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Abstract

Solutions for the critical moment of lateral-torsional buckling of beams commonly used in design codes, are based on initially straight 

undeflected beams. However, studies indicate that when the weak-to-strong moment of inertia ratio is sufficiently high, prebuckling 

deformations can significantly impact critical loads. The proposed formulae in the literature often vary, and discussions on the effect of 

torsional rigidity are limited, with most studies focusing on open sections. This study provides a comprehensive review of the problem 

and relevant literature, exploring variations and simplifications used to derive closed-form solutions for the critical moment, while 

accounting for prebuckling deformations through the energy method. Several variations of the critical moment formula are presented 

and compared, with a detailed investigation into the influence of torsional rigidity. Prebuckling deformations were confirmed to have 

a significant effect on the critical moment for specific sections, and the conditions for appropriate simplifications were identified. 

Additionally, torsional rigidity was found to exert a non-negligible influence, with closed sections demonstrating a greater effect of 

prebuckling deformations.
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1 Introduction
Most solutions for the critical moment of lateral-torsional 
buckling (LTB) of beams are derived from linear buckling 
analysis (LBA), meaning that the analytical solutions are 
usually based on an undeflected straight beam. However, 
as the load increases, before buckling happens, the beam 
is already deflected in the major plane of the loading, 
which deflection is termed here "prebuckling deflection". 
Several studies have found that LBA leads to accurate 
results only in the case where the major-axis moment of 
inertia is much larger than the weak-axis moment of iner-
tia, while the effect of prebuckling deformations can have 
a significant influence on the critical loads in the case of 
more compact members. 

This paper investigates the effect of prebuckling defor-
mations, as discussed in the literature. Upon reviewing the 
literature, it was found that most studies which included 
the prebuckling deformations focus mainly on the most 
basic case, doubly symmetric I-beams with pinned (forked) 
supports subjected to uniform moment (Fig. 1), with a 

handful of studies discussing other cases (mono-sym-
metric beams and some other loading conditions). These 
papers, although not too numerous, give several different 
formulas for the same case. The differences between these 
formulas vary in their significance, with some being minor 
and some being more significant. Furthermore, the effect 
of torsional rigidity is hardly discussed, with most stud-
ies focusing on open sections with low torsional rigidities, 

Fig. 1 Doubly symmetric beam with forked support
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and a clear distinction between open and closed sections 
not made in any of the reviewed papers.

This study, therefore, addresses these differences and 
makes a distinction between sections with low and high 
torsional rigidities. In Section 2, a detailed review of the 
literature is given. Section 3 discusses the analytical deri-
vations, highlighting the different variations of used func-
tions, as well as the decision points during the derivations, 
which can lead to different solutions. In Section 4, sev-
eral possible closed-form solutions are given based on 
these variations, for both open and closed doubly symmet-
ric cross-sections, and a numerical study is presented to 
assess these different formulae.

2 Detailed review of earlier studies
In Section 2, a literature review is provided, focusing on 
literature where the effect of prebuckling deflections on the 
LTB of doubly symmetric beams is discussed. The review 
is unusually detailed. While acknowledging the research-
ers who have contributed to this topic would be commend-
able, the primary reason of the detailed review is that the 
available papers are not too numerous but still include 
slightly different formulae for the same case, as well as 
include certain contradictory statements or suggestions.

As far as is known, the effect of pre-buckling deforma-
tions on the lateral-torsional buckling of beams was first 
reported by Michell [1]. In his paper, differential equations 
(D.E.-s) are formulated and solved for various beam-col-
umn cases, and two simple experiments are reported to 
validate the theoretical results. A particular case con-
sidered in the derivations is the basic case. A solution is 
derived for the critical moment Mcr, written (using the 
notations normally used nowadays) as: 
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where Mcr0 is the critical moment without the effect of pre-
buckling deformations, Ix and Iy are the second moments of 
area for the x (major) and y (minor) axes, respectively, J is 
the torsional inertia, L is the length of the beam, and E and 
G are the Young's modulus and shear modulus, respec-
tively. It is to observe that the warping effect is totally dis-
regarded. The results obtained from this formula are in 
line with later results if the cross-section has a small warp-
ing constant, e.g., in the case of a narrow rectangular sec-
tion. In fact, while the paper does not explicitly state this 

limitation to narrow rectangular shapes, such members 
are considered in the conducted experiments. Another 
remark is that the paper does not discuss the "effect of pre-
buckling deformations" separately, i.e., there is no distinct 
solution provided with and without prebuckling deforma-
tions; instead, it explicitly assumes the presence of pre-
buckling deformations and solves the equations accord-
ingly. Another early work was done by Prandtl [2], who 
also established the D.E.-s for the LTB problem (without 
considering warping), and solved them for a few cases, but 
without considering the prebuckling deflections.

An important contribution to LTB was made by 
Timoshenko [3], where the effect of warping for thin-
walled members in twist was first introduced in the con-
text of I-section members. Timoshenko [4] published the 
first critical moment formula with considering warping, 
particularly for I-shaped members. The formula is iden-
tical to the one known nowadays, though in [4] it is for-
mally different and expressed specifically for I-shaped 
beams only. It is: 
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where Iw is the warping modulus. Later, in [5] a solution 
is presented for clamped-clamped beams (without the pre-
buckling effect). 

Chwalla [6] formulated the D.E.-s of the beam-col-
umn buckling problem considering the warping effect and 
accounting for the prebuckling deflections and provided 
closed-form solutions for several cases. Regarding the 
effect of prebuckling deformations, the derivation is pre-
sented for the basic case with narrow rectangular sections, 
leading to the following formula:
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with Mcr0 as given by Eq. (1). In [6], it is also proposed to 
introduce an equivalent lateral bending stiffness to con-
sider the effect of prebuckling deflections, suggesting that 
the proposed equivalent bending stiffness can be employed 
to any LTB case. It is also commented that GJ/EIx is typi-
cally small, therefore, can be neglected.

LTB is discussed by Davidson [7], also for I-sections 
(and as particular cases: narrow rectangular sections). 
Analytical solutions for both without and with consider-
ing the prebuckling deflections are given, assuming elas-
tic end supports with separate stiffnesses for the global 
rotation of the beam ends (about the minor axis) and 
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rotation of the flanges (which latter one could be "trans-
lated" to today's terminology as elastic warping support). 
Analytical solutions are given, but typically not in a closed 
format, due to the problem's complexity. Explicit formulae 
can be derived only for some simple cases, e.g., if the sup-
ports stiffnesses are zero (i.e., forked supports) and Iw = 0 
(e.g., rectangular narrow section), the derivation leads to 
the following formula:
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with Mcr0 as given by Eq. (1). This is nearly (but not 
exactly) identical to the solution in [6].

The next appearance of the same problem is in  
Pettersson's [8] work, focusing on mono-symmetric 
cross-sections. The displacement functions of beams sub-
jected to combined loading (biaxial bending and torsion) 
are derived. Mostly simply supported beams are con-
sidered, but 3-span beams are also discussed. Critical 
moment expressions with and without the prebuckling 
deflection are provided for a few cases. For rectangular 
section beams under uniform major-axis moment, the 
derived formula is identical to the one in [7], see Eq. (4). 

