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Abstraet

The paper presents an application of the finite element method for two-dimensional
shallow water circulation problem under land type boundary condition. The extended Galerkin
finite element method is applied for finitization in space. To discretize time, a comparison
between Heun’s and Hamming’s methods is given by a numerical example.

Introduction

In recent years, solving the shallow water equations several variants
of the finite element method have been presented [6], [7].

Some cases were based on Ritz’s method. For example, Fix [4] presented
the finite elements of the shallow water wave problem using potential func-
tions. In certain finite element applications Galerkin’s method was considered
the most convenient tool for formulating finite models. Grotkop [5] presented
the method of discretizing both space and time functions following Galerkin’s
method. Cullen [3] employed a leap-frog scheme to discretize the time function.
Galerkin’s method using isoparametric finite elements was employed by Taylor
Davis [13]. in which the Runge-Kutta scheme was recommended for the integ-
ration in time, Oden and Weleford [2] combined the quadratic triangular ele-
ments with a 4th order Runge-Kutta method for time integration. Kawahara
[8] applied the shallow water equations for “tsunami’ wave propagation in
Japan. “Tsunami’ is a sudden rise in sea level created by an earthquake deep at
the sea bottom, and this kind of generated tide waves are propagated towards
the coast. The finite element method for the space functions of velocity and
tide elevation was based on the conventional Galerkin method. To discretize
time, an explicit method, Lax-Wendroff finite difference method was employed
which is the predictor step of the well-known Heun method.

The variant of the finite element method given in this paper is based on
the shallow water equations presented by Brebbia [1]. The prescribed boundary
conditions are of a land type. The essence of the solution is that the extended
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Galerkin finite element method [11] has been used for space discretization. That
is, the boundary conditions will be satisfied only in an average way. The inter-
polation functions are based on three node triangular finite elements. For
numerical integration in time two methods have been employed, Heun’s and
Hamming’s methods [12]. In [9]. it was discussed how the use of corrector
steps can influence the stability of the solution. Starting with the explicit meth-
od used by Kawahara, as predictor step, it was completed with the corrector
step resulting the well-known Heun method. Going further, this time the
Heun method is compared with Hamming’s method, which is perhaps the most
widely used predictor-corrector scheme to solve initial value problems.

As the paper refers to a ceriain stage of the research the Coriolis force,
the wind effect and the eddy viscosity term for the time being are neglected,
for simplicity. Taking into consideration these neglected terms gradually, this
finite element solution will be a useful tool for the simulation of two-dimensional
free suxface flow in lakes. reservoirs, settling pools, irrigation hasins, around
hydraulic structures ete.

Basie equations

Neglecting the Coriolis forces, wind effects and the eddy viscosity terms
the basic equations are the following ceontinuity and momentum ones:

L Sk 1)

f@;ﬁqﬁy 0 MW‘ —0 |
()f ’ aXIH ()X? !
» | (2)
e (im0 () gy
o oxilm | Tox H) TP J
/ L o 2 12
B — —en Mt H) g e @)
2X, cz e
o )
By— g%t H) g 091 g
PRS c: H?

where (Fig. 1)

q; — the momentum flux in the direction of X,
g — the momentum flux in the direction of X,
H — water depth.

Z, — height of the hottom,

g — gravity acceleration (9.81 m/s?),

G — the friction factor.
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Fig. 2. Boundary definitons

Initial conditions of this system of equations:

H(X,, X,, 0) = H?
Sh(X] X,,0) = q? (4)
72(Xy, X. 0) = g3

Boundary conditions are introduced by the normal momentum flux, in

other
terms the land type boundary is prescribed (Fig. 2):
— /AQU(t) =0 on Fl (5)
TONg)=0 onl,

Nnulr,=7~
the whole boundary.
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The extended Galerkin method

In order to formulate the finite element model we can write the equations
(1), (2) plus boundary conditions (5) in the following way using the extended

Galerkin method:
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The finite element equations

(6)

The same interpolation functions are applied for ¢, g, and H. They are

for one element:
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Substituting these values into the mementum and continuity equations (6), (7).

we can obtain:
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where
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For the approximation of 4,, -, By. B, the same interpolation functions are

used:
Ay = @7 A7
Ay = T A7 (13)
B, = o7 B}
B, = &7 B}

We can assemble [10]. (9), (10) for the entire continuum:
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This time we used three node triangle elements and linear interpolation func-
tions.

