PERMUTATIONS WITH A GIVEN NUMBER OF INVERSIONS

L. Balcza
Department of Civil Engineering Mathematics
Technical University, H-1521 Budapest
Received December 8, 1985
Presented by Prof. Dr. J. Reimann

Abstract

In this paper a kind of generalized Pascal triangle is constructed whose k 'th entry in its n'th row equals the number of permutations of degree π having exactly k inversions. Let P_{n}^{k} be

 the number of the n-degree permutations having exactly k inversions. Then$$
\begin{aligned}
P_{n}^{k} \equiv 0, \text { if } k & >\binom{n}{2} \div 1 . \\
& <0
\end{aligned}
$$

so it is presented an algorithm which needs polynomial time only:

$$
P_{n}^{k}=P_{n-1}^{k}+\cdots+P_{n-1}^{k-n+1} .
$$

Finally it is given a method that the n 'th row of our GPT contains $1+\binom{n}{2}$ (non-zero) entries and the computation of the n^{\prime} th row requires roughly $n^{\text {: }}$ operations.

The trivial algorithm determining the number of permutations of n letters having a given number of inversions works in exponential time. That is the trivial algorithm consisting of the cheling the number of inversions in every permutation of degree n requires a time exponentially depending on n.

Here we present another algorithm which needs polynomial time only. Our algorithm consists of the contruction of a "Generalized Pascal triangle" whose k 'th entry in its n 'th row equals the number of permutations of degree n having exactly k inversions.

Let f and g be number-theorical functions whose values are also natural numbers. We present an infinite matrix, called the Generalized Pascal triangle (shortly: GPT) for the pair (f, g) by the following rules:

1. The entries of the matrix will be indexed by pairs (i, j) with i natural and j arbitrary integer numbers. For such an entry, we write $[f, g]_{i}^{i}$ where the lower index indicates the row, and the upper one the column of the matrix containing the considered entry.
2. $[f, g]_{i}^{0}=1$, and $[f, g]_{i}^{j}=0$ if $j \neq 0$.

This rule expresses how to fill in the first row of our matrix.
The next rules express how do the following rows depend on the numbertheorical functions f and g.
3. If, for any, there exist exactly m_{i} non-zero entries in the i 'th row, then there exist exactly $m_{i}+f(i)$ non-zero entries in the $i+1$ 'th row, namely $[f, g]_{i+1}^{j} \neq 0$ for $j=-m_{i}-f_{i}+1,-m_{i}-f_{i}+3, \ldots, m_{i}+f_{i}-1$.
4. If $[f, g]_{i+1}^{j} \neq 0$ then $[f, g]_{i+1}^{j}=\sum_{k=j=g(i)}^{j \div g(i)}[f, g]_{i}^{k}$.

This rule formulates how many and which entries of the i'th row have to be summed up for obtaining the entries of the $i+1$ 'th row.

The GPT in the case when $f=g=1$ turns into the common Pascal triangle consisting of the binomial coefficients

Really by the given rules the matrix will have the following entries.

Another special case of our notion of GPT appears in Vilenkin"s popular book in combinatorics where the case $f=g=m-1$ (i.e., both f and g are constant) is treated: the resulting entries give the number of n-digits numbers written in m-ary system with sum of digits k.
$\left.\begin{array}{lrrrrrrrrrrrrr}\hline \ldots & -6 & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6\end{array}\right]$

This table displays the case $m=3$. (The Pascal triangle was the case $m=2$.) Let P_{n}^{k} be the number of n-degree permutations having exactly k inversions. Then we'd write the following

Theorem: For every natural number n, the non-zero entries of the n 'th row of the GPT for $f(\mathrm{n})=g(\mathrm{n})=n$, are (from left to right)

$$
P_{n}^{0}, \ldots, P_{n}^{\left(\frac{n}{2}\right)}
$$

where f and g are identical functions.

The first five rows of the GPT in the theorem are displayed here:

\ldots	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	\ldots
1							1							
2						1		1						
3				1		2		2		1				
4	1		3		5		6		5		3		1	
$5 \ldots$	9	15		20		22		20		15	9	\ldots		

Proof: First we remark that our GPT has

$$
1+\sum_{i=1}^{n-1} f(i)=1+\binom{n}{2}
$$

non-zero entries has in its n"th row.
The number of inversion of n-degree permutations takes on also $1+\binom{n}{2}$ values. Define the numbers $a_{i}^{j}(i=1,2, \ldots ; j=\ldots,-1,0,1, \ldots)$ as follows:

$$
\begin{equation*}
a_{i}^{j}=P_{i}^{k} \text { if } j=-\binom{i}{2}+2 k, \text { else } a_{i}^{j}=0\left(0=k=\binom{i}{2}\right) \tag{1}
\end{equation*}
$$

Observe that $[\iota, \iota]_{i}^{j}=0$ if and only if $a_{i}^{j} \neq 0$. We prove that

$$
\begin{equation*}
[\iota, \iota]=a_{i}^{j} \tag{2}
\end{equation*}
$$

for every i and j. In view of (1), this will prove the theorem. We have $[\iota, \ell]_{1}^{0}=$ $=a_{1}^{0}=1$. Suppose that (2) is valid for $i=n-1$. Consider a_{n}^{j}; if it equals 0 , then $[\iota, l]_{n}^{j}=0$. Otherwise there exists a $k \in\left\{0, \ldots\binom{i}{2}\right\}$ such that $a_{n}^{j}=P_{n}^{k}$ and $j=-\binom{n}{2}+2 k$. By part 4 , in the definition of a GPT, it is enough to prove

$$
\begin{equation*}
a_{n}^{j}=\sum_{i=j=n+1}^{j \div n-1} a_{n-1}^{t} \tag{3}
\end{equation*}
$$

Now for some $t=j+r(-(n-1) \leq r \leq n-1)$ let $a_{n-1}^{t} \neq 0$, i.e., $a_{n-1}^{t}=$ $=P_{n-1}^{l}$, where $t=-\binom{n-1}{2}+2 l$. Comparing the distinct expressions for t, we obtain

$$
-\binom{n}{2}+2 k+r=-\binom{n-1}{2}-n+1+2 k+r=-\binom{n-1}{2}+2 l
$$

whence $k-n+1 \leq l \leq k$ follows. Thus (3) may be rewritten in the form

$$
\begin{equation*}
P_{n}^{k}=P_{n-1}^{k}+\ldots+P_{n-1}^{k-n+1} \tag{4}
\end{equation*}
$$

The following observation implies (4): all permutations of $\{1,2, \ldots, n\}$ with k inversions may be obtained (and each of them only once) if we take all permutations of $\{1, \ldots, n-1\}$ having at most k and at least $k-n+1$ inversions, and insert the element n into each permutation so that the new permutation (of $\{1, \ldots, n\}$) had exactly k inversions. So, the theorem is proved.

What is the time required by this algorithm?
Since the n'th row of our GPT contains $I+\binom{n}{2}$ (non-zero) entries and each of them may be got by $n-1$ additions (from the entries of the preceding row), the computation of the in"throw from the $n-l^{\prime \prime}$ th one requires roughly n^{3} operations, thus the computation of the n^{\prime} th row requires summarily roughly n^{4} operations.

References

1. Vilenkin, M. Ya.: Combinatorics (in Russian), Fizmatgiz, Moscow, 1969.

Dr. Lajos Baicza H-1521 Budapest

