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Abstract

The hydraulical phenomena in nature are three-dimensional (3D) and varying in time.
In most practical cases it is sufficient to consider those phenomena as two-dimensional (2D) in
the horizontal plane and varying in time. These phenomena occur primarily where the accelera-
tion along the vertical direction is negligible compared to the gravitational one. Disregarding
the variation of hydraulical parameters along the vertical direction we obtain a homogeneous
horizontal flow. This phenomenon is described by the relatively simple Reynolds equations.
In most practical cases the variation of velocity along the vertical direction has to be taken
into account. The integral equations in which the depth average is taken into account are
approaching the three-dimensional phenomena rather well.

In our study we performed the result of our several years’ research in the field of mathe-
matical modelling of two-dimensional hydrodynamical and transport processes.

The mathematical background was introduced in paragraph 1. We showed how the two-
dimensional equations (7)—(9) can be achieved from Reynolds equations, valid for the time
— averaged mean hydraulic characteristics at a certain point of a three-dimensional turbulent
flow. After deriving a closed set of equations, which can be solved, we introduced the numerieal
solution method of the implicit finite differences in four steps and in alternative direction.

We showed the calibration of the model to prove the accuracy of the results in paragraph
2. That is why we compared the results of our model with laboratory measurements. We
simulated the phenomenon forming at the tailbay of a hvdropower station and compared the
flow patterns of the mathematical and physical models (Figs 2 and 3). We proved, that our
model and its computer program are suitable for the computation of flows that may be as-
sumed as two-dimensional in the horizontal plane.

In paragraph 3 the application of the model for the Internal Lake of Kis-Balaton is
shown. We computed the near steady flow pattern, which forms when both the water intake
and outlet was 10 m%/s (Fig. 4).

Sensitivity tests were performed for both the velocity coefficient, C (Fig. 5) and the eddy
viscosity, ». We established that neither the determination of C nor that of » needs field measure-
ments, Satisfactory accuracy can be achieved if one uses the values and formulae based on
former experiences, laboratory experiments or data found in some publications for the estima-
tion of C and ».

In paragraph 4 we briefly performed the application of the transport-diffusion equation
for the Internal Lake of Kis-Balaton. With the help of an example it is shown. that we can
compute the concentration of pollutants in a two dimensional space, varying in time (Figs 6

and 7).

1. Mathematical background
Basic Equations

Our initial equations can be derived from the well-known Reynolds
equations. The Reynolds equations are valid for the time-averaged mean values
of the turbulent flow at a certain point. If the phenomenon is considered as two
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dimensional in the horizontal plane, the variation in depth should be ap-
proached by mean values. Disregarding the derivation we here give the result,
the basic equations for the computation of an open-channel non-steady,

depth-averaged two-dimensional, single-layer, turbulent flow.
Continuity equation:

Momentum equations:
in direction x:
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where: — u and v are the time-and-depth-averaged velocities in direction

x and y, respectively;
— u’ an v’ are the pulsation velocities;
— h the depth;
— 1z, the bottom level above any reference level;

— 7y, and 7, the bottom friction stresses in direction x and y,

respectively;
— the upper dash refer to the time averaged mean values;
— du=u—1d, dv=v—7

In the derivation of the equations (1—3) we have applied numerous

common approaches (Breusers 1984, Flokstra 1977).
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The momentum changes induced by the pulsation and the excess-stresses
due to velocity distribution varying along the horizontal and vertical direction
are expressed in the last three terms of the equation. These terms may have
great importance in case of an intensively varying velocity distributicn along
the longitudinal or cross-sections.

For the sake of closing the equations we applied the hypothesis introduced
by Boussinesq (1877). Using the hypothesis known also as Reynolds analogy,
for the Reynolds stresses the

Tij = —oujul = on jiui (4)
™

form is obtained, where 7;; is the turbulent viscosity (Abraham 1982--83).
This analogy is applied for the two last terms of the equations (2) and (3).
Supposing that the same viscosity coefficient is valid for the stresses in both

directions, we get forms
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where: v is the eddy viscesity, which involves the effects of the turbulent
integration viscosity as well.

In most practical cases the boundary conditions are given by the dis-
charge varying in time, thus the equations are rearranged for flow per unit
width:

in direction x p = uh
in direction y q = vh (6)

By the introduction of (5), (6) and the well-known <7,,, 7,, bottom friction
stress forms, we obtain the equations of the depth-averaged, open channel, 2D,
turbulent flow:
the continuity equation:
M o %, (@)
ot o0x oy

the momentum equations:
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in direction x:
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where Z = z, -+ k.
Equations (7)—(9) can be solved numerically. As a result of the computation
we can obtain the values of the functions

Z=Z(x, v, t)
p=px1) (10)
g = q(x. 5. 1)

in discrete poinis.

