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Ahstract 

The paper presents an application of the finite element method for two-dimensional 
shallow water circulation problem under land type boundary condition. The extended Galerkin 
finite element method is applied for finitization in space. To discretize time. a comparison 
between Reun's and Hamming's mpthods is given by a numerical example. 

Introduction 

In recent years, soh-ing the shallo,~' v;ater equations several variants 
of the finite element method have heen presented [6], [7]. 

Some cases were based on Ritz's method. For example, Fix [4.] presented 
the finite elements of the shallow water wave prohlem using potential func­
tions. In certain finite element applications Galel'kin's method was considered 
the most convenient tool for formulating finite models. Grotkop [5] presented 
the method of discretizing hoth space and time functions following Galerkin's 
method. Cullen [3] employed a leap-frog scheme to discrctize the time function. 
Galerkin's method using isoparametric finite elements was employed hy Taylor 
Davis [13], in which the Runge-Kutta scheme was recommended for the integ­
ration in time. Oden and Vi eleford [2] combined the quadratic triangular ele­
ments 'with a 4th order Runge-Kutta method for time integration. Kawahara 
[8] applied the shallow water equations for "tsunami" wave propagation in 
Japan. "Tsunami" is a sudden rise in sea level created by an earthquake deep at 
the sea hottom, and this kind of generated tide waves are propagated towards 
the coast. The finite element method for the space functions of velocity and 
tide elevation was hased on the conyentional Galerkin method. To discretize 
time, an explicit method, Lax-W endroff finite difference method was employed 
-which is the predictor step of the well-known Heun method. 

The yariant of the finite element method given in this paper is based on 
the shallow water equations presented hy Brehbia [1]. The prescribed boundary 
conditions are of a land type. The essence of the solution is that the extended 
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Galerkin finite element method [11] has been used for space discretization. That 
is, the boundary conditions will be satisfied only in an average way. The inter­
polation functions are based on three node triangular finite elements. For 
numerical integration in time two methods have been employed, Helm's and 
Hamming's methods [12]. In [9], it was discussed how the use of corrector 
steps can influence the stability of the solution. Starting with the explicit meth­
od used by Ka"wahara, as predictor step, it "was completed with the corrector 
step resulting the well-known Heun method. Going further, this time the 
Heun method is compared 'with Hamming's method, which is perhaps the most 
"widely used predictor-corrector scheme to solve initial value problems. 

As the paper refers to a certain stage of the research the Coriolis force, 
the "wind effect and the eddy viscosity term for the time being are neglected, 
for simplicity. Taking into consideration these neglected terms gradually, this 
finite dement solution v, .. ill he a useful tool for the simulation of two-dimensional 

free surface flow in lakes, reservoirs, settling pools, irrigation hasins, around 
hydraulic structures etc. 

Basic ('(IlIation;;; 

Neglecting the Coriolis forces, wind effects and the eddy viscosity terms 
the basic equations are the following continuity and momentum ones: 

dH o 
dt (LXI dX~ 

r)ql -'- d _ 11. qi ]_ ~ If qdZ) _ Bl = 0 
at aXl H. dXz H 

where (Fig. 1) 

aq2 + ~_ \(_ql~21, 0_ (qf) _ Bz = 0 
at aXl . H) axz. H 

()(Zo _L H) 
BI = -gH 

ql the momentum flux in the direction of Xl' 
q'Y. the momentum flux in the direction of X z 
H water depth, 
Zo height of the bottom, 
g gravity acceleration (9.81 m/s2), 

C the friction factor. 

(1) 
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I (2 ) 

j 

(3) 
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Fig. 1. Geometrical notation for shallow \nlter equations 
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Fig. 2. Boundary def;nitons 

Initial conditions of this system of equations: 

167 

(4) 

Boundary conditions are introduced by the normal momentum flux, in other 
terms the land type boundary is prescribed (Fig. 2): 

(5) 

r1 ur2 = r 
the whole boundary. 
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The extended Galerkin method 

In order to formulate the finite element model we can write the equations 
(1), (2) plus boundary conditions (5) in the following way using the extended 
Galerkin method: 

(6) 

(7) 

The finite element e(Iuations 

The same interpolation functions are applied for q1' q2 and H. They are 
for one element: 

11 

qi = ..:2 qli (h = (jJT . q~' 
i=l 

11 

qe _ ...... q . er. _ /f,[ . qn 
:2 - ~ :?! 'rl - \jJ 2 

i=l 

11 

He = ::E Hi (ri = cpT H" 
i=l 

(8) 

Substituting these values into the momentum and continuity equations (6), (7), 
we can obtain: 

1 (9) 

F~ = 0 
J 

(10) 
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where 

Me = .Ll rprpT dQ 
Q< 

(11) 
Fi = H (rpB1 - rpA1)dQ 

Q< 

Fi = .Ll (rpBz - rpA z) dQ 
ne 

A, ~ a~, Im + O~, Iq~, ) 1 

A~ = 0_ r
q1QZ ) + ~ (q~)' r 

aXI \ H ax z H J 

(12) 

For the approximation of AI' A z, B 1, Bz the same interpolation functions are 
used: 

Al rpT A~ 
A2 = rpT A~ 
Bl = cpT B~ 
B z cpT B'i 

We can assemble [10], (9), (10) for the entire continuum: 

1\'1 OQl = 
f)t 

Ni f)qz = 

at 

(13) 

(14) 

(15) 

This time we used three node triangle elements and linear interpolation func­
tions. 