Kerensky et al. [9] summarized the background of 
the then-current British Standard, and for the calcula-
tion of critical moment, a formula with considering the 
effect of prebuckling deflection was proposed, using the 
1 1− I Iy x  factor as in Eq. (1).

A few years later, Clark and Knoll [10] extended the crit-
ical moment formula for a few cases. For clamped beams 
with narrow rectangular cross-sections, they derived the 
formula as follows:

M M
EI
EI

EI
EI

GJ
EI

M

cr cr
y

x

y

x x

cr

� �
�

�
�

�

�
� �

�

�
�

�

�
� �
�

�
�

�

�
�

�

0

0

1 1 1

with
22�
L

EI GJy .

 (5)

In Eq. (5), the Mcr0 expression is the one normally used 
nowadays (if the warping effect is negligible), but the mod-
ification factor due to the prebuckling deflections is sig-
nificantly different from those previously derived for the 
pinned-pinned case. This is, therefore, the first publica-
tion where the influence of the supports on the prebuck-
ling effect is explicitly reported. Moreover, a formula is 
derived for a doubly-symmetric I-section beam in [10], 
where Mcr0 is identical to that derived by Timoshenko [4], 
and the modification factor accounting for the effect of 
prebuckling deflections is the same as that derived by 
Davidson [7].

The problem was revisited by Trahair and Woolcock [11]. 
In [11] a set of D.E.-s with considering the effect of pre-
buckling deformations, assuming doubly symmetri-
cal cross-sections and pinned end supports, is derived. 
The solutions for a few cases are discussed (mostly numer-
ically). A closed-form solution is given for the basic case, 
which can be written as:
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where Mcr0 is the same as proposed by Timoshenko [44], 
see Eq. (2).

The next important contribution is made by 
Vacharajittiphan et al. [12], where a general approach is 
introduced for describing the three-dimensional behav-
ior of thin-walled members in bending, assuming doubly 
symmetrical cross-sections. From the general description, 
a simplified set of D.E.-s is derived. Since the aim was 
to calculate the critical load, i.e., to capture the point of 
bifurcation of the equilibrium, it was assumed that the lat-
eral and torsional displacements are infinitesimally small, 
while the primary (i.e., in the plane of the bending) dis-
placements are moderately large. The simplifications are 
introduced accordingly, in a consistent way, as follows: the 
lateral and torsional displacements are approximated by 
linear terms, while the primary displacement is approx-
imated by up to quadratic terms. The derived formula is 
identical to the one in [11], see Eq. (6).

Roberts and Azizian [13] developed a beam finite ele-
ment model for the analysis of thin-walled members with 
open cross-sections. The used variational form of the prob-
lem is aimed to get weak (approximate) solutions numer-
ically, as usual in any finite element implementation. 
Arbitrary open cross-sections, including asymmetrical 
ones, are considered. The developed beam finite element is 
based on Vlasov's thin-walled beam theory and is employed 
to solve simple column and beam problems using an incre-
mental-iterative solution scheme. Though the effect of pre-
buckling deformations is not specifically discussed, it is 
mentioned that "…when these nonlinear strains are incor-
porated in a general instability analysis …, the influence 
of pre-buckling displacements is automatically taken into 
account" ([13]:p.565). Subsequent research [14] discusses 
the effect of prebuckling deformations, based on the same 
principles as in [13]. However, analytical solutions are also 
provided. For the basic case, a critical moment formula is 
derived, which is identical with the one in [11, 12]. An ana-
lytical solution for beams with monosymmetric T-shaped 
cross-sections, assuming that Iw is zero, is also provided. 
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The next noteworthy contribution is a pair of papers by 
Pi and Trahair [15, 16]. In [15], Roberts and Azizian's [14] 
earlier work is criticized. The criticism is on the basis that 
the finite element solution provided in [13, 14] leads to a 
quadratic eigenvalue problem due to the presence of sec-
ond-order terms, and instead of using an iterative approach, 
the problem in [13] is solved as a linear eigenvalue prob-
lem. Other issues in [13] were addressed, too, such as the 
consideration of "constant prebuckling in-plane rotations 
and curvatures" ([15]:p.2949) along each element, which 
is not an accurate representation, as well as the negligence 
of the additional moments the axial loads cause due to the 
presence of prebuckling deformations.

The geometrical description of the problem in [15] is 
like the one in [12], but there are some significant differ-
ences and/or advancements. One is that energy equations 
are provided and used. Another one is that the equations 
are developed for mono-symmetrical cross-sections too. 
Moreover, the geometric description is more accurate 
and/or general. Finally, more terms are included in the 
approximations (compared to [12]), though when it comes 
to the derivation of actual Mcr formulae, the kept nonlin-
ear terms are more-or-less the same. Two new versions of 
Mcr formulae are derived and presented in [16], but only 
for the basic case. One formula, termed as "linearized", 
is obtained by neglecting "the terms containing the sec-
ond-order prebuckling deformations … in the energy 
equation" ([16]:p.2968), as follows: 
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This formula is immediately criticized, stating that this 
expression "overestimates the critical moment and shows 
that second-order terms in the energy equation should not 
be neglected" ([16]:p.2968). The other, believed to be more 
accurate, formula is as follows: 
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In Eqs. (7), (8), Mcr0 is identical to the one proposed by 
Timoshenko [4], see Eq. (2).

Equation (8) is almost identical to the ones published 
in [11–13]. The only difference is the appearance of a "2" 
in the denominator of the GJ/2EIx term. The authors men-
tion this slight difference, but do not explain or discuss. 
It is to mention, that later, in Trahair's [17] book, Eq. (8) 
is presented. (It is to note that, in [16], an Mcr formula 
is proposed for mono-symmetric cross-sections. It is not 

clear how it is obtained, but it is clearly different from the 
one derived by Roberts and Azizian [14] for mono-sym-
metric sections.) 

In [16], the analytical and numerical results are com-
pared to those obtained from experiments. The test-based 
critical values are determined by the so-called Southwell-
plot technique. Looking at the results, it is fair to say that: 

1. the linearized formula is clearly incorrect, 
2. the experimental results are perhaps somewhat closer 

to the numerical ones if the prebuckling deflections 
are considered, 

3. but the experimental results are not convincing 
regarding the effect of prebuckling deflections. 

Though in [18], the LTB problem is not discussed, it is 
worth mentioning here because the paper expresses some 
criticism regarding the mathematical background of the 
derivations in [15].

Andrade and Camotim [19] discuss the LTB of pris-
matic and tapered beams, both with and without the effect 
of prebuckling deflections. The developed and utilized 
formulation includes some approximations. It is suggested 
that the prebuckling effect can be taken into consideration 
by the 1 1− I Iy x  factor, same as in [1, 9].

