
A REGRESSION MODEL 

S. SZABO 

Department of Civil Engineering )Iathematics, 
Technical University, H-1521 Budapest 

Received June 20, 1987 
Presented by prof. Dr. J. Reimann 

Ahstract 

In the normal linear regression the least square estimation of the coefficients has a 
series of nice properties. In addition the needed numerical calculations may be done a fairly 
efficient way. For the case when the application of this widely used least square method is 
not justified some further methods are suggested. But experience about their statistical and 
numerical properties can hardly be found. This paper intends to help the practitioner to become 
f2miliar with a type of non-least-square regression nH'thods. 

Introduction 

Besides other mathematical methods some random ones can be used in 
engineering sciences. The first task is to select from the stochastic models. 
Then using the data of the investigated phenomenon or systems 'we have to 
calibrate our model. In other words we have to estimate the values of the 
corresponding parameters of the model. After testing the goodness of the 
model we may use it for predictions provided it was acceptable. In this paper 
we focus our attention to describing a regression model and then estimating 
its parameters and testing them. 

There are a lot of theoretical results about regression. Not only pure 
theory but also practice is well developed and ,videly used thanks to the 
symplicity of the least square method. 

Sometimes the use of the least square principle is not justified. There is 
no lack in theoretically well founded methods which may solve these problems. 
They are generally more complicated from a numerical point of view than the 
least square one. Probably this is the reason why they are used very seldom. 

This paper does not give new theoretical results but intends to give the 
model of the formulae and interpretations in a detailed way which may ease 
the choice from the models and their implementation and interpretation for 
the practitioner. 

The intuitive background 

We start ,~ith the simplest well known regression model which is the 
following. Two quantities, say x and y, are measured. We know y is a function 
of x. For the sake of simplicity we suppose that it is y = ax with an unknown 
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coefficient a. The reader may think that y is the mass and x is the volume of 
a given homogeneous material. Consequently the parameter a is the density of 
the material. Next we have n bodies made from this material ,,,-ith volumes 
known precisely. These, together with the measured quantities of masses, are 
listed in the next table 

While the x values are quite precise y is measured ",-ith a random defect. Since 
)'1' ... , Yn are contaminated by random errors they are not necessarily equal to 
ax1, ••• , axn • Thus 

are the random errors. It is reasonable to a;;:sume that they are independent 
random variable;;: of the same normal distribution and so 

where 0' is unknown. 
According to the maximum likelihood principle the maximum place of 

L( a) = i In (! 1 e -(Y,-axi)'/2C) , 
i=1 V 2:<: 0' 

the so-called likelihood function, provides an estimation /i. for a which has a 
series of good properties. For example it is unbiased that is lU(/i.) = a and D(a) 
is minimal among other estimations and tends to zero when n tends to infinity. 

It is easy to realise that L(a) reaches its maximum where 

n 
S(a) = Z CYi - ax;}2 

i=1 

reaches its minimum. Thus the maximnm likelihood principle is the base of 
the least square principle (Fig. 1). 

We would like to point out that the model sketched above is widely used 
in a theoretically different situation. Namely, when Y is not a function of x 

but there is an association between them. For instance consider a population 
and let x be the altitude and let Y be the weight of a randomly chosen person. 

It is clear that y is not a function of x. In spite of this the previous model 
is applicable and useful. Suppose ,.,-e have a list about n measured persons. 
If we want to forecast the persons' weight we meet in the street, we can first 
do is to guess lVI(y) which can be estimated by the arithmetic average of the 
measured weights. The uncertainty of this forecast can be characterised by 
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Fig. 

D(y). If we know x the persons' height then our guess may be Jf(y:x) which 
can be estimated by y = ax from the regression. The uncertainty of this fore
cast is a = D(ei) which may be smaller than D(y). The quantity 

D(y) - D(ei) 

D(y) 

indicates how large a part of the uncertainty of y can be explained by x in 
our model. 

Distributi9n of errors 

In the previous section it was assumed that the random errors follow a 
normal distribution 'with a zero expected value and an unkno'wn standard 
deviation. The errors in real life sometimes follow this distribution, and some
times they do not. We now introduce a wider collection for the error distribu
tions which will be relatively easy to handle. 

