds let us denote min (F, G) by H+. Konijn [4] has shown 
that 

J J H+h+ dxdy = ~, J J FGh+ dxdy = J J H+fgdxdy = ~ 
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hence 

1: = 4 J J Hi.hi. dx dy - 1 = 4 .\ J (Hi. - FG)h" dx dy + 

+ 4 .f J FG(hi• - fg)dx dy 

'where hi, = i,h + + (1 - i,)fg· 
This way by simple computation we get: 

}.2 ') 
1: = + ~), I, (equality holds in the case of ), = 1 only). 

3 3 

(3.4) Can be seen by direct computation: 

- 1 (H FG)d d -' f f [min( F, G) - FG]. d d -' . < ' r - i.- X Y - ). X Y - ).r.~ _ ). 
0'10'2 0'10'2 

(r.,. = 1 iff G-l[F(x)] = ax + b, where a >0) 

Relation (3.5) is obvious: 
.u = 1.2 I .. 

Remark: Let Hi. i
= I' i min (F, G) + (1 - }.,.)FG i = 1,2, then 

f J [min(F, G) FG]dx dy 1 ') , .... 

Here 

1 J J [min( F, G) - FG]dx dy 

= = = 

0':0'2 [ J' xG-1[F(x)]f(x)dx- J xf(x)dx J yg(Y)dY] 

i.e. 

~ 
ri.~ 1'2 

Theorem 1. shows that if the joint distribution of the random variables X and 
Y is Hi. = i. min (F, G) (1 - i.) FG, then the coefficient i. expresses itself 
the degree of positive association between the r.v.s. 
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Corollary 3.1.: If for the cdf H > FG holds and "we calculate the measures 

then we can find the linear combination of min (F, G) and FG, 

Ht = l.imin(F, G) + (1 }'i)FG (i = 1,2, ... , 10) 

for which = Xi (i = 1,2, ... , 10) 

'where 

Theorem 3.3: If r.Y.s. X and Y have the joint cdf H = ;. min (F, G) 
(1 - ;.)FG then the regression curve of Y with respect to X has the form 

E( X) = x) = y(x) = /.C-l[F(x)] (1 /.)E(Y) 

Proof: The conditional cdf of Y under the condition X = x. 

. 1 
G(yx) = 

f(x) ox 

H. = {;.F - .(1 - I.)FG 
I. J.G (1 }.)FG 

if F G 
if F> G 

it follows that in this case 

and we obtain: 

G( .' ) - " I 'I ")G ):x - I. --;- ( - I. 

(1 - I.)G 

if F G 

if F> G 

= ~ 

j·(x) = J ydG(y, x) = J.y + (1 - I.) J y G(y)dy = 

= G-l[F(x)] + (1 - i.)E(Y) 

which is true as in case 

F G, y = G-l[F(x)] . 

(3.6) 

Remark 1: Let the joint cdf of r.v.s. X and Y be a two-dimensional normal 
cdf, with marginals: 
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and with correlation coefficient r. 

Then F(x) = <1>( X ~l ml
), G(y) = <1> ( Y ~2m2 ) where <1> (x) is the stan-

dard normal cdf. 
The equatIOn of thr quantile curye IS: 

5-(x) C-l[F(x)] = 
0\ 

The equation of tht' rt'grrssion line of Y with respect to X is 

.v(x) = r 

Hence 

,f(x) = rC-l[F(x)] -- (1 - r)E(Y) (3.7) 

i.e. the relation (3.6) holds for hivariate normal distrihution::; as well substitut­

Ing I, = r. 

From this fact we get the following theorem: 

Theorem 3.4,: Let H he a two dimensional normal celf with correlation coef­
ficient r and with marginals F and C; let further 

Hr = r min (F, G) ~ (1 - r)FG . (3.8) 

Then for H and Hr the correlation coefficients. as also the regression lines 

coincide. 

Remark 2: This way (3.7) is a necessary condition for a two dimensional cdf. 
H(x, y) , .. ith normal marginals F and G resp. to be two a dimensional nor­
mal celf. 

The fact, that (3.7) is not a sufficient condition for two a dimensional 
normality sho'ws the following example: (Renyi [8]. pp. 317-318). 

