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Ahstract 

Two types of recent iterative modelling methods are discussed. The first of them is 
based upon the theory of generalized integro-differential operators and applies to systems 
satisfying some kind of linear (ordinary or partial) differential equation. It seems to be useful. 
however, rather from theoretical than from practical point of view. The other procedure has 
a completely different character: it can be considered as a strong extension of the well-known 
logarithmization method combined with least squares adjustment. and leads to the analytical 
modelling of a lot of physical, engineering and biomedical systems or phenomena which could 
be described only empirically up to the present. Some ideas of the results have been published 
by the author e.g. in: Lecture Notes in Mathematics. 457 (Springer, 1975) as well as in the 
volume ":Mathematical :Modelling in Science and Technology" (Pergamon Press. 1984). 

1. Preliminaries on Generalized Differential and Integral Operators 

Since the publication of Heayiside's "Electromagnetic Theory" (1893-
1912), it has been common knowledge that the formal calculation by the 
operator D = didt yields non-integral powers or transcendental functions of 
D for numerous linear partial differential equations of practice, this being a 
natural motivation to define "fractional" integrals and derivatives. Introducing 
the Laplace transformation and other rigorous operational methods of the 
recent past, we can lay the exact foundation of the "linear operators of arbi
trary order" or (roughly speaking) that of the "fractional calculus" in a wider 
framework. 

During recent decades, many important further equations have been 
treated in literature by fractional operators for which the utilization of this 
technique is not immediate at all. Among numerous examples from potential 
theory, electrodynamics, hydro- and aerodynamics, chemical kinetics, etc. (cf. 
[1], [3], [9], [10], [22], [23], [25]), let us stress lVL-\.RCEL RIEsz's fundamental 
results on the m-dimensional wave equation (see [24]), further the compre
hensive investigations of ERnELYI and SNEnnoN on axially symmetric poten
tial problems and dual integral equations ([2], [4], [5], [6], [26]). In these 
works the "fractional calculus" appears not only as a "short-hand" method 
for a more concise and more lucid presentation of certain analytical processes 
or mathematical deducations, but it suggests also the validity of some essential 
interconnections, thus becoming a useful "catalyst" of development. 
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We add that often, according to the problem in consdieration, appro
priate generalizations have been needed. M. Riesz gave e.g. in [24] the solution 
of the Cauchy problem for the Lorentz-Minkowski space of m-dimensions 
(especially for the relativistic space-time) by means of a remarkable version 
of the so-called Riemann-Liollville fractional integral 

x 

xiU = r(v)-l r f(t) (x - t)"-l dt (Re JI > 0), (1) 

"\vhich exists always when the function f is bounded and Riemann integrable, 
as well as with fixed v for "almost all x" if f is Lebesgue integrable (cf. e.g. 
MIKOL_.tS [14]), furthermore satisfies the following "index law" or "semigroup 
property" : 

2. A New Iterative - Interpolatoric Principle for Solving Differential Equations 

For our present purposes, the idea of "derivative of order [1" is of the 
greatest importance where ,Lt means an arbitrary (real or complex) number. 
Instead of its usual definition (due to Riemann) which yields the fractional 
derivative via ordinary differentiations of (1) or (as it was proposed by M. 
Riesz) by analytic continuation of the Riemann - Liouville integral as a holo
morphic function of the order JI, we consider the limit (cf. MIKOL . .tS [11] - [12] 
and [21], [27], [28]): 

xoDU = lim (X - xo) -I' ;Zl (_ 1)1-: (fl) f (x _ k x - xo) . 
n-~ n 1-:=0 k \ n 

(3) 

This is clearly a direct common extension of the notions of ordinary 
derivatives and Riemann integral by 

x 

xoD~f=JlP)(x), xoD;"j= r(JI)-l Jf(t)(x - tY- 1 dt 
x. 

for [J. = p (p = 0,1,2, ... ), fp-times differentiable, and for [1 = - JI < 0, 
f Riemann integrable, respectively; hence it is also motivated the recent 
designation "integro-derivative" (introduced for (3) by the author). 