We have to admit that they do not necessarily cover all real situations. 

But we hope they may provide a finer tool than rcstricting our investigations 
to the single normal distribution. We 'will suppose that the density function 
of the error has the form 

Since 

\ JAx)dx = 1 
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~ = 2 

20( 

Fig. 2 

'i., /3, )' are not independent. If ?' 1, Y = 2 or y = ::>0 then the respective 
density functions are the double exponential and the normal and uniform dist
ribution functions. Figure 2 illustrates these functions. 

Regression in norm 

We can generalize the model of the fir5t 5ection in two directions at the 
same time. Let the random variable )! be a lineal' function of the non-random 
variables Xl' ••. ,xs and the random variable e so that 

With matrix notation 

where 

aT = (a o' aI' ..• ,as) and xT = (1, Xl' X2, ... ,Xs)' 

We have n corresponding measured values, the so-called sample, which are 
arranged in the next table 

)'1' 1, x11 , X 12, , XIS 

Y2~ 1, X2l ' x22'; , x2S 

1, 

For the sake of simplicity let 

Wc suppose that "'!fee) = 0 but the density function of the error is f/, that is, 
it may be non-normal. 



A REGRESSIO;Y l'HODEL 63 

The likelihood function now is 

Since f3 must be positive a the maximum likelihood estimation of a coincides 
'with the minimum place of function 

n 

S,,(a) .:2 
i=! 

This expression has a clear geometrical meaning since it is a distance 
between the first column of the sample matrix and the subspace spanned by 
the remaining colums. The basis of this distance is the (,-norm defined by 

-, 
•• • -;- "'''n I • 

In case (' = = 
z= = max ( ;;1',.·., ZI1)' 

Suppose that the value of (' is kno'wn. For the sake of simplicity let it be an 
integer. The a that is the minimum place of S:,(a) can he defined by the gradient 
method. Its algorithm is: 

Choose an arbitrary initial value for a, say ao' Set h = S,,(ao) n, where n 
IS the numher of the steps. Then apply the iteration 

where u = grael S,,(ai)/(grad S,,(ai))2. 
Do this while S,,(a i + 1) < S,,(aJ. 

The last S,,(ai ) approaches the value of the nllmmum with an accuracy h. 
We remind that S,,(a) cannot be differentiated if i' is odd. In these ca8es 

the sign x can be viewed as the generalized derivative of x'. 

Although this way of estimation of a is easy to implement hut it is rather 
inefficient. 

If y = 2, then the partial derivatives of S,,(a) are linear functions so its 
minimum place satisfies a system oflinear equations. Namely a is the solution of 

where y is the first column while X consists of the futher columns of the 
sample matrix. 

From a numerical point of vie'w its solution is the simplest among our 
prohlems. 

So our policy may he the following. First we suppose }J = 2 and estimate 
a from XTXa = XT y. If the distribution of the residuals 

l = 1, ... , n 
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is nOl mal then the problem is solyed. Otherwise we take case)' = 1 or y = = 
depending on whether the tail of its distribution is too long or too short. 
In the next section we suggest an efficient way of estimating the parameters 
in these cases. But first we wish to draw the readers' attention to a technical 
detail. Testing the normality is possible by sketching the histogram of the 
residuals or by a finer statistical method. In the last case one should keep in 
mind that the unhiased estimation of the standard deyiation of the residuals is 

f~ (e;-e)21/(n - s) since ao' ... , as were estimated from the sample. 