Let H(x, y) he a two variate cdf having density function: 

1,­
Jz(x, y) = Cl 2 e 

2:z: 

The marginal densities are: 

1 :" 1 
f(x) = -:-:=- e - and g(y) = -::=- e 

V2:z: V2:z: 
resp. 

A simple calculation shows that r(X, Y) = 0, hut X and Y are not independent, 
as hex, y) ..,.:.. f(x)g(y). 
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The conditional density function of Y under the condition X = x is 

( ') h(x, y) 
g)'lx = = 

f(x) 

1 
X2 

(f2" - e2") 

The regression function of Y with respect to X is: 

y(x) = j' y g(ylx)dy = 1 (f2" - e 
12:1: 

J ye-Y
' dy + 

X2 = 

e2" f (1'2" e - e-Y') dy = 0 = E(Y) 

The equation of the quantile curye is: y = C-l[F(x)] x. Since r 

y(x) = 0 . x (1 - O)E( Y) 
i.e. (3.7) holds. 

o 

The relation (3.8) is a somewhat more attractive example for the fact 
that (3.7) is not a sufficient condition for the bivariate normality. 

4. Realition for q, p, T, and A* in some special type of distrihutions 

(4.1) Let us consider the biYariate distribution Ho 'which has the general 
appearance of Fig. 2. 

y 

~-~I 
/, 
T 

y 
"" 

1+q 
-{,-

x, x 

2"" 

Fig. 2 

For this bivariate distribution 

qo = 4 (J. - 1, i.e. 1+ x =--=-
4 

(4.1) 
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Kruskal [4] has sho\',>1, that in this case 

Qo = 1 
3 (1 )2 

- (1 - q)3; To = 1 - - q = 
16 4 

I - 1
4
6 (1 - q)2; i.e. e T 

Proposition 4.1: For the cdf. Ho 

(1 _ q)3 
J.~" = I - -'----=-

16 

15 

(4.2) 

Proof: For any points (x, y) ~ R2 but the points of the rectangle T. H o(x, y) = 

min (F. G) holds, from which follows that: 

1·3' = 1 - JSfg dx dY-i-
H FG 

dxdy 
mine F. G) - FG 

T T 

Sf 
H - FG . H - FG 

-------flz dx dy > mm ------­
. mine F, G) FG v - mine F, G) FG 

T 

dxdy 

H- FG 
A simple calculation shows that min = q 

(x, y)ET mine F, G) - FG 

From (4.3) follows that 

1.0* > 1 _ -'----"'.'-+ q _(I ___ q)_2 = 1 _ (1 - q)3 >0> T. 
16 16 16 -~ -

(4.3) 

(4.4) 

(4,.2) Let us consider now the bivariate distribution H defined inside the 
unit square for which the probability mass is uniformly spread within the 
two squares T1 : 

(0, 0), r~., 0J· (~, ~.), (0, ~J. and T3: (~, ~), (1,~) (1, 1), l~' I} 
222 2. 22 2 2 

The support of this distribution can be seen in Fig. 3. 
Kruskal [5] has given for this distribution the following values 

q = 1, 
1 

T=-. 
2' 

3 3 
e= =-T 

,1< 2 
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Fig . .3 

,\Ve can show that for this distribution 

;.* 4In:2 - :2 (4.5) 

To see this we proceed ai3 follo'ws: 

Within the square 1'1: 

H(x, y) 
1 

:? xy, F(x) x. G(y) y. 

:2 

f(x) g(y) = 1 

Hence: H - FG = xy and 

~~ H FG 

JJ min (F, G) - FG ff Y dx dy = 1 dx dy 
Y J~f x dx dy 

, 1 - x 
T; 

J l-y (fdX)dY f l~x IfdY)dX~ 
y=o x=o x=o y=o 

= :2 In 2 - -~ = J f min ~~G;~ FG dx dy 
T, 

Within the square 1'2 and 1'.1: 
H(x, y) = min (F, G) therefore 

------- dx dy = -Sf H - FG 1 

min (F, G) - FG 2 

Hence: 
11 

ff-_H __ F_G __ jg dx dy = 4ln 2 - 2 P0 ~ 
min (F, G) - FG 5 

00 
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(4.3) D. Morgenstern [7] investigated the following type of bivariate distribu­

tion: 
HI = FG -;.- :zF(1 

where 1 

F)G(1 - G) 

:z 1 

(4.6) 

In case of a positively quadrant dependence 0 < x < 1 must hold. For this 

distribution: 

;.~ II 1. fg dx dy = Cl.. G(1 H - FG II 
min (F, G) - FG . 