Machado and Cortínez [20] also investigated dou-
bly-symmetric beams considering the effect of prebuck-
ling deflections. The novelty in this research is the con-
sideration of transverse shear deformations, both along 
the major and minor axes, assuming laminated material. 
Variational principles are used, and closed-form solutions 
are provided. As a special case, if the shear deformations 
are neglected, the solution is identical to that given in [15]. 
Various transverse load cases are investigated, including 
the load height effect on simply supported single-span 
beams and cantilevers. The general observation is that 
the shear deformations decrease the critical loads, while 
the prebuckling deflections increase it. (Note, the effect of 
various laminations is also discussed.)

Mohri and Potier-Ferry [21] studied doubly- and 
mono-symmetric beams under various loading conditions, 
including transverse loading with varying load application 
heights. In [21], D.E.-s considering the effect of prebuckling 
deflections are developed and solved. In the basic case, the 
same solution as in [12] is obtained. It is also commented 
that in engineering practice it is acceptable to account for 
the prebuckling effect by the 1 1− I Iy x  factor.

Torkamani and Roberts [22] derived new energy equa-
tions for flexural-torsional and lateral-torsional buckling 
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of thin-walled beam-columns. The equations are remark-
ably similar to those in [15]. There are a few differences, 
however, in how the nonlinear displacements of an arbi-
trary cross-section point are approximated. These dif-
ferences are not discussed or explained. Some numerical 
examples are presented, one is related to LTB, but without 
special attention to the effect of prebuckling deflections.

Mohri et al. [23] published another article on the same 
topic. The theory is developed for general open cross-sec-
tions, using variational principles and D.E.-s, with the 
focus being on monosymmetric I- and T-shaped sections. 
When considering doubly symmetric sections, it is again 
suggested that the prebuckling effect can be considered by 
the 1 1− I Iy x  factor.

An updated version of the weak formulation of the lat-
eral buckling problem is published by Attard and Kim [24]. 
The kinematic assumptions are like those presented in 
earlier papers, and the novelty is the consideration of 
hyperelastic materials. The derived general formulae are 
utilized to re-derive an Mcr formula for the basic case, 
which is found to be identical to the one presented in [12]. 
(Also, they try to derive the  formula for mono-symmet-
ric cross-sections; in their results, the derivation leads to 
a cubic equation from which Mcr cannot be expressed in 
closed format. However, this formula is clearly different 
from that in [14] or in [16].)

The topic is discussed by Erkmen and Attard [25], con-
sidering the shear deformations (similarly as discussed 
earlier in [20]). As for the analytical solution, the earlier 
formula for the basic doubly-symmetric case is repeated, 
where the effect of shear is said to be nonexistent. However, 
numerical (finite element) solutions are also provided and 
compared with results from the analytical ones. It is noted 
that "in order to induce bifurcation type post-buckling 
behavior, an initial small horizontal load is applied in the 
nonlinear analysis" ([25]:p.921). The numerical results, 
hence, were obtained by nonlinear incremental analysis, 
not eigen-value analysis. It is declared that the analytical 
closed-form solution "is a lower bound to the results based 
on the nonlinear analysis procedure" ([25]:p.922). In other 
words, the authors declare that the effect of prebuckling 
deformations is even larger than what is predicted by the 
analytical formulae. 

The question is discussed again by Mohri et al. [26], 
but the discussion and conclusions are rather similar to 
those of [23]. 

The LTB behavior of U-shaped sections (i.e., unlipped 
channel) is discussed by Beyer et al. [27]. The energy 

method is used, and the effect of prebuckling deflections is 
considered. The focus of the paper is on minor-axis bend-
ing. For major-axis bending (which is similar to a doubly 
symmetrical section), the prebuckling effect is considered 
by the 1 1− I Iy x  factor. 

In the next related study, conducted by Pezeshky and 
Mohareb [28], the focus is on the distortional deforma-
tions, though shear deformations are optionally consid-
ered, too. Variational principles are employed, but closed-
form solutions are not provided. From the numerical 
results it can be deduced that the shear deformations have 
small effect, but the distortional deformations noticeably 
reduce the Mcr/Mcr0 ratio.

Finally, the most recent relevant paper is published by 
Su et al. [29]. Their paper unquestionably discusses the 
effect of prebuckling deformations, but the subject is dif-
ferent from classic structures in structural engineering. 
The studied structure is the so-called "serpentine inter-
connect", which is a beam with a serpentine-shaped axis. 
The prebuckling deflections are huge compared to classic 
structures, accordingly, the effect of prebuckling defor-
mations is drastic. Some analytical solutions and numer-
ical examples are shown. As a special case, the classic 
LTB problem is considered, to which a closed-form solu-
tion is derived. The beam is assumed to have a rectangu-
lar cross-section, but not necessarily narrow rectangular. 
The warping effect is not directly considered. The obtained 
closed-form solution for the critical moment is identical to 
the one first derived in [7], with the only difference being 
that the torsion constant is different. The method is devel-
oped primarily for numerical solutions. It is worth men-
tioning that some of the numerical results predict higher 
values than the analytical solution, suggesting that the 
analytical solution is not perfectly precise.

The main observations are summarized as follows:
• Most of the research considers simply supported 

beams with forked supports, and open cross sec-
tions. Cantilever beams, clamped beams, and closed 
sections occur in very few papers, but other cases are 
not discussed at all.

• There seems to be a consensus that the prebuckling 
deflection has a positive effect on LTB, i.e., the pre-
buckling deflection increases the critical moment. 
Moreover, there is an agreement that the increase 
is primarily influenced by the ratio of the weak to 
strong axis moments of inertia. 

• Most of the papers agree that the increase due to pre-
buckling deflections can approximately be expressed 
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by the 1 1− I Iy x  factor. More precise formulae 
are given in several papers, and there are small dis-
crepancies between these formulae. In a few papers, 
it is suggested that the available analytical formula 
underestimates the real critical moment.

• In most of the papers, it is implicitly assumed or 
explicitly stated that the provided formula to con-
sider the prebuckling effect is valid in general. There 
is one single paper in which it is suggested that the 
critical moment increase is affected by the supports. 

• The discrepancies between the papers are not lim-
ited to differences of he provided closed-form solu-
tions for the critical moment with prebuckling effect, 
differences can also be observed in the underlying 
basic mechanical-mathematical formulae. In certain 
papers, criticism can be found regarding the content 
of other papers.

• Experimental work specifically devoted to the effect 
of prebuckling deflection is rather scarce; the exist-
ing experimental results are not convincing.

• In the literature there is hardly any attempt to use 
general numerical methods such as the shell finite 
element method, to verify the analytical results or 
the developed specific numerical formulations. 

3 Analytical solutions
3.1 Overview
3.1.1 Shape functions
In this study, the energy method is used. The total potential 
is expressed in terms of displacements. Thus, the displace-
ments must be assumed. In case of LTB, the secondary 
displacements are the lateral translation and twisting rota-
tion, u and φ. The shape functions must satisfy the bound-
ary conditions. In the case of forked supports, the assumed 
displacement functions are simple half sinewaves:

u z u z
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z z
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where um and φm are the displacement amplitudes, and L 
is the beam length, see Fig. 2. The primary (prebuckling) 
displacement is the in-plane deflection due to loading. 
Although it is not included in the energy method solution, 
it has an influence on the strains and curvatures, which 
influence is disregarded in classic LTB solutions. The pri-
mary displacements can be expressed by classic equa-
tions of the strength of materials. For example, in the basic 

case the beam is simply supported at both ends and sub-
jected to uniform moment along the length, accordingly, 
the primary displacement of the beam's system line can be 
described by a quadratic function:
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where vm is the maximum vertical displacement, and Mx is 
the applied uniform bending moment.