Numerical integration in time

To solve equations (14), (15) two predictor-corrector iterative schemes are
attempted, e.g. [12]. In the first case Heun’s method is applied. The following
steps are to be carried out:
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predictor

Quiv1 = Quiq +— 2 - gy
Goi1 = Qoiq + 20 - gy (16)
H.,=H, ,+-2 - It H
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i

(of conrse by solving a system of linear equations instead of inverting M)
corrector

P
(917 = Giiss)

(18)

@oimy = Go; + — - (g5 — 61 i+1)

I{i—i—l = H,’ — :’)— (HI/ ';‘E;—%l)

T

The second, Hamming’s method consists of the following steps:
predictor

- Loty

Qiivy == Q113 =

4: * _]t(_). : L ’ 9, .’{ (19)
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correcior
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The example presents the simulation of the two-dimensional problem.
The geographic houndary and the bottom topography of the examined domain
can be varied arbitrarily and the friction factor is different for each element.
in this way the example is able to demonsirate a problem often occurring in
hydraulic engineering practice. Flow in lakes, cooling ponds and other water
bodies can be approximated similarly to the given example.

The examined region and the finite element grid are shown in Fig. 3. A
grid of 32 elements and 24 nodes has been laid out reflecting the varying bot-
tom topography.

The model is started with a “flat’” condition. s¢ the initial momentum
fluxes equal to zero. The initial depth can be seen on Fig. 3.

The boundary condition is prescribed between nodes 1—2, 2—3 and
16—20, 20—24 where the normal fluxes are enforced as the function of time.
in and gou: are also shown in Fig. 3.

Time integration is carried out using both Heun’s and Hamming’s
methods. In both cases within each time step the predictor is followed by only
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Node x;  x, z, K Vie Ve HT

1 720 200 16000 20 0 0 100
2 720 2%5 9980 35 0 0 120
3720 420 10000 20 o] 0 1.00
4 720 615 10000 20 0 0 .00
5 340 100 100.00 20 0 0 .00
6 540200 9995 25 o] 4 105
? 540 360 99.798 35 0 0 1202
8 540 565 5894 25 0 0 106
8 540 720 %887 2% Q 2 103
0 540 860 100.0C0 Z0 0 G 1.00
11 350 100 10000 20 0 0 00
12 350 200 9987 2 G 0 103
13 360 300 9884 25 0 o] 106
14 380 485 99755 35 G 0 1205
15 325 670 98783 3B 5] 0 1207
i 385 860 10000 20 Q 0 100
17 200 200 0005 ZC 0 o) iC0
18 200 455 §9.%4 B 9] Z LG&
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19 200 665 9883 25 0 O 107 4
20 290 860 9379 35 O 0 12 L03
21 100 27510000 20 O 0 L0
22 100 450 10000 20 0 O 100
23 100 655 10000 20 O O 108
26 100860 10000 0 0 0 100

Fig. 3. Finite idecalization of the two-dimensional problem, initial conditions, boundary
condition

one corrector. After some preliminary tests, the computed time step has been
decided as At = 5 s.

The results, using Heun’s method for time integration, are illustrated in
Figs 4, 5. Solution by both integration schemes are compared in Figs 6, 7.
The velocity distribution calculated by Hamming’s method is shown in Fig. 8.

It can be seen that the results of the two time integration method are
well in agreement and to get a nearly identical accuracy the same number of
function evaluation has been needed.

Oune time step has required about about 25—30 s running time.

The computations have been accomplished by the TPA 1148 computer
of the Civil Engineering Faculty of the Technical University of Budapest.
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Fig. 5. Computed velocities at nodes 22, 18, 14, 8, 4
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Fig. 6. Comparison of the two time integration methods. Computed velocities at node
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Fig. 8. Velocity distribution at ¢t = 1200 s
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