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The criteria to be minimized are the weig t of the frame, the volume of reinforcement for the
strueture and in ceriain cases the stability erviteria. The solution is based on the vector optimiza-
tion theory.
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Dvrinc the 1960°s and 197(’s new directions vwere developed in structural
design [2]. [5] and the multicriterion optimization was one of these. The
progre;: of vector optimization algorythms gave some possibilities to elaborate
the methods in structural analysis and hclpecx to develop the possibilities of
automatic design. In mathematical programming the concept of Pareto opti-
mality was first used in 1951 by Koopmans [10] and in 1955 by Gass [7].
Several applications of optimal structural design were presented in literature
during the last decade and the multicriterion optimization is the newest
direction in this <peci? ield [8]. [15]. One can read about the mathematical
technique in works by Bernau [1], Brosowski [3]. [4]. Koski [11] and Osyezka
[14]. Koski [13] and O: vezka [14] gave a general deseription of multicriterion
optimizatien in structursl design. Koski and Silvennoinen [12] considered a
truss structure problem where weight and some displacements were chosen as
objective functions. A very interesting industrial application has been pre-
sented by Eschenauer [6] where the optimum design of a radiotclescope and
shape optimization of beam strueture were discussed. He described the strategy
of structural design in this special field as well.

In this paper the multiobjective problem formulations are discussed
first and second the application is presented in the domain of the optimal
design of reinforced frames.

The cross-sectional dimensions and the volume of reinforcement are
designed taking into consideration the stress and buckling criteria. The ob-
jective functions contain the volume of the structure and that of the rein-
forcement.

Finally, numerical examples are presented.
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2. Mathematical Review

In this chapter the multicriterion mathematical programming problem
is discussed briefly. First, the Pareto optimum is defined which generally
gives a set of solutions. Secondly, some scalarization methods are described.
With the help of these methods we can determine the Pareto optimal points.
Each of these methods is a function scalarization in which the vector objective
functions are transformed into a scalar objective function. Minimizing this
scalar function we can obtain a Pareto optimal solution for the vector optimum
problem.

A multicriterion optimization problem can be formulated as follows:

min f(x) (2.1)
xeL
where x = {x;, %, ..., 4,}7 is a vector of decision variables in R”, f(x) =
= [fi(x). . . .. fu(x)]T is the vector of objective functions in R*, L is the set of

feasible solutions, given in the form

L:{x:gj(x)go, hiz)=10, j=1,2,...,m i=12,....p<n} (2.2)

2.1 Pareto Optimumn

The concept of this optimum was formulated by V. Pareto in 1896 and
this is the most important part of multicriterion analysis at present.

Definition: A vector x€ L is Pareto optimal for problem (2.1) if and
only —i_f there exists no x€ L that f(x) <f(x), i=1.2,....m and f(2) <
< fj{x) for at least one j.

This definition is based on the principle that the vector x is chosen as
the optimal if no criterion can be improved without worsening at least one
other criterion.

The Pareto optimum in general gives a set of solutions and not a single
solution. In Fig. 1 the graphical illustration of a Pareto optimum can be seen.
For this let F be the map of the feasible set, L, under the mapping of f =
= (fi» - - ., f) defined by the objective functions.

One can see in Fig. 1 that the set of optimal solutions is non-convex,
even in the simplest case, where the constraints and the objective functions
are linear.

2.2. Methods of Solution
2.2.1. Min-Max Optimum

This method was introduced by Koski (1981). In his works one can find
several numerical examples for this method [11], [12], [13].
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Fig. 1. Graphical illustration of the Pareto Optimum

First, a reference point, which is the so-called ideal solution, has to be
defined.

f¢=[min f,(x). minfy(x), ..., minfn(x)r. (2.3)
ixeL xcL xeL

So one has to solve m scalar optimization problems. In general this ideal
solution is not a feasible one (f‘)&f ) The distance between these two points
can be measured by the metric function:

d(f.f) = mex il (2.4)

Minimizing this function we get an efficient point for the vector optimiza-
tion problem. If one is interested in further efficient points, the pessibilities
are given to obtain them for appropriate chosen vectors f [15].

