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Abstract 

Thc hydraulical phenomena in naturc are three-dimensional (3D) and varying in time. 
In most practical cases it is mfficient to consider those phenomena as two-dimensional (2D) in 
the horizontal plane and varying in time. These phenomena occur primarily 'where the accelera
tion along the wrtical direction is negligible compared to the gravitational one. Disregarding 
the variation of hydraulical parameters along the vertical direction we obtain a homogeneous 
horizontal flow. This phenomenon is described by the relath-ely simple Reynolds equations. 
In most practical cases the variation of velocity along the vertical direction has to be taken 
into account. The integral equations in which the depth average is taken into account are 
approaching the three-dimensional phenomena rather well. 

In our study we performed the result of our several years' research in the field of mathe
matical modelling of two-dimensional hydrodynamical and transport processes. 

The mathematical background was introduced in paragraph 1. We showed how the two
dimensional equations (7)-(9) can be achieved from Reynolds equations, valid for the time 

averaged mean hydraulic characteristics at a certain point of a three-dimensional turbulent 
flow. After deriving a closed set of equations, which can be solved, we introduced the numerical 
solution method of the implicit finite differences in four steps and in alternative direction. 

We showed the calibration of the model to prove the accuracy of the results in paragraph 
2. That is why we compared the results of our model with laboratory measurements. We 
simulated the phenomenon forming at the tailbay of a hydropowcr station and compared the 
flow patterns of the mathematical and physical models (Figs 2 and 3). We proved, that our 
model and its computer program are suitable for the computation of flow!" that may be as
sumed as two-dimen!"ional in the horizontal plane. 

In paragraph 3 the application of the model for the Internal Lake of Kis-Balaton is 
shown. \Vc computed the near steady flow pattern, which forms when both the water intake 
and outlet was 10 m 8/s (Fig. 4). 

Sensitivity tests were performed for both the velocity coefficient, C (Fig:. 5) and the eddy 
·dscosih-. 1'. We established that neither the determination of C nor that of l' needs field measure
ments. Satisfactory accuracy can be achieved if one uses the values and formulae based on 
former experiences, laboratory experiments or data found in some publications for the estima
tion of C and )'. 

In paragraph 4 we briefly performed the application of the transport-diffusion equation 
for the Internal Lake of Kis-Balaton. \'\'ith the help of an example it is shown, that we can 
compute the concentration of pollutants in a two dimensional space, varying in time (Figs 6 
and 7). 

1. Mathematical hackground 

Basic Equations 

Our initial equations can he derived from the well-known Reynolds 
equations. The Reynolds equations are valid for the time-averaged mean values 
of the turhulent flow at a certain point. If the phenomenon is considered as two 
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dimensional in the horizontal plane, the variation in depth should be ap
proached by mean values. Disregarding the derivation we here give the result, 
the basic equations for the computation of an open-channel non-steady, 
depth-averaged two-dimensional, single-layer, turlmlent flow. 
Continuity equation: 

Momentum equations: 
in direction x: 
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where: - It and v are the time-and-depth-averaged velocities in direction 
x and y, respectively; 
It' an v' are the pulsation velocities; 
h the depth; 
Zo the bottom level above any reference level; 
Tbx and 'by the bottom friction stresses in direction x and y, 
respectively; 
the upper dash refer to the time averaged mean values; 
Lllt = u - il, Llv = v-v. 

In the derivation of the equations (1-3) we have applied numerous 
common approaches (Breusers 1984, Flokstra 1977). 
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The momentum changes induced by the pulsation and the excess-stresses 
due to velocity distribution varying along the horizontal and vertical direction 
are expressed in the last three terms of the equation. These terms may have 
great importance in case of an intensively varying velocity distribution along 
the longitudinal or cross-sections. 

For the sake of closing the equations we applied the hypothesis introduced 
by Boussinesq (1877). Using the hypothesis known also as Reynolds analogy, 
for the Reynolds stresses the 

(4) 

form is obtained, "where TU is the turbulent viscosity (Abraham 1982-83). 
This analogy is appli<:>d for the two last terms of the eq uations (2) and (3). 
Supposing that the same viscosity coefficient is valid for the stresses in hoth 

directions, we get forms 
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where: )1 is the eddy viscosity, which involves the effects of the turhulent 
integration viscosity as well. 

In most practical cases the houndary conditions are given by the dis
charge varying in time, thus the equations are rearranged for flow per unit 
width: 

in direction x 

in direction y 
p = uh 
q = vh (6) 

By the introduction of (5), (6) and the well-known T bx, T by hottom friction 
stress forms, we ohtain the equations of the depth-averaged, open channel, 2D, 
turhulent flow: 
the continuity equation: 

(7) 

the momentum equations: 
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in direction x: 
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Equations (7)-(9) can he solved numerically. As a result of the computation 
we can ohtain the values of the functions 

in discrete points. 