F)fg dx dy + 
F:;S;G 

F-'(G) 

x I J F(1 - G)fg dx dy = :z I G ( I (1 - F)f dX) g dy ..:-

F>G Y=-= X=-= 

'::' ,G-;,'(F) ) I= ( G3 ) 
-;-:z J F I J (1 - G)g dy f dx = :z G2 - 2 )g dy + 

X=-:'X:l y=-oc 

( 
F3 ~ 

-i- :z I F2 - -) f dx = J Cl.. 
, 3 12 

QI = 12 J I (HI - FG)fg dx dy = 127. I (F - P)fdx J (G 
Cl.. 

G2)gdy= -
3 

1 =4(~ 
4 

It is easy to show, that 

(/.~ 

u=-: 
, 10' 

1 'Y. 
V = I U =--= , , nO and 

Cl.. 1 :z - -1=-
16 J ,1 

17 
v = -:z = 0.3:z i.e. 

56 

(4.7) 

For the 

G=1 
value 

case of exponential marginals in (4.6) i.e. F = 1 - e-x and 
e-Y Gumbel [2] has shown that the correlation coefficient has the 

In this case 

2 
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(4.4) Let us now consider the follo"Wing one parameter family of bivariate 
distributions: 

H2 = min (F, G)[I - cr.(I - F)(I - G)] where 0 < Cf. < 1 (4.8) 

5. Approximate values of a two-dimensional cdJ H 
in case of positively quadrant-dependence 

Let H the joint cdJ of the pair of random variables X and Y, and let 
the marginal cdJ-s F and G respectively. We suppose, that 

H~FG. 

\"5h shall compare the probability of any quadrant X < x, Y <)' under ,'1e 
distribution H with the corresponding probability under the distribution 
H = I. min (F, G) + (1 I.) FG for suitable chosen value of I .. 

First of all, we shall determine the value of t., for which th~ relation: 

rp(J.) J .\ (H, -- H)2 fg dx cly = min (5.1) 

holds. 
As Hi. - H = (Hi. - FG) - (H - FG) the minimum-problem can he 

written in the following form: 

'f(J.) = J .\ [(Hi. - PG) - (H - FG»)2 Jg dx cly = (5.2) 

1.2 J .1' [min (F, G) - FGF Jg dx d)' - 21. J J [min (F, G) - PG] 

• [H FG]Jg dx cl)' + J J (H - FG)2 Jg dx dy = min. 

Due to (2.4) and (2.8) the equation (5.2) has the following form: 

'2 ?" 
.(") I. ~/.V, f-l If I. =---,-. 

90 90 90 

The function 'p(J.) takes its minimum if 

Then 

g:'(J.) = 
2/, - 2v 
---=0 

90 

v 2 _ ')v2 ..L 
cp(v) = - I 

. 90 

i.e. if I. = l' 

f-l-v2 

90 

(5.3) 

(5.4) 

(5.5) 
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By (2.3) 
),2 < .u < v therefore 

v _,,2 1 
q;(v) < -- --?8 0.0027. 

- 90 360 
(5.6) 

From (5.5) it follows that the smaller the difference between Il and v2, the 
better the approximation of H by Hi .. If H = Hi., then fl = 1.2, v = }. i.e. 
cp(J') O. 

Remark 1. 

As Hi. FG = J. [mill (F, G) - FG] 'we can say that H;. keeps the 
proportion between min (F, G) and FG. 

Let us now introduce the following functions of the random variables 
X and Y: 

IfH 

V(X, Y) = min [F(X), G(Y)] - H(X, Y); 

V(X, Y) = H(X, Y) - F(X) G(Y); 

Z(X, Y) = min [F(X), G(Y)] - F(X) G(Y) 

Hi, (0 < ). < 1) then 
1 - I, 

Vi. = (1 - i.)Z, VI. = i.Z and Vi. = -.- Vi. 
I. 