Numerical difficulties may occur when minimizing the function from
(2.4) we propose for the problem the following scalarization.

The normalized vector objective function is:

J@) = [f®)s fil@)s -+ o f@] (2.5)
where
where fi(x) = fiz) — min fi(x) . (2.6)
max f;(x) — min fi(x)
So the values of each normalized criterion are limited to an equal range

(f—l(x)é [0,1]). In this case the ideal solution is f®= 0. Our problem is for-
mulated as follows:

min d,.(f, 0). 2.7
Fefw)
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2.2.2 Method of Weighting Objectives

The method of weighting objectives is a well known approach to vector
optimization problems. The basis of this method is summing all the objective
functions using different weights for each. So the scalar problem has the fol-

lowing cbjective function:

@ = 3ifi® 2.8)
fe=1

where 7, > 0 ave the weighting coef

141 wrote about some disadvantages
his technique is that it is not possib

Fig. 2
to find all the Pareto-optimal points for non-convex problems in spite of

varying the weighting coefficients [2]. Beeking the minimum of (2.8) depends
not only on 7, values but also on the scale of the objective functicns.
Figure 2. Geometrical interpretation of the weighting method in case of
k)

two objective functions. In this case the efficient point. B, between A and C.
cannot be determined by this method.

2.2.3 Scalarization with Parametric levels

For linear vector optimization problems Brosowski [3], {4] investigated
a scalarization, which leads to the following scalar problem:

min ¢

tc R

g{x) <0 i=1,...,n (2.10)
hyx) =0 j=1...,1

filx) =t <y, E=1,...,m
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where

t — a scalar

x — vector of unknown

g{x) and h(x) — originally constraints of the vector optimization problem
n, . m — pumber of inequalities, equalities and objective functions

fiulx) — the E-th objectiv
. — the :iemandea 15"\':’?1 of the k-th objective function

,4

te
gi(x) 2 0 t=1,....n
hyz) =0 j=1,....,1 (2.11)
fdo) <y, — 1t Z, E=1,...,m
where
Y& R” and Z<£ R™ ((R™ is the space of objective functions )
Z ~

v and Z are arbitrarily chosen.

Those models only give slightly efficient points [1]. A program systen
[17. [2] was elaborated at the Computer and Automation Institute of the
Hungarian Academy of Sciences. The program system automatically produces
the vectors y and z

Here the point with a minimal functional is chosen for each objective

21

function from calculated feasible pomts.

Let these points be s;,....s, then the vectors y and z arz chosen as
Yi= P[(S[) 1= 1, FECEEEN k (2.12)

1 k . )
‘i:EZPi(Sj)~}’i i=1....k
=1

This choice has two advantages:

— the scalarization can be used easily

— y and 5 vectors are not dependent on the scale of the objective func-
tions.

Our examples show that this method is suitable in a non-convex case,
as well [2], [17].
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3. Optimal Design of Reinforced Cencrete Frames

The optimization modelling is of primary importance. It includes the
determination of the modelling of the structure (materials, supports) as mecha-
nical criteria and the mathematical strategy, which contains the design vari-
ables and the formulation of constraints and objective funections. Our model
is based on the Hungarian Standard, which js similar to the DIN.

R Rs‘
{Compressicn)

{Tension)

m

£ €502 25%
&S5 ) :
(Tersion; .
t ,
“LRe
Fig. 3. R — ¢ diagram for concrete Fig. 4. R — ¢ diagram for steel

It is supposed that:

— the stress-strain diagram for concrete can be seen in Fig. 3;

— the tensile strength (R,) of concrete is taken into consideration only
in case of shearing;

— ultimate-load theory is applied;

-- the stress-strain diagram for steel can be seen in Fig, 4;

— Generally, R, = R, and &, > & (~ ten times);

— the static loads are acting on the nodes;

— the frame is a planar structure;

— the cross-section is rectangular.