3.1.2 Total potential
The total potential (Π) is expressed as the sum the strain 
energy (S) and the work (W) of the stresses on the nonlin-
ear strains: 
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In the strain energy expression, κy is the curvature in 
the lateral direction, (i.e., the rate of change of the tangent 
of the system line in the lateral direction,) κz is the rate of 
change of the twist angle, and κzd is the rate of change of 
κz. In the work expression, Mx is the applied moment, εz is 
the nonlinear longitudinal normal strain due to displace-
ments. Both the εz longitudinal strain and the κ curva-
tures must be expressed on the deformed geometry, which 
requires the transformation between the deformed and 
undeformed coordinate systems. In the relevant literature, 
multiple solutions can be found, as will be discussed later. 

Fig. 2 Coordinate system, displacements
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3.1.3 Curvatures
The TR rotation matrix can be obtained by the u, v and 
φ displacement functions (see Section 3.2.1), and once 
obtained, the curvatures (on the deformed geometry of the 
beam) can be expressed. The expressions are, see [12–16]:
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where the elements of TR are direction cosines:
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The derivation with respect to length s can be approx-
imated by the derivation with respect to the longitudinal 
coordinate z. It is also to note that the actual expressions 
for the curvatures are fairly long, and approximations are 
necessary, as will be discussed later. 

3.1.4 Longitudinal normal strain
To calculate the work of the loads/stresses, strains are 
needed. Assuming that there are longitudinal stresses only 
(as usual in any beam-model-based solution), only the lon-
gitudinal normal strain is needed, which is derived from 
the translations. According to the Green-Lagrange strain 
tensor, the strain can be expressed as: 

� z
xy xy xy xyw
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 (16)

where uxy, vxy, and wxy are the translation at an arbitrary 
cross-section point. As it is typical in classic buckling solu-
tions, the (∂wxy/∂z)2 nonlinear term is neglected. All trans-
lations must be interpreted on the deflected geometry. 
According to e.g., [15], the translations of an arbitrary 
cross-section point (at the x, y position, with sectoral coor-
dinate ω) can be expressed as: 

u
v
w

u
v
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y

x
y

xy

xy

xy

R

z

�

�

�
�
�

�
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�
�
�
�

�
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�
�
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�
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�
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�
�
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��
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�

 (17)

where u, v, and w are the translations at the centroid (and 
due to double symmetry, the shear center and centroid 
coincide). TR is substituted into Eq. (17) to calculate uxy, vxy, 

and wxy, then they are substituted into the strain expression 
Eq. (16). Without further simplifications, the final formula 
is extremely long (with many dozens of terms). However, 
many of these terms are zero if the cross-section is dou-
bly-symmetric, due to the fact that y is measured from 
the centroid. As a result, the integral of all the terms in εz 
that are independent of y or contain y2 are equal to zero. 
In other words, only the terms that are linearly dependent 
on y are necessary to consider. With this, the expression 
for εz is greatly simplified, but still might be long, hence, 
some approximations might be reasonable.

3.1.5 Equation system, critical load
The expressions for the curvatures and longitudinal strain 
can be substituted into the total potential formula. After 
the integrations, the total potential is expressed in terms of 
the displacement parameters, i.e., the displacement ampli-
tudes um and φm. Note, vm is not an independent displace-
ment parameter, since it is defined by Mx, see Eq. (10). 
According to the theorem of stationarity of total potential, 
equilibrium exists if the total potential is stationary, i.e.:

�
�

�
�
�

�
� �
um m

0 0
�

. (18)

The above expressions form a system of two equa-
tions. Applying certain simplifications (which will be dis-
cussed later), the equations are linear, and can be written 
in matrix format as:

C� ��
�
�

�

�
� �

um
m�

0 , (19)

where C is a 2 × 2 coefficient matrix dependent on Mx. 
A nontrivial solution of the homogeneous system of linear 
equation exists if the coefficient matrix is singular, i.e., its 
determinant equals to zero. 

det C� � � 0  (20)

This condition can be satisfied if Mx takes specific val-
ue(s), which is (are) the critical moment(s) Mcr. To be able 
to solve the det(C) = 0 equation, further approximations 
might be necessary, as discussed in Section 3.2.

3.2 Variants and approximations in the derivation
3.2.1 Transformation matrix
Using the rotational angles α, β and φ about the x, y and 
z axis, respectively, the rotation matrix can be expressed. 
If the rotations are large and no approximations are 
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introduced, it is relatively easy to define the transfor-
mation matrix by the sines and cosines of the rotational 
angles; in this case however, the order of how the rotations 
around the three axes occur matters. On the other hand, if 
the rotations are (very) small, the cosines can be taken as 
1, and the sines can be approximated by the value of the 
angle; leading to the TR transformation matrix being sim-
ple and independent of the order of the rotations. However, 
to solve the LTB problem with prebuckling deflections, 
moderately large rotations must be assumed. Essentially, 
the sine and cosine of an angle are approximated using the 
Taylor series expansion up to quadratic terms. 

There are two ways in the relevant papers to express the 
transformation matrix. In [12], it can be understood that the 
rotations around x, y and z are applied one by one, then the 
sine and cosine terms are approximated by Taylor series, 
and in the transformation matrix, the linear terms and some 
quadratic terms are kept. Regarding the quadratic terms, 
the approximation is based on the logic that the secondary 
displacements are infinitesimally small (hence β and φ are 
small), but the primary displacement is moderately large 
(hence α is moderately large). Accordingly, only the qua-
dratic terms associated with α are kept. The resulting trans-
formation matrix is Eq. (23). Papers [15] and [18] present a 
different version of TR. Though [15] and [18] use different 
mathematical apparatus, the same transformation matrix is 
derived when expressed by the angles, as Eq. (24). 

The rotation angles must be expressed using the dis-
placement functions. The angle about the longitudinal 
axis is directly given by the φ function. For α and β, there 
are two alternatives in the literature. The simplest approx-
imation, used in [12], is Eq. (21): 

�

�

� � � � �

� � �

dv
dz

v

du
dz

u .
 (21)

In [15] and [18], however, α and β are approximated 
more accurately as: 

� � �

� � �

� � � � � � � �

� � � � � �

dv
dz

du
dz

v u

du
dz

dv
dz

u v

1

2

1

2

1

2
.

 (22)

To obtain the necessary transformation matrix, Eq. (23) 
or Eq. (24) must be substituted into either Eq. (21) or 
Eq. (22). In [12], Eq. (21) is substituted into Eq. (23) which 
leads to a transformation matrix as Eq. (25).

