PERMUTATIONS WITH A GIVEN NUMBER OF INVERSIONS

L. BALCZA

Department of Civil Engineering Mathematics Technical University, H-1521 Budapest

> Received December 8, 1985 Presented by Prof. Dr. J. Reimann

Abstract

In this paper a kind of generalized Pascal triangle is constructed whose k'th entry in its n'th row equals the number of permutations of degree n having exactly k inversions. Let P_n^k be the number of the *n*-degree permutations having exactly k inversions. Then

$$P_n^k \equiv 0, \text{ if } k > \binom{n}{2} + 1, \\ < 0$$

so it is presented an algorithm which needs polynomial time only:

$$P_n^k = P_{n-1}^k + \ldots + P_{n-1}^{k-n+1}.$$

Finally it is given a method that the *n*'th row of our GPT contains $1 + \binom{n}{2}$ (non-zero) entries and the computation of the *n*'th row requires roughly *n*⁴ operations.

The trivial algorithm determining the number of permutations of n letters having a given number of inversions works in exponential time. That is the trivial algorithm consisting of the cheking the number of inversions in every permutation of degree n requires a time exponentially depending on n.

Here we present another algorithm which needs polynomial time only. Our algorithm consists of the contruction of a "Generalized Pascal triangle" whose k'th entry in its n'th row equals the number of permutations of degree n having exactly k inversions.

Let f and g be number-theorical functions whose values are also natural numbers. We present an infinite matrix, called the *Generalized Pascal triangle* (shortly: GPT) for the pair (f, g) by the following rules:

1. The entries of the matrix will be indexed by pairs (i, j) with *i* natural and *j* arbitrary integer numbers. For such an entry, we write $[f, g]_i^j$ where the lower index indicates the row, and the upper one the column of the matrix containing the considered entry.

2. $[f,g]_1^0 = 1$, and $[f,g]_1^j = 0$ if $j \neq 0$.

This rule expresses how to fill in the first row of our matrix.

The next rules express how do the following rows depend on the numbertheorical functions f and g. 3. If, for any, there exist exactly m_i non-zero entries in the i'th row, then there exist exactly $m_i + f(i)$ non-zero entries in the i + 1'th row, namely $[f,g]_{i+1}^j \neq 0$ for $j = -m_i - f_i + 1, -m_i - f_i + 3, \ldots, m_i + f_i - 1$.

4. If
$$[f,g]_{i+1}^{j} \neq 0$$
 then $[f,g]_{i+1}^{j} = \sum_{k=j-g(i)}^{j+g(i)} [f,g]_{i}^{k}$

This rule formulates how many and which entries of the i'th row have to be summed up for obtaining the entries of the i+1'th row.

The GPT in the case when f = g = 1 turns into the common Pascal triangle consisting of the binomial coefficients

Really by the given rules the matrix will have the following entries.

6	—5		-3	-2	-1	0	1	2	3	4	5	6	•••
1						1							
2					1		1						
3				1		2		I					
4			1		3		3		1				
5		1		4		6		4		1			

Another special case of our notion of GPT appears in Vilenkin's popular book in combinatorics where the case f = g = m-1 (i.e., both f and g are constant) is treated: the resulting entries give the number of *n*-digits numbers written in *m*-ary system with sum of digits k.

•••	6	- 5		3	-2	1	0	1	2	3	4	5	6
1							1						
2					1		1		1				
3			1		2		3		2		1		
4.	1		3		6		7		6		3		1
5	4		10		16		19		16		10		4

This table displays the case m = 3. (The Pascal triangle was the case m = 2.) Let P_n^k be the number of *n*-degree permutations having exactly k inversions. Then we'd write the following

Theorem: For every natural number n, the non-zero entries of the n'th row of the GPT for f(n) = g(n) = n, are (from left to right)

$$P_n^0,\ldots,P_n^{\binom{n}{2}}.$$

where f and g are identical functions.

	-6 -5	4	—3	2	-1	0	1	2	3	4	5	6
1						1						
2					1		1					
3			1		2		2		1			
4	1	3		5		6		5		3		1
5	9	15		20		22		20		15		9

The first five rows of the GPT in the theorem are displayed here:

Proof: First we remark that our GPT has

$$1 + \sum_{i=1}^{n-1} f(i) = 1 + \binom{n}{2}$$

non-zero entries has in its n'th row.

The number of inversion of *n*-degree permutations takes on also $1 + \binom{n}{2}$ values. Define the numbers a_i^j (i = 1, 2, ...; j = ..., -1, 0, 1, ...) as follows:

$$a_i^j = P_i^k$$
 if $j = -\binom{i}{2} + 2k$, else $a_i^j = 0 \left(0 = k = \binom{i}{2} \right)$. (1)

Observe that $[\iota, \iota]_i^j \neq 0$ if and only if $a_i^j \neq 0$. We prove that

$$[\iota, \iota] = a_i^j \tag{2}$$

for every *i* and *j*. In view of (1), this will prove the theorem. We have $[\iota, \iota]_1^0 = a_1^0 = 1$. Suppose that (2) is valid for i = n - 1. Consider a_n^j ; if it equals 0, then $[\iota, \iota]_n^j = 0$. Otherwise there exists a $k \in \left\{0, \ldots, {i \choose 2}\right\}$ such that $a_n^j = P_n^k$ and $j = -{n \choose 2} + 2k$. By part 4, in the definition of a GPT, it is enough to prove $j \neq n-1$

$$a_n^j = \sum_{t=j-n+1}^{j+n-1} a_{n-1}^t.$$
 (3)

Now for some $t = j + r(-(n-1) \le r \le n-1)$ let $a_{n-1}^t \ne 0$, i.e., $a_{n-1}^t = P_{n-1}^t$, where $t = -\binom{n-1}{2} + 2l$. Comparing the distinct expressions for t, we obtain

$$-\binom{n}{2} + 2k + r = -\binom{n-1}{2} - n + 1 + 2k + r = -\binom{n-1}{2} + 2l$$

whence $k - n + 1 \le l \le k$ follows. Thus (3) may be rewritten in the form

$$P_n^k = P_{n-1}^k + \ldots + P_{n-1}^{k-n+1}.$$
(4)

The following observation implies (4): all permutations of $\{1, 2, ..., n\}$ with k inversions may be obtained (and each of them only once) if we take all permutations of $\{1, ..., n-1\}$ having at most k and at least k - n + 1 inversions, and insert the element n into each permutation so that the new permutation (of $\{1, ..., n\}$) had exactly k inversions. So, the theorem is proved.

What is the time required by this algorithm?

Since the n'th row of our GPT contains $1 + \binom{n}{2}$ (non-zero) entries and each of them may be got by n - 1 additions (from the entries of the preceding row), the computation of the n'th row from the n - 1'th one requires roughly n^3 operations, thus the computation of the *n*'th row requires summarily roughly n^4 operations.

References

1. VILENKIN, N. Ya.: Combinatorics (in Russian), Fizmatgiz, Moscow, 1969.

Dr. Lajos BALCZA H-1521 Budapest