Nonlinear Dissipation and Eddy Viscosity

The accuracy and stability of the solution is influenced by the discretisa-
tion of the domain.

Difficulties are caused by the nonlinear convective terms, because their
discretisation is possible with numerical errors, only.

This numerical diffusion causes the amplitude-and-phase error, and the
uncertain, stability too. According to Hirt’s stability condition the sum of
numerical diffusion has to be positive (Vreugdenhil—Voogt 1975). By in-
creasing the positive eddy viscosity (v) and reducing the negative numerical
one, this eriteria is fulfilied.

At present there is no suitably accurate form for the computation of
the eddy viscositv. The values of v computed by approximating formulae of
different authors may show extreme deviations (Ratky 1986).

Numerical Solution

There are several methods for the numerical solution of equations (7—9).
We have chosen the implicit finite difference, four-step, alternative direction
solution method, because of its numerous advantages (Abbot 1979, Peyer—
Taylor 1983, Stelling 1984).
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By the method of finite differences the domain is covered by a dx, dy
and At size grid. The functions are determined in each intersection of the grid.
In each grid point only one unknown value is assumed. The derivatives are
approached by differential quotients. On Figure 1 as an example for the x-direc-
tion computation (X-sweep), the simultaneously considered points are shown.

The four step scheme divides one time period into four parts (Abhot
1979). First equations (7) and (9) are solved for the total domain along the
decreasing divection of x, then equations (7), (8) in the decreasing direction
of v, on the third level the direction x equations but in the increasing direo-
tion of v, and at last, in the fourth step equations (7). (9) are solved in the
increasing direction of x. In this way for the solution of the set of equations,
if the initial and boundary conditions are known and suitably rearranged,
the well-known special Gauss-elimination (double sweep method) may be
applied.

7

Z, Testing and calibration of the mzthematical model

The reliability of the model and the computer program has been checked
by a series of tests. During the development of the model and the program we
have undertaken more than 30 tests. The results of the tests, due to their
volume, are not given here, they can be found in different papers (Ratky—
Suryvadi-Barmawi 1984, Ratky 1985).

These tests proved that the mathematical model and its computer pro-
gram works well. The resulis were in accordance with the simplifying and
limiting conditions introduced during the derivation and also with our view
concerning hydraulics. To achieve an approximation of the physical phenom-
enon with suitable accuracy, calibration must be done, too.
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Fig. 1. Grid points, taken into consideration in eguation (8)
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As we did not have suitable data of the Kis-Balaton for this, we calibrated
our model with the phenomenon formed in a tailbay of a hydropower station.

For calibration we applied results u = u(x, y) and v = r(x,y) gained
with physical models.

The stream lines of the physical and mathematical models having the
same geometrical data, initial and boundary conditions are shown in Figs 2
. and 3. In the figures the separation pier and the tailbay are illustrated (at the
computation: C = 60 m'%s, v = 5m?/s). The stream lines of the two figures
coincidence well. The results of the sensitivity tests of the velocity coeffi-
cient (C) and the eddy viscosity can be found in Literature (Ratky 1986).

All these proved, that the developed mathematical model and also its
computer program are suitable te¢ compute the problems, which can be
considered as two dimensional in the horizontal plane.

3. Application of the model for the internal lake of Kis-Balaton

We simulated a supposed operation condition with the real geometrical
data of the Internal Lake (case) of the Kis-Balaton.

‘We supposed an initial condition of Z = 106.5 mBf constant water level
elevation and corresponding to this a static state of u = 0, v = 0 m/s.

Presumed boundary conditions:

During ¢ = 200 s both at the upper intake and the lower outlet sluices
the discharge increases until @ = 10 m?%s. Our purpose was to compute the
flow pattern of a steady state with a 10 m?s intake and outlet, respectively.
A near-steady state corresponding the boundaries was formed 1.5 hours after
a cold start. Figure 4 shows the flow pattern drawn by the computer in case of
C = 5 m'/*s velocity coefficient and v = 5 m?/s eddy viscosity. In the absence
of suitable data for calibration we can establish that the flow pattern corre-
sponds our experiences and our view as to hydraulics.