However, if Eq. (22) is substituted into Eq. (24), it leads 
to a transformation matrix with entries up to 4th-order 
terms, and it is reasonable to introduce approximations. 
If the 4th-order terms are eliminated, the resulting matrix 
is Eq. (26). In [18], the transformation matrix is essentially 
similar to Eq. (26), but some 3rd-order terms are elimi-
nated, namely from entries (1,3) and (2,3). The resulting 
matrix is then Eq. (27). In [15], the transformation matrix 
is similar to Eq. (26) or Eq. (27), but further simplified as 
Eq. (28). It can be noticed that the 3rd-order terms are elim-
inated from (1,3) and (2,3), plus, the entries (1,2) and (3,2) 
are modified. This modification is not mentioned, hence 
not commented in the paper. Several further variants of 
the matrix could be defined, depending on what terms are 
eliminated or kept. Since it is a widely used engineering 
approximation to eliminate all the 3rd-order terms, the sec-
ond-order approximation is provided here as Eq. (29). 
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 (23)
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 (24)
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u v v v
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 (25)
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3.2.2 Curvatures
Using one of the above transformation matrices and con-
sidering Eqs. (14) and (15), the curvatures can be expressed 
in terms of the displacement functions. The obtained for-
mulae are long. For example, using TR

Pi , the curvature for-
mulae have 9, 7 and 11 terms for κx, κy, and κz, respec-
tively. Most of the terms are higher-order.

If the linear and quadratic terms are kept, the curva-
tures are expressed (from almost any of the above-men-
tioned variants, with the exception of TR

Va ) as follows:

� �
� �

� �

x

y

z
gen

v u
u v

u v u v

� � �� � ��

� �� � ��

� � � � �� � �� �1

2

1

2
.

 (30)

On the other hand, the κz curvature obtained from TR
Va  

is slightly different:

� �z
Va u v� � � � �� . (31)

It is to note that in [13, 14], another equation is used for 
κz (derived differently, not directly from a transformation 
matrix) as follows:

� �z
Ro u v u v� � � � �� � �� � . (32)

It is to observe that there is agreement in the literature 
on how to express κy, while various variants for κz exist. 
In κx, the 2nd-order term is sometimes eliminated, how-
ever, this has no effect on the critical moment formula, 
since κx is not directly employed in the derivations.

3.2.3 Longitudinal strain
Following the steps described in Section 3.1.4, the longi-
tudinal normal strain is expressed through the displace-
ments of the beam's system line. The actual expression 
depends on the considered rotation matrix, but typically 
has one first-order term, one second-order term, sev-
eral third-order terms, and several fourth-order terms. 
According to the logic of the linear buckling analysis, 
the first-order term should be disregarded. It might also 
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 (26)
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be reasonable to neglect the fourth-order terms. With 
these eliminations, there is a second-order term and some 
third-order terms. A few possible expressions are given 
here, as follows: 

• from TR
2nd :

� � ��z u v u v v v u u v y2 2 21

2

1

2

nd � �� � � � � �� � �� � �� � �� � � �� ��
�
�

�
�
�  

(33)

• from TR
3rd  or TR

To :

�
� �

��
z

u v u v v v

v u u v
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�

�

��
�
��
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�

�
�
��

y  (34)

• from TR
Pi :

� � �z
Pi u v u v v v u u v y� �� � �� � �� � �� � �� � �� � � �� ��

�
�
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�

1

2

1

2

1

2

2 2 2 . 

(35)

In [13–15], ε z
Pi  is further simplified by keeping one sin-

gle 3rd-order term only, as follows: 

� � �z
Pi u v y,simple � �� � ���

�
�

�
�
�

1

2

2 . (36)

From TR
3rd  or TR

To , but with keeping only one 3rd-order 
term similarly to the previous case:

� � �z u v y3 21

4

rd,simple � �� � ���
�
�

�
�
� . (37)

From any TR, if only the single second-order term is kept:

� �z u y2nd,simple � ��� � . (38)

3.2.4 Approximations due to cross-section 
characteristics
If the cross-section is open, it is reasonable to introduce 
approximations (which will be referred to as "open") 
as follows:

EI L
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GJ
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GJ EI L

EI
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x x
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2
2 2 2

2
0 0 0

�

�
�

�

�
� �

�

�
�

�

�
� �

� �
� �

� . (39)

The formulae can be further simplified (which option 
will be referred to as "open-simple") assuming that: 

EI L
EI

GJ
EI

w

x x

2

0 0≅ ≅ . (40)

If the cross-section is closed, the warping is negligible, 
but the Saint-Venant torsion rigidity is significant, hence 
the following approximation might be used (referred to as 
option "closed"):

EI L
EI
w

x

2

0≅ . (41)

The formulae can further be simplified (resulting in 
option "closed-simple") assuming that: 

EI L
EI

GJ
EI

w

x x

2
2

0 0�
�

�
�

�

�
� � . (42)

3.2.5 Optional reduction of equation degree
Even if the above-discussed approximations are intro-
duced, the final equation, i.e., Eq. (20), from which the 
critical moment can be calculated, is of 4th-degree. Since 
there is no cubic term in the equation, it can still be solved, 
and a closed-form expression (even if long) can be obtained 
for Mcr. However, in the literature the higher-degree terms 
are always eliminated and finally the critical moment is 
calculated from a simplified quadratic equation. 

4 Critical moment variants
4.1 Doubly-symmetric open sections
The derivation of the critical moment can be completed as 
summarized in Section 3.1, but the final result (e.g., final 
expression for the critical moment) is dependent on vari-
ous details. The determining factors are as follows: the TR, 
the curvatures, the longitudinal strain, the assumed stiff-
ness ratios of the cross-section, and the potential elimina-
tion of higher-degree Mcr terms in the final equation.

The elements of TR matrix are combined from the dis-
placement functions and their derivatives. The curvatures 
and the longitudinal normal strain are also expressed by the 
combination of the displacement functions and their deriv-
atives. In most structural engineering stability problems, 
when displacement functions and/or derivatives are com-
bined, it is appropriate to eliminate cubic or higher-order 
terms. However, the literature suggests that to have the crit-
ical moment with prebuckling deflections, third-order terms 
are required, too, in the TR transformation matrix, and in the 
εz strain, but it is not clear which cubic terms are necessary.

Moreover, in the literature, I-shaped and (narrow) rect-
angular sections are discussed, and some stiffness values 
are assumed to be small (compared to others), but – in 
many cases – without introducing a consistent assumption 
system. Closed sections with high torsional rigidity (e.g., 
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RHS) are not discussed, therefore, it remains unknown 
how the assumed stiffness ratios affect the results.

Finally, the Mcr formulae in the literature are solutions 
of quadratic equations. However, this is possible only if 
the higher-degree Mcr terms are eliminated. It is question-
able whether the effect of this simplification can always 
be justified. 

The solution for Mcr is, therefore, very far from being 
unambiguous; this explains why various formulae are 
found in various papers. Actually, several dozens of differ-
ent Mcr formulae could be derived. A few possible formu-
lae are presented here, to demonstrate which options lead 
to the formulae found in the literature, and how the details 
of the derivations influence the final results. 