The general optimal frame problem may be stated as follows:

Given are: loading conditions (magnitude, location and type) support
and joint conditions (type); frame configuration (number of spans and stories
and, therefore, total number of members).

To find are: the cross-sectional dimensions and the volume of longitudinal
reinforcement.

All the following constraints and objective functions were used at the
optimal design. Generally, bending moment (M), axial force (IV) and shear
force act on the cross-section.

M and N are reduced into a normal force being outside of the cross-
section center: Fig. 5

where:

€ Mo

2R
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Each cross-section has to satisfy:

A, -z eu (3.1)
k- R,
where:
A,, — area of compressive-concrete
A, A; — area of longitudinal tensile and compressive reinforcement
Z  — distance between the inner-forces
R, — tensile strength of the steel
E — proposional factor (1 <k < 2)
ey — depends on the stability criteria (e, > ey,).

The longitudinal reinforcement is computed as follows. There are two
cases.

a) No required tensile reinforcement.

b) Tensile reinforcement required.
It depends on whether N -e,, = M,
where M, ultimate bending moment in ideal case based on the Hungarian
Standards.
Reinforcement in case of

no required longitudinal tensile reinforcement

=0
FREEA R (3.2, a)
Z - Ry
Reinforcement in case of
required longitudinal tensile reinforcement
AL — l\___e_\f__‘_‘if (3.2, b)
k- Rsu
_ My | N-ey— M, N
*"Z-R:. k' -Ru R,

Each eross-section has to satisfy (3.3) in case of shearing.

925-4-R,>T (3.3)
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where: 4 — the area of the cross-section
T — the acting shear force.
The shear reinforcement is computed on the basis of the Hungarian Standard.
The criteria of stability are taken into comnsideration at the computation
of excentricity (e,,) and the internal resisting axial force (IV,) has to be greater
than the acting axial force (V).

N, — N> 0.0 (3.4)

The above constraint (3.4) has to be satisfied in each section of the frame.
Beside this, so-called technological constraints have to be used. There are
specified regularities (story column, floor beam dimensions etc.) and permissible
ranges of member sizes (clearances, minimum thicknesses ete.).

In the majority of the cases there are two objective functions: the volume
of the structure (Cl) and the volume of the reinforcement (C2) (3.5).

Cl: > A4,H, — min
I

2: V=S4, L, — min (3.5)

where: 4 ., H, — the cross-section and length of the i-th member, respectively

¥V — the volume of the reinforcement.

4. Numerical Example

Consider the reinforced concrete frame loaded as shown in Fig. 6.

Where: F, =200 kN F, =100 kN p =10 kN'm
L = 6.00 m H=1400 m

The redundant forces are determined according to the force method.

Each section of members has to satisfy 3.1, 3.2, 3.3, 3.4 conditions and
the technological criteria. These are the constraints of optimality and the
objective functions are 3.5.
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For reinforced concrete frames, the significant aspect of this formulation
that it results in designs that automatically satisfy the basic requirements

of any limit design [16].

Three Pareto optimal sets are calculated, each corresponding to certain

values of parameters 7, and 7,. The vesults are given in Table 1. The cross-
scetional dimensions and the volume of the reinforcement can be seen in

the Table 1.

Table 1
- x1 =2 =3 Volume of reinforcement
Number [em] [em] [em] E <1000 [em?]

0 90 40 90 1.05571

7y = 0.25 1 90.1 39.9 90.2 1.04935
2 91.6 39.6 91.7 0.987142
jo=0.75 3 105.5 36.6 106.8 0.481877

0 50 40 90 1.05571
Jy = 0.5 1 89.9 25.9 120.9 0.634289
2 90.0 26.14 121.0 0.630073
sa=0.5 3 90.3 26.5 121.2 0.622922
4 91.5 26.6 121.9 0.591739

0 90 40 90 1.05571
Using parametric 1 915 34.3 104.5 0.774127
levels 2 91.4 32,5 102.8 0.798345
3 91.7 37.8 108.8 0.723498
1 91.5 27.8 98.6 0.862120
5 91.5 27.8 98.6 0.861867
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