Z = Z(x,y, t) 
p p(x, y, t) 
q = q(x, y, t) 

Nonlinear Dissipation and Eddy Viscosity 

(10) 

The accuracy and stahility of the solution is influenced by the discl'etisa
tion of the domain. 

Difficulties are caused hy the nonlinear convective terms, because their 
discretisation is possible '?,-ith numerical errors, only. 

This numerical diffusion causes the amplitnde-and-phase error, and the 
uncertain, stability too. According to Hirt's stability condition the sum of 
numerical diffusion has to be positive (Vreugclenhil-Voogt 1975). By in
c:;:easing the positive eddy 'dscosity (l) and reducing the negative numerical 
one, this criteria is fulfilled. 

At present there is no suitably accurate form for the computation of 
the eddy yiscosity. The values of l' computed hy approximating formulae of 
different authors may show extreme deviations (Ratky 1986). 

Numerical Solution 

There are several methods for the numerical solution of equations (7 - 9). 
'\\1 e haye chosen the implicit finite difference, four-step, alternative direction 
solution method, because of its numerous advantages (Abbot 1979, Peyer
Taylor 1983, Stelling 1984). 
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By the method of finite differences the domain is covered by a Llx, Lly 
and LIt size grid. The functions are determined in each intersection of the grid. 
In each grid point only one unknown value is assumed. The derivatives are 
approached by differential quotients. On Figure 1 as an example for the x-direc
tion computation (X-sweep), the simultaneously considered points are shown. 

The four step scheme divides one time period into four parts (Ahhot 
19(9). First equations (7) and (9) are soh-ed for the total domain along the 
decreasing direction of x, then equations (7), (8) in the decreasing direction 
of y, on the third level the direction x equations hut in the increasing direc
tion of y, and at last, in the fourth step equations (7), (9) are solved in the 
increasing direction of x. In this way for the solution of the set of equations, 
if the initial and houndary conditi8ns are kno\,;n and suitably rearranged, 
the well-known special Gauss-elimination (double sweep method) may be 
applied. 

2. Testing and calihration of the mathematical model 

The reliahility of the model and the computer program has been checked 
by a series of tests. During the development of the model and the program we 
have undertaken more than 30 tests_ The results of the tests, due to their 
volume, are not given here, they can be found in different papers (Ratky
Suryadi-Barmawi 1984, R:hky 1985). 

These tests proved that the mathematical model and its computer pro
gram works well. The results were in accordance ·with the simplifying and 
limiting conditions introduced during the derivation and also with our view 
concerning hydraulics. To achieve an approximation of the physical phenom
enon with suitable accuracy, calibration must be done, too. 
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Fig_ 1. Grid points, taken into consideration in equation '8) 
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As we did not have suitahle data of the Kis-Balaton for this, we calihratecl 
our model with the phenomenon formed in a tailhay of a hydro power station. 

For calibration we applied results It = u(x, y) and v = l"(x, y) gained 
with physical models. 

The stream lines of the physical and mathematical models having the 
same geometrical data, initial and houndary conditions are shown in Figs 2 
and 3. In the figures the separation pier and the tailhay are illnstrated (at the 
computation: C = 60 m 1j2/s, ~, = 5 m2/s). The stream lines of the two figures 
coincidence ,veil. The results of the sensitivity tests of the velocity coeffi
cient (C) and the eddy viscosity can he found in Literature (Ratky 1986). 

All these proved, that the developed mathematical model and also its 
computer program are suitahle to compute the prohlems, which can he 
considered as t,\'o dimensional in the horizontal plane. 

3. Application of the model for the internal lake of Kis-Balaton 

We simulated a supposed operation condition with the real geometrical 
data of the Internal Lake (case) of the Kis-Balaton. 

We supposed an initial condition of Z = 106.5 mBf constant water level 
eln'ation and corresponding to this a static state of 1l = 0, V = 0 m/s. 

Presumed boundary conditions: 

During t = 200 s hoth at the upper intake and the lower outlet sluices 
the discharge increases until Q = 10 m 3/s. Our purpose was to compute the 
flow pattern of a steady state 'with a 10 m 3js intake and outlet, respectively. 
A near-steady state corresponding the boundaries was formed 1.5 hours after 
a cold start. Figure 4 shows the flow pattern drawn hy the computer in case of 
C = 5 m 1f2is velocity coefficient and J! = 5 m2js eddy viscosity. In the ahsence 
of suitahle data for calihration we can establish that the flow pattern corre
sponds our experiences and our view as to hydraulics. 