First, open cross-sections are considered, therefore 
"open" and "open-simple" options are employed. The con-
sidered derivation variants are summarized in Table 1. 
Variant (ref ), used here as a reference, is from the simplest 
available formula, which is the most frequently shown 
in available papers, e.g., [1, 19, 21, 23, 27]. Variant (a) 

is the reproduction of the Pi-Trahair formula as in [16]. 
Variant (b) is the reproduction of the formula in [12] 
and [14]. Variant (c) is obtained by applying the geomet-
ric approximations proposed by [18]. Variant (d) is simi-
lar to (c), but the simplified formula is employed for the 
longitudinal strain (similarly to the simplified longitudi-
nal strain formula by Pi and Trahair [16]). Variant (e) is 
obtained by a consistent quadratic approximation in each 
step (i.e., eliminating the cubic terms systematically). 
The variants denoted by (+) are included here in order 
to observe the influence of neglecting or considering the 
4th-degree term in the final equation. Accordingly, vari-
ant (a+) is similar to (a), but the final equation is 4th-de-
gree, and variant (c+) is similar to (c), but the final equa-
tion is 4th-degre. The obtained formulae are shown in 
Eqs. (44)–(49), with Mcr0 in all of them being:
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It is to note that in the case of variants (a+) and (c+), 
Mcr is calculated from a 4-th-degree equation; the obtained 
formulae can be expressed in closed format, but they are 
relatively long, thus, not presented here. 

It is obvious that the expressions for Mcr are dependent 
on the details of the derivation, leading to different Mcr 
formulae. To be able to evaluate the differences, a simple 

numerical study is provided. Obviously, the critical moment 
values are dependent on the cross-section properties, the 
beam length, and the material constants, however, here the 
focus is on the effect of the derivation details, therefore, 
hypothetical cross-sections are used with assumed stiffness 
ratios. Considering typical doubly-symmetric I-shaped 
steel sections, it can be observed that GJ/EIx is around (or 
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smaller) than 0.01. Also, π2EIw/L2/EIx is around (or smaller) 
than 0.001. By assuming these rigidity ratios, the solution 
becomes independent of the length and material. The crit-
ical moment increase, i.e., the (Mcr − Mcr0)/Mcr0 values are 
plotted in Fig. 3 for various, practically relevant Iy/Ix ratios.

Since for the given basic case of LTB, the solutions 
by [16], i.e., (a) and by [12], i.e., (b) are re-derived by var-
ious researchers, it is fair to assume that these solutions 
are reasonably correct. It can be observed that variant (c) 
results are very similar to those from (a) and (b). 

It is clear that the simplest, so-called reference formula 
yields nearly the same results. This means that it is reason-
able to use "open-simple" option in practical cases (at least 
in the basic case).

Moreover, the results seem to justify the suggestion 
from various papers that the effect of prebuckling deflec-
tion can be accounted for by the 1 1− I Iy x  factor. 
Mathematically, however, this is simply due to the fact that 
the EIw/L2/EIx and GJ/EIx rigidity ratios are small for prac-
tical I-shaped steel sections.

It is clear from the  formulae that no real root exists if  
is large in any variant. In most variants, the Iy/Ix = 1 is the 
point of singularity; while in variants (d) and (e), the sin-
gularity occurs for much smaller value of Iy/Ix. Moreover, 
for medium Iy/Ix values, variant (d) and (e) lead to results 
very different from any other variants. Therefore, vari-
ant (d) and (e) can be judged as incorrect. The results 
suggest that in these options, some important terms are 
missing from the displacement approximations, leading 
to poor approximation(s) of the function(s), which finally 
leads to poor prediction for the critical moment.

It can be also observed that the 4th-degree moment 
term in the final equation has very little effect. This is par-
ticularly true when comparing (a) and (a+); though the Mcr 
values are not equal, the difference is extremely small.

4.2 Doubly-symmetric closed sections
Unlike in open sections, the torsion rigidity is significant in 
closed sections, and this has an effect on the Mcr formulae. 
Two of the above-mentioned variants are therefore re-cal-
culated, using "closed" and "closed-simple" cross-sec-
tion approximations. Namely: variant (a) and variant (c) 
are considered, (a1) and (c1) being the simplified, (a2) and 
(c2) being the more complex ones. Moreover, the effect of 
eliminating the 4th-degree term in the final equation is 
illustrated in variants (a1) and (c1): if the 4th-degree term 
is kept, the resulting variants are identified as (a1+) and 
(c1+), respectively. The characteristics of the variants are 
summarized in Table 2. The obtained formulae are sum-
marized as Eqs. (50)–(53). In the case of variants (a1+) 
and (c1+) Mcr is calculated from a 4-th-degree equations; 
the formulae are long, therefore not presented here.

Table 1 Summary of options considered for DSI sections

Variant Transf. matrix Curvatures Nonlinear longit. strain Cross-section model Final equation Equations 

(ref ) TR
2nd

 κy and κ z
gen ε z

Pi ,simple

 open simple quadratic Eq. (44)

(a) TR
Pi

 κy and κ z
gen ε z

Pi ,simple

 open quadratic Eq. (45)

(b) no TR κy and κ z
Ro ε z

Pi ,simple

 open quadratic Eq. (46)

(c) TR
To  or TR

2nd κy and κ z
gen ε z

3rd

 open quadratic Eq. (47)

(d) TR
To

 κy and κ z
gen ε z

3rd simple,

 open quadratic Eq. (48)

(e) TR
2nd

 κy and κ z
gen ε z

2nd simple,

 open quadratic Eq. (49)

(a+) TR
Pi

 κy and κ z
gen ε z

Pi ,simple

 open 4th-degree -

(c+) TR
To

 κy and κ z
gen ε z

3rd

 open 4th-degree -

Fig. 3 Open sections: moment increase due to prebuckling deflection
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To illustrate the similarities and differences between the 
variants, numerical values are provided, using hypothetical 
stiffness properties. In practical RHS sections the torsional 
stiffness can be approximated as GJ/EIx = 0.6(Iy/Ix)

2/3. With 
this assumption, the moment increase values can be cal-
culated, and the results are shown in Fig. 4. Fig. 4 shows 
that the effect of GJ is non-negligible in the case of closed 
sections; in fact, it increases the Mcr/Mcr0 ratio. However, 
usually, the higher-degree terms with GJ have very small 
effect. Though variants (a) and (c) have been found to be 

very similar for open cross-sections, they lead to rather dif-
ferent Mcr/Mcr0 ratios for closed sections, particularly if the 
final equation is quadratic. 

It is to mention that in all these cases, Mcr0 is the same 
as in Eq. (43). The 4th-degree moment term in the final 
equation has noticeable effect; in variant (a) the effect is 
relatively small, but in variant (c) it seems to be absolutely 
necessary to keep the 4th-degree moment term, otherwise 
the results look unrealistic. 

5 Conclusions
In this paper, analytical solutions for the lateral-torsional 
buckling of thin-walled beams, considering the effect of 
prebuckling deformations, were discussed. Doubly sym-
metric beams with cross sections with low and high tor-
sional rigidities were considered. The critical moment 
formulae proposed in earlier papers for simply supported 
beams subjected to uniform moment were re-derived, iden-
tifying the crucial decision points which can/will influence 
the final formula. Then, demonstrative numerical results 
were presented. The main conclusions are as follows.

