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Abstract

In this paper a kind of generalized Paseal triangle is constructed whose k’th entry in its
w’th row equals the number of permutations of degree n having exactly k inversions. Let P% he
the number of the n-degree permutations baving exactly k inversions. Then

n
()
Pi=0, i k =

<0
s0 it is presented an algorithm which needs polynomial time only:

k __ pk : : k—n-+1
Pn"‘Pn—l_w—'"‘-T'Pn—l .

Finally it is given a method that the n’th row of our GPT contains 1 + (7) (non-zero) entries

and the computation of the n’th row requires roughly n* operations.

The trivial zlgorithm determining the number of permutations of n letters
having a given number of inversions works in exponential time. That is the
trivial clgorithm consisting of the cheking the number of inversions in every
permutation of degree n requires a time exponentially depending on n.

Here we present another algorithm which needs polyhomial time only.
Our algorithm consists of the contruction of a “Generalized Pascal triangle”
whose k'th eniry in its n'th row equals the number of permutations of degree n
having exactly k inversions.

Let f and g be number-theorical functions whose values are also natural
numbers. We present an infinite matrix, called the Generalized Pascal triangle
(shortly: GPT) for the pair (f. g) by the following rules:

1. The entries of the matrix will be indexed by pairs (7, j) with ¢ natural
and j arbitrary integer numbers. For such an entry, we write [f, g}/ where the
lower index indicates the row. and the upper one the column of the matrix
containing the considered entry.

2.[f.gld=l.and[f. gl = 0ifj = 0.

This rule expresses how to fill in the first row of our matrix.

The next rules express how do the following rows depend on the number-
theorical functions fand g.
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3. If, for any, there exist exactly m; non-zero entries in the i’th row, then
there exist exactly m; - f(i) non-zero entries in the 7 I'th row, namely

[foglisn = 0 for j — —m, — fi+ 1, —m, f,_ coemtfi—1
4. I [f. gl == Othen [f. g}l = Z Lfs "]"
k=j—g(7)

This rule formulates how many and which entries of the i’th row have to
be summed up for obtaining the entries of the i+ 1’th row.

The GPT in the case when f = g = 1 turns into the common Pascal tri-
angle consisting of the binomial coefficients

Really by the given rules the matrix will have the following entries.

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
1 1
2 1 1
3 1 2 1
4 1 3 3 1
5 1 4 6 4 1

Another special case of our notion of GPT appears in Vilenkin’s popular
book in combinatorics where the case f= g = m—1 (i.e., both f and g are
constant) is treated: the resulting entries give the number of n-digits numbers
written in m-ary system with sum of digits k.

1 1

2 1 1 1

3 1 2 3 2 1

4. 1 3 6 7 6 3 1
3.. 4 10 16 19 16 19 4

This table displays the case m = 3. (The Pascal triangle was the case
m = 2.) Let P% be the number of n-degree permutations having exactly k
inversions. Then we’d write the following

Theorem: For every natural number n. the non-zero eniries of the n’th row

of the GPT for f(n) = g(n) = n, are (from left to right)

po ... p),

n

where fand g are identical functions.
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The first five rows of the GPT in the theorem are displayed here:

-6 —5 ~4 -3 -2 -1 0 1 2 3 4 5 6 .
1 1
2 1 1
3 1 2 2 1
4 1 3 5 6 5 3 1
5.. 9 15 20 22 20 15 9 ...

non-zero entries has in its n’th row.

n
The number of inversion of n-degree permutations takes on also 1 -4 (9)

values. Define the numbers af (i = 1,2, .. .3j=...,—1,0,1,...) as follows:
. ) i ) i
a{:Pf‘ifj:—(9]+2k, else a{:O(O:k:(Q (1)
=/ L L=

Observe that [¢, (]{ == 0 if and only if af = 0. We prove that
[t: o] = o] (2)

for every ¢ and j. In view of (1). this will prove the theorem. We have [1,:]} =
= a = 1. Suppose that (2) is valid for i = n — 1. Consider al; if it equals 0,

n?

} such that af = P%

then [1, (}, = 0. Otherwise there exists a k ¢ lO, e (;

. n - . > . . 0 -
and j = — (9 <+ 2k. By part 4, in the definition of a GPT, itis enough to prove
. Jj+n—1 .
b= '3 d (3)
f=j—n-+1

Now for some ¢ = j -1 r(-—(n — 1 <r<n— 1) letal_ = 0,ie.,a,_; =

n—1 . . .
= P!_,, where t = — ) } —+ 2. Comparing the distinct expressions for ¢,
we obtain
(1 oo n — 1] n — ]_l
— 2kt =— o |+ 142k+1r=— - 21
2 2 2 |
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whence £ —n 4+ 1 <1<k follows. Thus (3) may be rewritten in the form
Phm Py .4 Phpin (4

The following observation implies (4): all permutations of {1,2,...,n}
with kinversions may be obtained (and each of them only once) if we take all
permutations of {1,...,n — 1} having at most k and at least k — n - 1 inversions,
and insert the element n into each permutation so that the new permutation (of
{1....,n}) had exactly k inversions. So, the theorem is proved.

What is the time required by this algorithm ?

(non-zero) eatries and

. . - . n

Since the n’th row of our GPT contains 1 -~ ‘7

each of them may be got by n — 1 additions (from the entries of the preceding
row), the computation of the n’throw from the n — 1’th one requires roughly n®
operations, thus the computation of the n’th row requires summarily roughly n*

operations.
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