In the absence of data for the distribution of the velocity coefficient in
space. we supposed a constant C in the whole area. To decide if the model
needed more accurate data we performed a sensitivity test. With a constant
» =5 m?s eddy viscosity we used computations varying the velocity coef-
ficient. The differences in the flow patterns can hardly be noticed. Figure 5
shows the distribution of the flow per unit width in direction v, in a 1200 m
cross-section from the intake sluice, computed with different velocity coeffici-
ents. The average values of the cross-section can also be seen. As itis to be seen,
in spite of the relatively great variation of C, the difference in discharge is
about +109%,. Because of the low velocity, the influence of friction is not
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Fig. 2. Flow pattern in the tailbay of a hydropower station gained by laboratory experiments
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Fig. 5. Distribation of flow per unit width at 1200 m from
the intake sluice

decisive, through it is not negligible, either. This effect further decreases if
the discharge is lower.

The sensitivity test of the velocity coefficient (though it was not a full
test) showed that the model does not need special field measurements to de-
termine the value of C. Satisfactory accuracy can be achieved if the value of
C is estimated with the help of former experiences and laboratory experi-
ments or publications. But it is necessary to use a value, which includes the
special characteristics of the simulated area and varies along the computa-
tional grid.

Concerning the above establishment we have also taken into considera-
tion all the assumptions which the model includes or max include: the un-
certainty of the geometrical and operational data, the derivation of the math-
ematical model, the discretization and the solution. v

Besides the velocity coefficient there is one more parameter which ensures
the connection between the 3D real phenomenon and the 2D model. This
parameter is the eddy viscosity (»). The formulae to be derived by integrating
the pulsation velocity in time, and by integration in depth, cannot be solved
as yet. As mentioned, the values received by empirical formulae show a rather .
important deviation. That is why we also made a sensitivity test to show the
influence of the eddy viscosity.

With a constant value of the velocity coefficient (C =5 m?'[*/s) we under-
took computation using the following values of eddy viscosity: v = 1; 5 and 10
m?/s. We do not give here the flow patterns obtained, as the differences can
hardly be seen. We calculated the differences of the mean value of the flow
per unit width in several cross sections. The differences were less than 19,
Similarly to the velocity coefficient field measurements are not necessary to
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determine the value of » with an accuracy corresponding to the accuracy of
the model. Satisfactory results can be achieved by estimation. Because of the
negligible difference, it is not necessary to use different values at each grid
point or in the different directions.

4. Modelling the dispersion of pollutants

Due to the purpose of the Kis-Belaton it is very important to determine
the water quality parameters of the lake. The result of the above hydro-
dynamical model, the distribution of velocity has a great importance from
this point of view.

S mgit
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e 32140 P
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Fig. 6. Isoconcentration curves according to the computation
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Fig. 7. Concentration as a function of time

In this paragraph we mention a mathematical model for the computa-
tion of the concentration of any pollutant or suspended material in two di-
mensions varying in time. We do not give details, just the results of the first
steps of our research.

The governing equation is the two-dimensional, depth-averaged un-

steady transport — diffusion equation:
dc 0 0 J | ac} d [ e’
h— -+ —(pe) + —(g¢) — — |hD, —1 — EDy =0 (11
o0 g POy 09— AD S = oo 33_;-) )

where C (mg/l) — concentration of the pollutant

D,, D, (m¥s) — turbulent dispersion coefficients, in x and y

directions, respectively.

To solve the transport equation, variation of the velocity-distribution
and depth must be known. These are given by the hydrodynamical model.
For the numerical solution, similarly to the hydrodynamical one, we used
implicit finite differences, a four step alternative direction solution method.

As an example we supposed the velocity distribution shown in Fig. 4,
and simulated the transport of a pollutant reaching the lake at the upper
intake sluice. Due to the constant water intake and outlet, the velocity di-
stribution showed a near-steady state. The natural concentration of the “clean”
water was 1 mgfl. Within 5 hours the concentration increased up to 10 mg/l,
while the water intake and outlet remained 10 m3/s. The results can be seen
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in Fig. 6 indicating identical concentration values (isoconcentration curves)
at the 40th and 140th hour. The advancement and spreading of the pollutant
can be followed. The reasons of the deformation of the isocentration curves
are on the one hand the dominance of the convective term (velocity) in
transport and on the other hand, the variation of the bottom level. The re-
sults also show how the concentration varies in time at a certain point or
cross-section. Figure 7 shows the variation of concentration in time at several
points at a different distance of the intake sluice. It can be seen that at the
outlet sluice (2880 m) the variation of concentration is very slow,

19, of the pollution in about 4 days,
5%, of the pollution in about 5 days,
10Y%, of the poliution in about 6 days

reached the lower sluice.

By the above example one can not draw any conclusion as to the deten-
tion time or the operation of the sluices. We only intended to show our trans-
port model. We wanted to indicate that with the help of the hydrodynamical
and transport model, the hydraulic characteristics and the water quality param-
eters of the lake can be computed and the variation of these parameters
due to any operation can be forecast, thus an operation condition correspond-
ing the water quality can be worked out.
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