Linear programming for the case y = 1 and y = = 

Now formulate the problem uf finding the minimum of 

n 

Sl(a) =.:2 )'i - xT a 
i=1 

by means of linear programming. 
Let IYi - xT a· = U i• So the problem is to minimize III -L lI2 + ... --l-.. un 

subject to 

y" 

The simplex tableau without the objectiyt' function is 

ao a1 a"2 Os U I lI Z un 

1 X ll X12 XIS -1 0 0 .. Yl 

1 X nl X n2 Xns 0 0 -1 V _' n 

-1 -Xll -X12 -XIs -1 0 0 -Yl 

-1 -Xnl -x,z -Xns 0 0 -1 -'Y 
~' Tt 

Since ao' aI' ••• , as may be negative, we introduce hi and Ci so that hi 
and Ci are not less than zero and hi - Ci = ai for i = 0, L ...• s. 
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The new simplex tableau -with matrix notation is 

x -X 

-X X -I" -y 

If (hT, eT, fiT) IS one of the solutions, then a = h - c is a minimum 
place of Sl(ii). 

We would like to remark that this a is a robust estimation of a. The 
problem of minimizing 

S=(a) = max (.h - xia, ... , 'Yn 

can also be reduced to a linear programming problem. 
Let II be the maximum ofYI - xT a, ... ,Yn x~a!. So the problem 

is to minimize II subject to 

Thus setting a = h - c where h > 0 and c > 0 the simplex tableau is 

u 

X -X -en y 

-X X -y 

where e; = (L ... , 1). 

If (b, c, fi) is a solution of this problem then a = h - c is the minimum 
place of S"",(a). 

The next consideration shows that this estimation of a is fairly good if 
the errors are distributed uniformly but as we can see it is not robust. 

Consider our model when s = 0 that is let 

Y = a o + e. 

Here Yl' ... , Y n is the sample. 

5 
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Consequently ao the estimation of ao is the .solution of the next linear 
programming problem. l\finimize u subject to 

Its solution is ao = (max (Yl' ... ,Y n) min (Yl' ... ,Y n))/2 Note that ao is 
an unbiased estimation of NI(y) and so is y. But the first one is better than the 
second since, as is known 

6n D2( fi O) 

D2(y) (11. + l)(n + 2) 

Testing hY"}1othesis 

The previous regression model provides a good tool for comparing the 
expected values of several independent (univariate) populations. Denote the 

expected values by aI' ... , as and by Yil' ... 'Yini the sample from the i-th 
population, where nI' ... , 11.s are the respective sample sizes. Our model is 

i = 1, ... , s; j = 1, ... ,11.,. 

and the common density function of the independent random variables 

eij is i,. 
We wish to test hypothesis 

We know from the maximum likelihood principle that 

s ni 

S,(a) = J: :E I Yij - ai I"~ 
i=1 j=1 

must be minimum independently from the hypothesis. Let Q be this minimum. 
If the hypothesis is true then 

s ni 

'\l '\l IY .. - a If 
.t:::.; "'" I] ! 

i=1 j=1 

must be mInImum, where a = a1 = ... = as. Let Q' be this llilllImum. 
If ei/s have a normal distribution that is if ;v = 2, then our problem is 

the case of the one-way layout version of the analysis of variance. In this 
case the statistics 

is the basis of the decision over hypothesis H. 
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In practice this test is used when this condition of the model is not 
fulfilled, that is when y " 2. In the rest of this section we will show that the 
deviation can be controlled by an easy calculation if either y = 1 or y = DO 

since T1, Tz and T = can be evaluated easily. 

and 

We need Q and Q'. 
Obviously 

min (~~ !Yij 

min (max 'y ... - a· ') 
./ IJ I 

i, J 

ai
Y

) = i min (i IYij - ai IY) 
, 1=1 )=1 

max (min (max(Yij - ai;))) 
i j 

In the cases (' = 1, f! ') "I' -':- / = the respective minimum places are 

{ii = 1.2 (max (ril' ... 'Yir,,) 

Consequently Q in order is 

s n, 

~ ~ i Yij - median Yij i 
i=1 j=1 j 

S n, 

~ ~ (Yij - average Yij)2 
i=1 j=1 j 

(1/2) max (max Yi/ - min Yij) = (1/2) max range Yij 
i j j i j 

Finally, Q' is 

respectively. 

s ni 

~ ~ !Yij - median Yij: 
i=1 j=1 i, j 

s ni 

.2 ~ (Yij - avevage Yij)2 
i=1 j=1 i,j 

(1/2) range Yij 
i, j 
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