(5.7) 

(5.8) 

i.e. between the random variables Ui., Vi. and Z there is a linear functional 
relationship. It follows, that the correlation coefficients bet'ween the pairs 
(V;., Z), (Vi., Z), (Vi.' V;.) all are equal to 1. 

r(Vi.,Z) = r(Vi.,Z) = r(Vi,' 'V;.) = 1 (5.9) 

Remark 2. 

In practical prohlems the two-dimensional cdJ. H is nsually unknovm., 
hut in many cases we may suppose that its marginal cdf-s F and G are known. 
If we have a sample (XI)'l)' (X2, )'2)' ... (XnY n) we have the empirical two­
dimensional cdf. H,,(x, y) and by means of F and G, we have a sample for U, 
V and Z: 

U(i) = min [F(XJG(Y)] - H,,(XiY), 

VUl = H,,(Xi, YJ - F(Xi)G(Yi) and Z(il = min F(x)G()'i) -

- F(X)G(YJ, (i = 1,2, ... , n) 

From this sample we can estimate the correlation coefficients in (5.9) and if 
their values are close to 1 then we may expect, that the approximation of 
H by Hi. "good" or even we may accept that the null hipotesis Ho: H = Hi, 
holds. 

2* 
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Fig. ·1 

Let us consider the following example taken from the flood-hydrology. 
Example. For the River Tisza in the period 1900-1970 in the second 

quater of every year (1 Apr.-30 June) ahove the level c = 650 cm the follow­
ing flood-Peaks were observed. 

Tahle I 

Year X (cm) Y (day) Year X (em) Y (day) 

1901 29 5 1941 204 68 
1902 14 3 1942 38 7 
1907 108 42 51 11 
1912 72 19 60 14 

34 10 
1914 128 22 1944 4. 3 
1915 no 35 1952 2 5 
1916 73 13 1956 39 10 

37 7 
1919 ~66 49 1958 66 'r -:) 

1920 16 2 1962 170 33 
1922 IN 36 1964 1H 19 
1924 220 51 1965 98 15 
1932 273 42 1967 134 11 
1937 53 11 1970 309 91 
1940 197 38 

40 8 
28 

.-.----~~- --. ------- ----_._---

Testing the goodness of fit sho'w that the exendancc X have the cdf: 
F(x) = 1 - e- O· 01X and the duration of floods Y- have the 

cdJ: G(y) = 1 - e- O. 05Y 

For the joint hivariate distribution of the pair (X, Y) the sample was obtained 
from Table l. 

The value of the correlation coefficient between V = Hn FG and 
Z = min (F, G) - FG is reV, Z) PS 0.9 so we may accept the validity of 

hypothesis Ho: 

(5.10) H = Hp J'min [1 e- o,oIX,l - e- O•05Y] 

(1 - v) (1 - e- O,OlX) (1 e - 0,05Y) 
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Now the estimated value of JI is needed. For the cdJ Hv the value of v agrees 
'with the vdue of q 4 Hv - 1. cf. (3.2). The estimation of the value of q is 
very easy from the sample 

A 1 14 
q = 'l" - - 1 = 0.8. 

31 

For comparison of the value of Hv and the empirical cdJ. Hn le~ us con­

sider these values in the quartile-points (;1:1/1 ,11/4)' (:1:1/2, )'1/.!), ... (;1:3/ 4, )'3/4): 

}[ H" (H-En)' 

(XIII' 'fl!l) 0.2125 0.1935 0.00048·1 

('~1!"2~ Yl!.lJ 0.225 0.1935 0.000992 

Yl!J 0.225 0.1935 0.000992 
---- - -~ -~ --" 

(xliI. Yliz) 0.2376 0.1935 0.00194,5 

(X1 : 2• :hI2) 0.2376 0.1935 0.001945 

(x3/.l' 'f1/2) 0.45 0..1.516 0.000000 

(xl /4• J"3/4) 0.475 0.4838 0.00007 

(;;\/2.5'3/4) 0..1.75 0.4838 0.00007 

(x3/~. 5'3/4) 0.712 0.68 0.00102 

Hence the mean-quadratical derivation between Hn and Hv is: 

H)2 fg dx d)' = 0,00074. 

In our example above the sample size (n = 31) is not large enough for carrying 
out a test exactly, but the high value of T along '\vith the tabulation heur­
istically suggests the validity of our inference. 
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