We can word now a general "iterative-interpolatoric principle" for solving 
differential equations of the form 

eu=f (4) 

where e is a homogeneous linear (ordinary or partial) differential operator 
andf " 0 is a known function. (See also iVlIKoL . .\.s [13].) 
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L step: on the basis of the representation (3), we "write the first term 
of (4) as a limit expression involving binomial coefficients. 

n. step: iterate the operator 0 p-times; the resulting 0 P II will again 
have a limit form of the just mentioned type, 

Ill. step: try now to extend the definition of the latter to arbitrary 
real 11 instead of p so that it should he a continuous function of v. 

IV. step: if it comes off, we merely have to put )1 = 1 and obtain 
as a particular solution of (4) 

u 0-1 f (5) 

provided that the operator relation 0- 10 = 0° (where 0° is the identity 
operator) can he verified. 

For example, in case of the equation u' !J = f(x) (u = ll(X): Xo < 
<" x Xl) the calculation will he: 

0P U = (1 -;- ~J P u 
dx 

= lim ("X - XO)· -P 'i;1 (_ 1)" I·~) (1 --L x -
Tl-= n 1:=0 k 17 

and hence we get: 
x 

U = 0- 1 f = lim _x_----" ~1 (1 + x - X o) -(1:-'-1) f (x _ k x - X O) =Jf(t) et- x dt, 
Tl-= n k~O, n n 

x. 

as it may he pointed out by another way, too. 
It is ohvious that this method enables us to model analytically several 

problems in physics and engineering, hut the effective representation of the 
inverse operator 0 -1 is often too complicated. Nevertheless we see that, 
whenever applicable, the procedure permits simultaneously to give also 
numerical approximations and computations for the particular solution 
looked for. 

3. The ILP - Method for l\lodelling Systems of Empirical Data 

In the following we shall study in detail another modelling process which 
is much nearer to practice. As far as the preliminaries are concerned, let us 
mention first, that since 1977 a lot of ohservations have heen investigated 
by logarithmization and least squares adjustment at our Mathematics Depart
ment as well as at the Department for Production Engineering (headed hy 
Prof. I. Kalaszi); partly on some characteristic properties of several plastics, 
partly on the main factors governing the grinding operation which is funda-
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mental in mechanical technology. (Cf. KAL.~SZI [7] - [8]; lVIIKOL.~S - BARDocz 
[17]- [18].) 

At about the same time, an independent work was begun in collabora
tion of the author's team ,·vith the neonatological research group in the Heim 
Pal Children's Clinic of Budapest (the head of which has been Prof. 1. Sarkimy). 
In that institute, a big experimental and statistical material was collected 
during a period of ten years, containing e.g. the data of more than 5000 infant 
deaths occurring in the first 24 hours after birth. So it was natural to ask: 

how" the logarithmization method could be developed further in order to 
describe the dynamics of the phenomena in question - if a kind of iteration 
''v·as utilized? 

Based on this line of investigations, elaborating also over ten thousand 
recent perinatal events (in Hungary and abroad), a ne-w "iterative logarithmic 
procedure" (ILP) could be given, applicable to arbitrary physical, engineering 
and biomedical systems, characterized by posi1 ive and strictly monotone 
increasing or decreasing - especially convex or concave - sequences of data. 
(Cf. MIKOL.~S [15], MIIWd.s-S.~RK.~NY [19].) 

The main points of the method are: 

1 0 If 0 < Xl < X z ... < Xl] are the values of a variable x, 0 < YI < 
< ... < YIl the corresponding values of another variable y. we "delineate" 
first the connection between 

Y?' = IgYi 
y . I 

(i = 1,2, ... , n), 

where "lg" means logarithm to the base 10. 

2 0 We consider the connection of 

(6) 

Xi 2) = 19 (1 -;- 10 X?I) and Y?) = Ig(1 + 10 Yjl») (i = L 2, ... ,n). (7) 

3° Logarithmizing again, we connect 

X)3) = 19 (1 + 10 X):!') with y)3) = 19 (1 + 10 Yj2» (i L 2, ... , n),(8) 

and so on. 