In the ahsence of data for the distrihution of the velocity coefficient in 
space, 'we supposed a constant C in the whole area. To decide if the model 
needed more accurate data we performed a sensitivity test. With a constant 
v = 5 m2/s eddy viscosity we used computations varying the velocity coef
ficient. The differences in the flow patterns can hardly he noticed. Figure 5 
shows the distrihution of the flow per unit ,tidth in direction y, in a 1200 m 
cross-section from the intake sluice, computed w-ith different velocity coeffici
ents. The average values of the cross-section can also be seen. As it is to he seen, 
in spite of the relatively great variation of C, the difference in discharge is 
ahout + 10%. Because of the low velocity, the influence of friction is not 
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Fig. 5. Distrilmtiull of no,,· per unit width at 1200 m from 
the intake sluice 

decisiye, through it is not negligible, either. This effect further decreases if 
the discharge is lo·wer. 

The sensitivity test of the velocity coefficient (though it was not a full 
test) showed that the model does not need special field measurements to de
termine the value of C. Satisfactory accuracy can he achieved if the value of 
C is estimated with the help of former experiences and lahoratory experi
ments or puhlications. But it is necessary to use a Yalue, which includes the 
special characteristics of the simulated area and yaries along the computa
tional grid. 

Concerning the above estahlishment we have also taken into considera
tion all the assumptions which the model includes or may include: the un
certainty of the geometrical and operational data, the derivation of the math
ematical model, the discretization and the solution. 

Besides'thevelocity coefficient there is one more parameter which ensures 
the connection hetween the 3D real phenomenon and the 2D model. This 
parameter is the eddy viscosity (J!) .. The formulae to he deriyed by integrating 
the pulsation velocity in time, and hy integration in depth, cannot he solved 
as yet. As mentioned, the values received hy empirical formulae sho'w a rather 
important deviation. That is why we also made a sensitivity test to show the 
influence of the eddy viscosity. 

With a constant value of the velocity coefficient (C =5 m 1/ 2/s) we under
took computation using the follo,ving values of eddy yiscosity: ]I = 1; 5 and 10 
m2js. We do not give here the flow patterns obtained, as the differences can 
hardly he seen. Vie calculated the differences of the mean value of the flow 
per unit width in several cross sections. The differences were less than 1 %. 
Similarly to the yelocity coefficient field measurements are not necessary to 
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determine the value of " with an accuracy corresponding to the accuracy of 
the model. Satisfactory results can be achieved by estimation. Because of the 
negligible difference, it is not necessary to use different values at each grid 
point or in the different directions. 

4·. Modelling the dispersion of pollutants 

Due to the purpose of the Kis-Balaton it is yery important to determine 
the water quality parameters of the lake. The result of the above hydro
dynamical model, the distribution of velocity has a great importance from 
this point of vie'w. 

1=40 h 
1=140 h 

M =1.10000 

3, 

Fig. 6. Isoconcentration curves according to the computation 
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Fig. 7. Concentration as a function of time 

In this paragraph we mention a mathematical model for the computa
tion of the concentration of any pollutant or suspended material in two di
mensions varying in time. We do not give details, just the results of the first 
steps of our research. 

The governing equation is the two-dimensional, depth-averaged un
steady transport - diffusion equation: 

h3.!:.. 
ot ~ (pe) + J!...- (qe) ox oy 

~ IhD y de _ ~ !hDy3.!:..1 = 0 ox I .. ox oy , d.}' I 

where C (mg/l) - concentration of the pollutant 
Dx, Dy (m2js) - turbulent dispersion coefficients, in x and y 

directions, respectively. 

(ll) 

To solve the transport equation, variation of the velocity-distribution 
and depth must be known. These are given by the hydrodynamical model. 
For the numerical solution, similarly to the hydrodynamical one, we used 
implicit finite differences, a four step alternative direction solution method. 

As an example we supposed the velocity distribution shown in Fig. 4, 
and simulated the transport of a pollutant reaching the lake at the upper 
intake sluice. Due to the constant water intake and outlet, the velocity di
stribution showed a near-steady state. The natural concentration of the "clean" 
water was 1 mg/l. Within 5 hours the concentration increased up to 10 mg/l, 
while the water intake and outlet remained 10 m 3/s. The results can be seen 
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in Fig. 6 indicating idcntical concentration values (isoconcentration curves) 
at the 40th and l40th hour. The advancement and spreading of the pollutant 
can be followed. The reasons of the deformation of the isocentration curves 
are on the one hand the dominance of the convective term (velocity) in 
transport and on the other hand, the variation of the bottom level. The re
sults also show how the concentration varies in time at a certain point or 
cross-section. Figure 7 shows the variation of concentration in time at several 
points at a different distance of the intake sluice. It can be seen that at the 
outlet sluice (2880 m) the variation of concentration is very slow, 

1 % of the pollution in about 4 days, 
5 % of the pollution in about 5 days, 

10% of the pollution in about 6 days 
reached the lower sluice. 

By the above example one can not draw any conclusion as to the deten
tion time or the operation of the sluices. We only intended to show our trans
port model. We wanted to indicate that with the help of the hydrodynamical 
and transport model, the hydraulic characteristics and the water quality param
eters of the lake can be computed and the variation of these parameters 
due to any operation can be forecast, thus an operation condition correspond
ing the water quality can be worked out. 
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