In the analytical derivations, the transformation of dis-
placements is necessary due to the 3D rotations of the sys-
tem line of the beam. Since the rotations are not necessar-
ily small, the transformation can be realized in multiple 

Table 2 Summary of options considered for RHS sections

Variant Transf. matrix Curvatures Nonlinear longit. strain Cross-section model Final equation Equations

(a1) TR
Pi

 κy and κ z
gen ε z

Pi ,simple

 closed-simple quadratic Eq. (50)

(a2) TR
Pi

 κy and κ z
gen ε z

Pi ,simple

 closed quadratic Eq. (51)

(c1) TR
To  or TR

2nd κy and κ z
gen ε z

3rd  or ε z
2nd closed-simple quadratic Eq. (52)

(c2) TR
To  or TR

2nd κy and κ z
gen ε z

3rd  or ε z
2nd closed quadratic Eq. (53)

(a1+) TR
Pi

 κy and κ z
gen ε z

Pi ,simple

 closed-simple 4th-degree -

(c1+) TR
To  or TR

2nd κy and κ z
gen ε z

3rd  or ε z
2nd closed-simple 4th-degree -
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Fig. 4 Closed sections: moment increase due to prebuckling deflection
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ways. Moreover, during the derivations, many higher-or-
der terms show up, and some of them are important, while 
others are not. It is not self-evident which terms should be 
kept, and which terms can be eliminated; earlier papers 
show a significant scatter in this regard. Moreover, in 
certain publications some inconsistencies can be found. 
All these factors lead to variations in the end results.

Both the derivations presented in this paper and the 
in-depth study of the literature suggest that approximations 
should be done carefully since they might lead to errone-
ous results if done improperly. The results suggest that in 
the curvatures, up to second-order terms are necessary and 
enough to consider. In the longitudinal normal strain, how-
ever, 3rd-order terms are necessary too. It might be enough 
to consider selected 3rd-order term(s), but they need to be 
carefully selected. Regarding the transformation matrix, 
though in certain cases it is enough to consider the second- 
order terms only, but in other cases higher-order terms 
are necessary, too; therefore, considering the 3rd-order 
terms is recommended. In general, the results suggest that 
the set of approximations proposed and applied by Pi and 
Trahair [15, 16] lead to reasonably precise critical moment 
values for a wide range of lateral-torsional problems.

The derived formulae clearly show that the torsional 
rigidity have important effect. The suggestion of multiple 

previous papers that the critical moment increase can be 
approximated by the 1 1− I Iy x  ratio can be confirmed 
in the case of beams with small torsional rigidity (e.g., open 
thin-walled sections). Furthermore, the prebuckling effect 
is modified if the torsional rigidity is significant (e.g., closed 
thin-walled sections), with closed sections experiencing a 
higher effect of prebuckling deformations. This means that 
the appropriate closed form solutions can vary depending 
on several factors, and no single "exact" formula exists.

This paper serves as a first step in a more comprehensive 
investigation of the problem. Although it gives a good over-
view for the derivation of analytical solutions, other meth-
ods, such as numerical investigations, are necessary to val-
idate which formulae are suitable for different cases. This 
is why further studies of the topic of prebuckling deforma-
tions effect on the critical moment of LTB of beams con-
sidering other factors and cases, such as the effect of end 
supports, intermediate supports, as well numerical investi-
gations using beam and shell FEM elements are conducted 
and will be presented in future papers.

Acknowledgment
The presented work was conducted with the financial 
support of the K138615 project of the National Research, 
Development and Innovation Office of Hungary.

References
[1] Michell, A. G. M. "XXXII. Elastic stability of long beams under 

transverse forces", The London, Edinburgh, and Dublin Philosophical 
Magazine and Journal of Science, 48(292), pp. 298–309, 1899. 

 https://doi.org/10.1080/14786449908621336
[2] Prandtl, L. "Kipperscheinungen" (Lateral Torsional Buckling 

Phenomena), PhD Dissertation, University of Nürnberg, 1899. 
(in Germany)

[3] Timoshenko, S. P. "Поперечная устойчивость двутавровых 
балок под воздействием сил, действующих в плоскости 
наибольшей жесткости" (Lateral Buckling of I-Beams Under 
the Influence of Forces Acting in the Plane of Largest Rigidity), 
Proceedings of St. Petersburg Polytechnical Institute, 4(5), 
pp. 151–219, 1906. (in Russian)

[4] Timoshenko, S. P. "Einige Stabilitätsprobleme der Elastizitätstheorie" 
(Some Stability Problems of the Theory of Elasticity), Zeitschrift für 
Mathematik und Physik, 58(4), pp. 337–385, 1910. (in German)

[5] Timoshenko, S. "Sur la stabilité des systèmes élastiques" (On the 
Stability of Elastic Systems), Annales des Ponts et Chaussées, 
83(13), pp. 496–566, 1913. (in French)

[6] Chwalla, E. "Die Kipp-Stabilität gerader Träger mit doppelt 
symmetrischen I-Querschnitt" (The Buckling Stability of Straight 
Beams with Doubly Symmetric I-Cross Sections), Springer, 1939. 
ISBN 978-3-7091-9735-6 (in Germany) 

 https://doi.org/10.1007/978-3-7091-9982-4

[7] Davidson, J. F. "The elastic stability of bent I-section beams", 
Proceedings of the Royal Society of London: Series A: 
Mathematical and Physical Sciences, 212(1108), pp. 80–95, 1952. 

 https://doi.org/10.1098/rspa.1952.0067
[8] Pettersson, O. "Combined bending and torsion of I beams of 

monosymmetrical cross section: a non-linear theory taking into 
account the risk of lateral buckling", Division of Building Statics 
and Structural Engineering at the Royal Institute of Technology, 
Stockholm, Sweden, Bulletin No. 10, 1952. 

[9] Kerensky, O. A., Flint, A. R., Brown, W. C. "The basis for 
design of beams and plate girders in the revised British Standard 
153", Proceedings of the Institution of Civil Engineers, 5(4),  
pp. 396–461, 1956. 

 https://doi.org/10.1680/ipeds.1956.12171
[10] Clark, J. W., Knoll, A. H. "Effect of deflection on lateral buck-

ling strength", Journal of Engineering Mechanics Division, 84(2), 
pp. 1596-1–1596-18, 1958. 

 https://doi.org/10.1061/JMCEA3.0000060
[11] Trahair, N. S., Woolcock, S. T. "Effect of major axis curvature on 

I-beam stability", Journal of the Engineering Mechanics Division, 
99(1), pp. 85–98, 1973. 

 https://doi.org/10.1061/JMCEA3.0001731

https://doi.org/10.1080/14786449908621336
https://doi.org/10.1007/978-3-7091-9982-4
https://doi.org/10.1098/rspa.1952.0067
https://doi.org/10.1680/ipeds.1956.12171
https://doi.org/10.1061/JMCEA3.0000060
https://doi.org/10.1061/JMCEA3.0001731