Numerical integration in time 

To solve equations (14), (15) two predictor-corrector iterative schemes are 
attempted, e.g. [12]. In the first case Heun's method is applied. The following 
steps are to be carried out: 
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predictor 

112i+1 q2i-l -'- 2 . Jt . q~i 
i{+1 = H i- 1 2 ·It . Hf 

(of course by solving a system of linear equations instead of inverting l\il) 
COITectOl' 

_It 'I . (qi, -;- q~ 

• ,:, q-c', ,'.,-' ,) I q2i+l = q2i i -:;- . (q;i -, I 

Hi+1 = Hi -'- ~ . (H~' -- ii~_d .,' 0) ,I 1,_ 

The second, Hamming's method consists of the following steps: 
predictor 

~~ (2 q' ql',i_
1
- _L 2 . ql',') 1 "I • 1i-2 

.) 

,j • /It I 
-,.' !.J (9' " ') ') 3 - 'Q2i-2 - q2i-l - -'- 'Q2i r 

H~ H 4 . LIt. IT' H" 9 H') 
i+1 = i-3 --,-- -3- (2· "i-2 - i-I -1- ~ • i 

- ~ 112 -
Hi.!..l = Hi.!..1 + -- (C3i - Hi) 

, '121 

(16) 

(17) 

(18) 

(19) 

(20) 



corrector 

I 
-'-1 = [9· 
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9 -
Hi+l = C3i -'-1 -. (C3i-'-1 - Hi-'-l) 

121 ' 
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(21) 

(22) 

(23) 

The examplp, presents the simulation of the t'wo-dimensional problem. 
The geographic houndary and the bottom topography of the examined domain 
can he varied arbitrarily and the friction factor is different for each element. 
In this way the example is ahle to demonstrate a problem often occurring in 
hydraulic engineering practice. Flow in lakes, cooling ponds and other water 
bodies can he approximated similarly to the given example. 

The examined region and the finite element grid are shown in Fig. 3. A 
grid of 32 elements and 24 nodes has been laid out reflecting the varying bot­
tom topography. 

The model is started v;ith a "flat" condition, so the initial momentum 

fluxes equal to zero. The initial depth can be seen on Fig. 3. 
The boundary condition is prescribed between nodes 1-2, 2-3 and 

16-20, 20-24 ",here the normal £luxes are enforced as the function of time. 
qin and qout are also shown in Fig. 3. 

Time integration is carried out using both Helm's and Hamming's 
methods. In both cases "within each time step the predictor is followed by only 
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Node xl, " Z, 

1 720 200 100.00 20 
2 720 295 99.80 35 
3 720 420 100.00 20 
4 720 615 100.00 20 
5 540 100 100.00 20 
6 540 200 99.95 25 
7 540 360 99.798 35 
8 540 565 99.94 25 

540 720 99.97 25 
10 540 860 100.00 20 
11 350 100 100.CO 20 
12 350 200 99.97 25 
i3 360 300 99.94 25 
14 380 485 99.755 35 
15 325 670 99.793 35 
16 385 860 100.00 20 
17 200 200 100,00 20 
18 200 455 99.94 25 

"*~ 2}~"_~ ""{>OO 

LLLU 

19 200 665 99.93 25 
20 290 860 99.79 35 
21 100 275 100.00 20 
22 100 450 100.00 20 
23 100 655 100.00 20 
24 100 860 101100 20 
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Fig. 3. Finite idealization of the two-dimensional problem. initial conditions, boundary 
condition 

one corrector. After some preliminary tests, the computed time step has been 
decided as LIt = S s. 

The results, using Heun's method for time integration, are illustrated in 
Figs 4, S. Solution hy both integration schemes are compared in Figs 6, 7. 
The velocity distrihution calculated hy Hamming's method is shown in Fig. 8. 

It can he seen that the results of the two time integration method are 
well in agreement and to get a nearly identical accuracy the same number of 
function evaluation has been needed. 

One time step has required ahout ahout 25 - 30 s running time. 
The computations have been accomplished by the TP A 1148 computer 

of the Civil Engineering Faculty of the Technical University of Budapest. 
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Fig. 6. Comparison of the two time integration methods. Computed velocities at node 14 
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Fig. 7. Comparison. at node 8 

t::::i200 s 
Q,1 ~fs 
,-' -, 

Fig. 8. Velocity distribution at t = 120() s 
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