The final step -will yield a straight line or a graph composed of two 
straight lines, containing approximately all the points (XiNl, Yi'II,')) with some 
fixed Nand i = 1,2, ... , n. Then adjusting by least squares for the point 
system just mentioned, we can get a more precise analytic expression describ
ing the stochastic dependence of Y and x. If this has come to pass at the N-th 
step, we say that the connection X -. Y obeys an N-fold logarithmic law. 

We have to lay particular stress Oll the facts that 1) the procedure 
converges rather rapidly, namely it finishes in most cases for N 3 (we 
speak about a "simple", "double", "triple" logarithmic law when N = 1, N = 2 
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and N = 3, respectively); 2) the detailed discussion is based upon the ine
qualities 

19 (1 + 10x) > x (0 < x < -c); 19 (1 + 10x) < x (x> -c), 

where r = 1.067 . .. denotes the only real root of the equation 

19 (1 + 10x) = x, 

furthermore upon the limit relation lim Q_g (1 + 10x) - x] = O. 
X-T 

4. Applications of Late Years, Repeated Logarithmic Laws 

A few typical illustrations of the iterative logarithmic method: 

(9) 

In Figure 1, we present the dynamics of the mortality during the first 
year of life, stated for the about 10.7 million population of Hungary in 1981. 
As known, the so-called infant mortality is one of the most important param
eters for the health conditions of a population; thus it has been registered 
by the WHO since many years for almost all countries of the world. Unfol
tunately, till now it could he investigated empirically only, because no fit 
mathematical model has been kno·wn. We tried to obtain such a model in 
the following manner: firstly wc considered, how many percents of infants 
died after birth in a time interval [0, T] less one year (e.g. during 1 month, 
2 months, ... ) and then we investigated this percent number Q as a function 
of T, represented by a curve concave from below. 

Turning now to the logarithms 19 (Q.Ql) and 19 (T.1), i.e. applying the 
first step of the above procedure, 'we find that there exists a linear connection 
between these variables. In other words: 'we have a simple logarithmic law for 
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Fig. 1. The dynamics of mortality during the first year of life. Hungary, 1981 
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Fig. 2. The simple logarithmic law of infant mortality. Hungary. 1981 

the infant mortality in Hungary. (Cf. Figme 2.) This statement seems to hold 
for other periods and countries, too. 

In Figures 3-4 similar interpretations are given for the mortality during 
the first day of life - again in case of Hungary for the year 1981. It is remark
ahle that now also the second step of the method is needed, i.e. we ohtain a 
double logarithmic law. Going fmther: the same connection holds also for the 
dynamics of the mortalities within one month (which is called "neonatal mor
tality") or one week ("postnatal mortality"), hesides for the intrauterine 

mortality, too; so it is about a general physiological law. 
Figures 5 and 6 sho"w that the above procedure can be applied also to a 

much wider manifold of demographic and biomedical phenomena: if we in
vestigate the frequency of new born with birth order* s;: k among all born in the 
same year, then we get a "triple logarithmic law" in the sense indicated before. 
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Fig. 3. The dynamics of mortality during the 
first day of life. Hungary. 1981 

Ig(l.iOlgT) 

Fig. 4. The double logarithmic law of mortal
ity within 24 hours. Hungary, 1981 

* By the expression "birth order" we mean, as usual in demography, the ordinal numeral 
of the new born among all children of the same mother. (For example, the birth order of a 
second child is 2.) 
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Fig. 5. Frequency of new born "ith birth or
der < k among all born in the same year. 

- Hungary 1938 

Fig. 6. The triple logarithmic law of the birth 
order before World War n. Hungary. 1938 

Note that the biological aspects have been presented by invitation at 
the 29th World Congress of the International Union of Physiological Sciences 
(cf. [20]) and a hrief outline on the general results appeared in a Proceedings 
volume at Pergamon Press in 1984. (Cf. MIKOL_.\.S [16].) 

5. Remark on Developing Possibilities 

Finally, we remark that the role of "lg" in the above method ILP may 
be taken over by any simple analytic function ;.(x) for which ;.(1) = 0, 
;.(x) t 00 and I.'(X) j 0 (1 < x < 00). The use of logarithms, however, seems to 
be most convenient for the majority of applications. 
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