Reden and Adany
Period. Polytech. Civ. Eng.|15

[12] Vacharajittiphan, P., Woolcock, S. T., Trahair, N. S. "Effect of 
in-plane deformation on lateral buckling", Journal of Structural 
Mechanics, 3(1), pp. 29–60, 1974. 

 https://doi.org/10.1080/03601217408907255
[13] Roberts, T. M., Azizian, Z. G. "Nonlinear analysis of thin-walled 

bars of open cross section", International Journal of Mechanical 
Sciences, 25(8), pp. 565–577, 1983. 

 https://doi.org/10.1016/0020-7403(83)90048-6
[14] Roberts, T. M., Azizian, Z. G. "Influence of pre-buckling displace-

ments on the elastic critical loads of thin-walled bars of open cross 
section", International Journal of Mechanical Sciences, 25(2), 
pp. 93–104, 1983. 

 https://doi.org/10.1016/0020-7403(83)90003-6
[15] Pi, Y. L., Trahair, N. S. "Prebuckling Deflections and Lateral 

Buckling. I: Theory", Journal of Structural Engineering, 118(11), 
pp. 2949–2966, 1992. 

 https://doi.org/10.1061/(ASCE)0733-9445(1992)118:11(2949)
[16] Pi, Y. L., Trahair, N. S. "Prebuckling Deflections and Lateral 

Buckling. II: Applications", Journal of Structural Engineering, 
118(11), pp. 2967–2985, 1992. 

 https://doi.org/10.1061/(ASCE)0733-9445(1992)118:11(2967)
[17] Trahair, N. S. "Flexural-Torsional Buckling of Structures", CRC 

Press, 1993. ISBN 9780429175015 
 https://doi.org/10.1201/9781482271218
[18] Torkamani, M. A. M. "Transformation matrices for finite and 

small rotations", Journal of Engineering Mechanics, 124(3), 
pp. 359–362, 1998. 

 https://doi.org/10.1061/(ASCE)0733-9399(1998)124:3(359)
[19] Andrade, A., Camotim, D. "Lateral-torsional buckling of prismatic 

and tapered thin-walled open beams: assessing the influence of 
pre-buckling deflections", Steel and Composite Structures, 4(4), 
pp. 281–301, 2004. 

 https://doi.org/10.12989/scs.2004.4.4.281
[20] Machado, S. P., Cortínez, V. H. "Lateral buckling of thin-walled 

composite bisymmetric beams with prebuckling and shear defor-
mation", Engineering Structures, 27(8), pp. 1185–1196, 2005. 

 https://doi.org/10.1016/j.engstruct.2005.02.018
[21] Mohri, F., Potier-Ferry, M. "Effects of load height application and 

pre-buckling deflections on lateral buckling of thin-walled beams", 
Steel and Composite Structures, 6(5), pp. 401–415, 2006. 

 https://doi.org/10.12989/scs.2006.6.5.401

[22] Torkamani, M. A. M., Roberts, E. R. "Energy equations for elastic 
flexural–torsional buckling analysis of plane structures", Thin-
Walled Structures, 47(4), pp. 463–473, 2009. 

 https://doi.org/10.1016/j.tws.2008.06.006
[23] Mohri, F., Damil, M., Potier-Ferry, M. "Linear and non-linear sta-

bility analyses of thin-walled beams with monosymmetric I sec-
tions", Thin-Walled Structures, 48(4–5), pp. 299–315, 2010. 

 https://doi.org/10.1016/j.tws.2009.12.002
[24] Attard, M. M., Kim, M.-Y. "Lateral buckling of beams with shear 

deformations – A hyperelastic formulation", International Journal 
of Solids and Structures, 47(20), pp. 2825–2840, 2010. 

 https://doi.org/10.1016/j.ijsolstr.2010.06.012
[25] Erkmen, R. E., Attard, M. M. "Lateral–torsional buckling analysis 

of thin-walled beams including shear and pre-buckling deforma-
tion effects", International Journal of Mechanical Sciences, 53(10), 
pp. 918–925, 2011. 

 https://doi.org/10.1016/j.ijmecsci.2011.08.006
[26] Mohri, F., Damil, M., Potier-Ferry, M. "Pre-buckling deflection 

effects on stability of thin-walled beams with open sections", Steel 
and Composite Structures, 13(1), pp. 71–89, 2012. 

 https://doi.org/10.12989/scs.2012.13.1.071
[27] Beyer, A., Boissonnade, N., Khelil, A., Bureau, A. "Elastic sta-

bility of U-shaped members in bending considering pre-buckling 
displacements", Journal of Constructional Steel Research, 135, 
pp. 230–241, 2017. 

 https://doi.org/10.1016/j.jcsr.2017.04.011
[28] Pezeshky, P., Mohareb, M. "Distortional lateral torsional buckling 

of beam-columns including pre-buckling deformation effects", 
Computers & Structures, 209, pp. 93–116, 2018. 

 https://doi.org/10.1016/j.compstruc.2018.08.010
[29] Su, Y., Zhao, H., Liu, S., Li, R., Wang, Y., Wang, Y., Bian, J., 

Huang, Y. "Buckling of beams with finite prebuckling defor-
mation", International Journal of Solids and Structures, 165, 
pp. 148–159, 2019. 

 https://doi.org/10.1016/j.ijsolstr.2019.01.027

https://doi.org/10.1080/03601217408907255
https://doi.org/10.1016/0020-7403(83)90048-6
https://doi.org/10.1016/0020-7403(83)90003-6
https://doi.org/10.1061/(ASCE)0733-9445(1992)118:11(2949)
https://doi.org/10.1061/(ASCE)0733-9445(1992)118:11(2967)
https://doi.org/10.1201/9781482271218
https://doi.org/10.1061/(ASCE)0733-9399(1998)124:3(359)
https://doi.org/10.12989/scs.2004.4.4.281
https://doi.org/10.1016/j.engstruct.2005.02.018
https://doi.org/10.12989/scs.2006.6.5.401
https://doi.org/10.1016/j.tws.2008.06.006
https://doi.org/10.1016/j.tws.2009.12.002
https://doi.org/10.1016/j.ijsolstr.2010.06.012
https://doi.org/10.1016/j.ijmecsci.2011.08.006
https://doi.org/10.12989/scs.2012.13.1.071
https://doi.org/10.1016/j.jcsr.2017.04.011
https://doi.org/10.1016/j.compstruc.2018.08.010
https://doi.org/10.1016/j.ijsolstr.2019.01.027

	1 Introduction 
	2 Detailed review of earlier studies 
	3 Analytical solutions 
	3.1 Overview 
	3.1.1 Shape functions 
	3.1.2 Total potential 
	3.1.3 Curvatures 
	3.1.4 Longitudinal normal strain 
	3.1.5 Equation system, critical load 

	3.2 Variants and approximations in the derivation 
	3.2.1 Transformation matrix 
	3.2.2 Curvatures 
	3.2.3 Longitudinal strain 
	3.2.4 Approximations due to cross-section characteristics 
	3.2.5 Optional reduction of equation degree 


	4 Critical moment variants 
	4.1 Doubly-symmetric open sections 
	4.2 Doubly-symmetric closed sections 

	5 Conclusions 
	Acknowledgment 
	References 

